

Flow rate measurement

ELEC-E5710 Sensors and Measurement Methods

Why is flow rate measurement needed?

- Provides knowledge required in industry and municipal engineering
- Knowing momentary flow rate of gases and liquids
 Essential for process control, optimization and security
- Knowing the time integral of a flow rate which is the amount passing through
 - Important to balance calculations in facilities and subprojects

- Flowing can be divided in several different ways
 - Frictionless (ideal fluid) and frictioned flow
 - Laminar and turbulent
 - Compressible and incompressible
- Important properties of the measured medium:
 - viscosity, temperature, pressure, corrosiveness, solid particles

- 1. Flow rate $q = \frac{dx}{dt}$
- 2. Volume flow rate $q_v = q \cdot A = \frac{dV}{dt}$
- 3. Mass flow rate $q_m = \rho q_v = \frac{dm}{dt}$
- Conservation of energy applied to fluid mechanics is called Bernoulli's principle:

$$\rho gh + p + \frac{1}{2}\rho v^2 = \text{constant}$$

• Volume flow rate continuity:

$$A_1 v_1 = A_2 v_2$$

- Viscosity µ represents the internal friction of the material which is generated by velocity gradients in the observed system
- Force maintaining the velocity gradient $f = \mu A \left(\frac{dv}{dx}\right)$

A = area of the intersecting layers dv/dx = velocity gradient

- SI unit of the viscosity Ns/m² = Pa·s
- Small viscosity well running material
 - E.g. viscosity of water: 1.0 mPa·s, lubricating oil: 1000–3000 mPa·s

- Laminar flow
 - Particles move parallel
 - Slower movement on the sides
 - Profile of the flow rate
- Turbulent flow
 - Turbulence in the flowing material
 - Disturbs several measuring instruments

• Reynolds number = inertial force of mass / viscous force

$$\operatorname{Re} = \frac{\rho v_s^2 / L}{\mu v_s / L^2} = \frac{\rho v_s L}{\mu}$$

 v_s average flow rate

L specific length of the flow e.g. diameter of a circular tube

 μ viscosity of the flow medium (=friction)

 ρ density of the flow medium

- With small Re the flow is laminar
- The transition from laminar to turbulent flow is indicated with a critical Re
- Re_{crit} depends on the flow configuration. In a tube, with circular cross section, Re_{crit} = 2300

Meters for pressure difference

- Most common type of flow rate meters
- Very suitable for measuring the flow of liquids, gases and steams
- Can be divided into two classes:
 - Meters based on throttling device
 - Orifice plate
 - Flow nozzle
 - Venturi tube
 - Meters based on stagnation pressure
 - Pitot tube
 - Target flow measurement

Throttling device

Throttling device

Bernoulli's principle: $p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$

Continuity of the flow rate: $q_v = \frac{1}{4}\pi D^2 v_1 = \frac{1}{4}\pi d^2 v_2$

$$\Rightarrow v_1 = \sqrt{\frac{2\Delta p}{\rho[(D/d)^4 - 1]}}$$

$$q_{\nu} = \frac{1}{4}\pi D^{2} \sqrt{\frac{2\Delta p}{\rho[(D/d)^{4} - 1]}} = \pi E D^{2} \beta^{2} \sqrt{\frac{\Delta p}{8\rho}},$$

where $E = \frac{1}{\sqrt{1 - \beta^{4}}}$ is approaching factor, and $\beta = \frac{2}{L}$

Throttling devices

- Orifice
 - The most common throttling device
 - Inexpensive, plenty of experience using it in practice
 - Can be manufactured from several different materials
 - Also for corrosive materials
 - Not suitable for fluids with large impurities
 - Risk of blocking the flow
- Nozzle
 - Advantages compared to orifice:
 - Smaller p_r
 - Lower risk of blocking the flow

Pressure sensors

Flow rate measurement

Venturi tube

- Smaller decrease in total pressure than in the case of orifices or nozzles
- Large size
 - Entry cone taper 30°, exit cone taper 5°
 - Often a shortened version is used ("Dall tube")
- expensive

Stagnation pressure meters

- An obstacle, which has one end closed, is placed inside a linepipe
- Inside the tube shaped obstacle, there is a flow rate $v_2 = 0$
 - Dynamic pressure i.e. stagnation pressure: $p_2 = p_1 + \frac{1}{2}\rho v_1^2$

- Flow rate:
$$v_1 = \sqrt{\frac{2}{\rho}}\Delta p$$

Pitot tube

- Measures both dynamic and static pressure caused by a flow
- In industry, it is used to measure pure liquids and gases. It can also be used to measure the air flow rate of airplanes

Target flow measurement

- A flow applies a force to a target and this force is measured
- Force applied to target: $F = pA = \frac{1}{2}kA\rho v^2$
 - k is the shape factor of the target, A is the area of the target
- Flows going either way can be measured
- On the other hand, it is sensitive to vibrations and shocks
- Most suitable for measuring pure liquids and gases

Magnetic flow rate measurement

- An induced voltage *E* is created in a magnetic field due to a conductive liquid moving
- If the electrodes, magnetic field and the flow channel are perpendicular:

E = vBD

- Voltage is small (mV), protection against interference is important
- Due to electrochemical potentials an alternating magnetic field is used
- Independent on the density, viscosity, temperature and flow rate profile of the measured liquid
- Does not contain moving parts \rightarrow durable
- Does not disturb the flow
- Expensive
- Suitable only for conductive liquids: conductivity > 5 mS/cm

Measuring mass flow rate

 Mass flow rate can be measured with a volume flow rate meter:

$$m = V\rho$$

– When a constant density is assumed

 If the density of the measured medium is not constant or it contains air bubbles, the mass flow rate measured with a volume flow rate meter is not reliable!

Thermic methods

- Based on a cooling effect of a flow
- A thin heated wire or film loses part of its heat to a flow
- Temperature is measured resistively and another sensor measures the temperature of the flow
- Low response time and high sensitivity
 Suitable for measuring slow flows
- Impurities in a flow damage wires
- Applied to gas flow measurements

Cross correlation flow meter

- Based on measuring the transition time of particles flowing in a channel between two sensors
- Measuring quantity may be e.g. optical or ultrasound
 - Does not disturb the flow at all!
- Other quantities are possible too
- Suitable for measuring solid mediums because there is no need to place additional obstacles to the flowing channel

About the accuracy of flow rate measurements

- Effect of the installation point
 - A flow stabilizes after a long and straight tube
- Changes
 - Density (non-uniform material), velocity distribution
 - Electric conductivity
 - Temperature distribution (thermal expansion of the tube)
 - Flow circumstances (roughness of the surface, critical dimensions of the pressure difference instrument)
- Measured material is always different compared to material used in calibration
- Pressure variation must be considered in gas measurements

Flow rate meters with changing aperture

- Revision: aperture size of the throttling device is constant in pressure difference meters; flow rate is determined with the pressure difference between the entry and exit side
- In meters with changing aperture, the pressure stays roughly the same. The flow rate determines the aperture size

Rotameter

- Glass or metal
- Scale on the wall of a glass tube rotameter, in the case of metal rotameter scale can be e.g. magnetic
- Does not require expensive equipment → inexpensive meter
- Suitable for liquids and gases
- Also suitable for slow flows
- Movement of the float must be attenuated if the flow has much variation

Rotameter – the shape of the float

- The shape of the float strongly affects its properties:
- 1. Easy to manufacture \rightarrow used in small rotameters
- 2. General float, cone head \rightarrow very durable
- 3. For small flows
- 4. Low sensitivity to viscosity
- 5. Sensitive to changes in viscosity
 - \rightarrow used as a viscosity sensor when the flow rate is constant
 - \rightarrow scale must be produced to each measured material

Volume counters

- Used in flow rate measurements of liquids
- Good accuracy

 \rightarrow Used to calibrate other flow rate meters

• Trivial example: a bucket and a stopwatch

Oval wheel flow meter

- Oval shaped cogwheels spin due to pressure difference between the entry and the exit side
- As the cogwheels spins 180°, a volume V_1+V_2 of liquid has passed through the meter
- On the negative side: sensitive to impurity particles
- Error about 0,5 %

Mutating disc flow meter

- Used as household water flow meters
- Pressure difference between the inlet and the exit side forces a circular disc to move
- A constant volume of liquid passes through the meter during every spin

Current meter

- A rotor which contains as frictionless as possible bearing. A flow forces the rotor to rotate
- The speed of rotation of the rotor is proportional to flow rate
- The movement of the current meter is transferred electrically or mechanically to a counter

Turbine meter

- The most common type of current meters
- Specific models for gases and liquids
- Error is in the case of liquids about 0,3 %, and gases 1 %
- Turbulences may cause an error of several percent
- Contamination \rightarrow suitable only for pure flows
- Fast response time \rightarrow flow rate can change rapidly

Gas turbine meter

Liquid turbine meter (flow straighteners remove turbulences from the flow)

Blade wheel counter

- Commonly used in water measurements
- Flow rate is determined from the speed of rotation
- Error about 2 %

