

Measuring light

ELEC-E5710 Sensors and Measurement Methods

Aalto University AStboolioéisiectrical SEngineering

Sensors and Actuators B 179 (2013) 140-149

Contents lists available at SciVerse ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Optical measurements and pattern-recognition techniques for identifying the characteristics of beer and distinguishing Belgian beers

Anna Grazia Mignani^a, Leonardo Ciaccheri^{a,*}, Andrea Azelio Mencaglia^a, Heidi Ottevaere^b, Edgar Eugenio Samano Báca^b, Hugo Thienpont^b

^a CNR-Istituto di Fisica Applicata "Nello Carrara", Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy ^b Vrije Universiteit Brussel, Department of Applied Physics and Photonics FirW-TONA, Brussels Photonics Team B-PHOT – Pleinlaan, 2, 1050 Brussels, Belgium

ARTICLE INFO

Article history: Received 29 June 2012 Received in revised form 4 September 2012 Accepted 4 October 2012 Available online 13 October 2012

ABSTRACT

A miscellaneous assortment of 86 beers was characterized using non-destructive, rapid and reagent-free optical measurements. Diffuse-light absorption spectroscopy performed in the visible and near-infrared bands with the use of optical fiber spectrometers was tested innovatively to gather turbidity-free spectro-scopic information. Furthermore, conventional turbidity and refractive index measurements were added

Aalto University AStroutivérsity SEngineering Engineering

Photon

- Photons behave as fields (waves) but they can be detected only as discrete particles
- Photons have no rest mass but they do have energy and momentum

Photon

- Photons behave as fields (waves) but they can be detected only as discrete particles
- Photons have no rest mass but they do have energy and momentum

Wavelength

- The spectrum of electromagnetic radiation can be denoted equivalently in terms of energy, frequency or wavelength
- Vacuum wavelength: $\lambda_0 = \frac{c}{f}$
- Speed of light and wavelength in propagation medium having refractive index n:

$$v = \frac{c}{n}$$
 $\lambda = \frac{v}{f} = \frac{c}{nf} = \frac{\lambda_0}{n}$

Electromagnetic spectrum

Measuring light

- In radiometry, electromagnetic radiation is measured
 - Photons and fields have nothing to do with eyesight
 - Measuring the power of radiation unit is watt (W)
 - Spectral distribution of quantities
- In photometry, light perceived by "average" human eye is measured
 - Spectrum is weighted with the luminosity function (depends on the brightness level)
 - Measuring the luminous flux unit is lumen (lm)

The first photometric instrument

• Human eye!

- Brightness of the object is compared visually when it is illuminated by standard source and test source
- Standard source may be for example precisely manufactured candle (candlepower)
- Every eye is unique
- It is difficult to compare the brightness of saturated colors
- Pupils adjust to different light levels comparison of brightnesses is difficult
 - Early solution: measure the diameter of the pupil rather than estimate brightness

Photometry – eye sensitivity

- CIE (International Commission on Illumination) has determined the luminosity function of a human eye
- V(λ) the backbone of photometry!
- Devices are manufactured to imitate human eye

The quantities of radiometry and photometry

Radiometry (X _e)	Photometry (X_v)	
Radiant intensity <i>I</i> _e (W⋅sr ⁻¹)	Luminous intensity I_v (cd)	
Irradiance <i>E</i> e (W⋅m ⁻²)	ance $E_{\rm e}$ (W·m ⁻²) Illuminance $E_{\rm v}$ (Ix = Im/m ²)	
Radiation power $F_{e}(W)$	Luminous flux F_v (Im = cd·sr)	
Radiance <i>L</i> _e (W·sr ⁻¹ ·m ⁻²)	Luminance L_v (cd·m ⁻²)	
Radiant energy Q _e (J)	Luminous energy Q _v (Im·s)	

Т

Aalto University School of Electrical Engineering $X_v = K_m \int X_{e,\lambda}(\lambda) V(\lambda) d\lambda$ $K_m = 683.002 \text{ lm W}^{-1}$

Photometric measurement devices: Illuminance

"How much light arrives to a surface"

- Diffusers are needed to collect light from every angle (cosine response)
- Collected light can be transmitted to a spectroradiometer with an optical fiber or it can be directly measured with a filtered detector (luxmeter)

Photometric measurement devices: Luminance

"How bright is a surface?"

- Typically focusing optics is used
- Measuring either on one point or imaging luminance
- In practice all photographic cameras are luminance meters
 - Channels can be weighted and summed to resemble $V(\lambda)$

Aalto University School of Electrical Engineering

Photometric measurement devices: Luminous flux

"How much light is emitted by a source?"

- Goniometric → detector circulates the source from every direction
- Integrating sphere → inner surface of the sphere is diffusing with the reflectance of ~98% → the intensity on the inner surface is even

16

Spectral measurements

- Wavelength band
 - Filter radiometers, photometers
 - Color filters (bandwidth >100 nm)
 - Thin film filters (bandwidth 10–60 nm)
- Monochromatic wavelength band
 - Extremely narrow bandwidth is measured (0.1–5 nm) at every required wavelength of the spectrum
 - Wavelength is selected by
 - Controlling the optics of a monochromator (scanning across the spectrum) or
 - Using array detectors where spectrum is dispersed to pixel array and all channels are measured simultaneously
 - Electronically tunable optical filters (Piezo or MEMS element)

Filter radiometers

- Consists of a detector, a filter and an aperture
- Often temperature stabilized
- Significant back reflection from the detector and filter
- Back reflection minimized by using, e.g., a group of 3 photodiodes oriented at angles (*trap detector*)
 - Beam hits the detector 5 times, the reflection is 2 orders of magnitude lower (3% → 0.03%)

Monochromatic measurements

- Light is measured by dispersing it to wavelength components
- In a prism, dispersion since the refractive index is wavelength dependent
- In a diffraction grating, dispersion and interference
- Usually a reflective diffraction grating is used
 - Grating has ridges patterned in-line and manufactured mechanically or holographically

Monochromator

- Czerny-Turner is the most common configuration for a monochromator
- Image of the entrance slit (B) is imaged to the exit slit (F) at the selected wavelength
- Wavelength is selected by turning the grating (D)
- A spectroradiometer is obtained by placing a detector to the exit slit

Array spectroradiometer

- Stationary grating, dispersed spectrum is detected with an array detector
- Pixel size defines the spectral bandwidth
- Smaller, cheaper and much faster than a monochromator with turning grating
- Not as accurate, limited wavelength range and resolution

Electrically tunable optical filters

- Thin film structure utilizing interference for wavelength selection
- Thin film thickness changed with voltage (piezo or MEMS)

Optical detectors

Aalto University School of Electrical Engineering

The Big Picture

		Photoemissive
		Photovoltaic
	Photon detectors	Photoconductive
	Individual photon produces a discrete	Photoelectromagnetic
	effect	Pyroelectric
Photodetectors	Thormal dotoctors	Thermoelectric
Detects or measures the energy of optical radiation	Heating effect of the incoming radiation	Resistive
		Pressure
	Radiation pressure	Mechanical scale
	Pressure caused by the	Magnetic scale
	photon momentum	

Spectral sensitivities of detectors

Photon detectors

- Photons excite electrons → electron-hole pairs → detected as electrical current
- Number of electrons is proportional to the number of quanta
- Sensitivity is heavily dependent on wavelength
- Linear range up to 1 mW, fast response

Light dependent resistor (LDR)

- Inexpensive cadmium sulphide cell
- Slow
- Noisy
- Nonlinear
- etc...
- Very common

Laitoksen nimi 5.4.2021

Signal extraction

Laitoksen nimi 5.4.2021

Photodiodes

- Used either in photovoltaic or photoconductive mode
 - Photovoltaic "zero bias", current is measured directly
 - Photoconductive negatively biased, response time drastically decreases but noise increases
- Avalanche photodiodes (APD)
 - High (reverse bias) voltage creates electric field which accelerates and multiplies excited electrons → amplification of the signal
 - Suits measuring of the lowest light levels
- The most important parameters of photodiodes
 - Responsivity A/W
 - Dark current
 - Noise-equivalent power (NEP) The lowest light level creating a signal comparable to RMS noise at 1 Hz bandwidth

Photodiodes I/V curve

- Current measurement would change the internal resistance of the photodiode
- Voltage can be measured more accurately

Visible spectrum

- Usually silicon detector
- Very good linearity up to 1 mW
- Stability, low noise, long life span
- Wavelength range about 300–1000 nm

Trap configuration

Photomultiplier tube (PMT)

- Photon released electrons are accelerated to a dynode
- Electrons hitting the dynode surface release electrons from the surface
- Every dynode connected in series is in higher voltage than the previous one
- Amplification even 10⁸
- The most common application is accurate UV measurement

Thermal detectors

- Heating caused by incident radiation is measured
- Painted black \rightarrow better absorption
- Spectrally flat across the wavelength range from UV to IR
- Linear range up to tens of kilowatts, slow response

Bolometer

- Measurement of absorbed power via heating effect
- Metal, semiconductor or superconductor as thermometer
- Optional unilluminated reference
- Cooling improves sensitivity
- Sensitive to every form of energy

Laitoksen nimi 5.4.2021

Thermoelectricity

(Seebeck effect + Peltier effect + Thomson effect)

= Direct conversion of temperature differences to electric voltage and vice-versa

Laitoksen nimi 5.4.2021

Thermopile

Laitoksen nimi 5.4.2021

Infrared region

WAVELENGTH (µm)

Absolute cryogenic radiometer

- "Electrical substitution radiometer"
 - Absorber is electrically heated to a specific temperature
 - Incident (laser) radiation raises the absorber temperature
 - Temperature is kept constant by reducing electrical heating power \rightarrow reducing corresponds to the optical power
- The most accurate method to measure radiation power
- Operating temperature about 4 K (liquid helium) to achieve the best sensitivity and accuracy

Aalto University School of Electrical

Enaineerina

Pyroelectric detector

- Pyroelectric detector absorbs radiation and its temperature induced voltage change is measured
- Pyroelectric crystal often as an active element
- Linear response as a function of absorbed power
- More temperature sensitive and noisier than photodiodes

Radiation pressure detector

- Photons have momentum
- Energy for object movement comes from shift in wavelength

Radiation pressure detector

- Mainly high power applications (>1kW lasers)
 - Laser cutting and welding, scientific research, military applications

