Pressure measurements

ELEC-E5710 Sensors and Measurement
Methods

Pressure

- Compressed gas or liquid aims to expand, this is called pressure.
- Defined as a ratio of force and surface area

$$
p=\frac{F}{A}
$$

- SI unit for pressure is Pascal,
- $\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} / \mathrm{s}^{2}$
- After temperature, pressure is the second most measured process quantity.

Units of pressure

	Pa	bar	psi	at	atm	Torr	$\mathbf{m m H g}$	inHg	$\mathrm{cmH}_{2} \mathrm{O}$
1 Pa	1	10^{-5}	1.45-10-4	$1.02 \cdot 10^{-5}$	9.87-10-6	7.5•10-3	7.5-10-3	2.96-10-4	0.0102
1 bar	10^{5}	1	14.5	1.02	0.987	750	750	29.6	1020
1 psi	6890	689	1	0.070	0.068	51.7	51.7	2.04	70.3
1 at	$9.81 \cdot 10^{4}$	0.981	14.2	1	0.968	736	736	29	1000
1 atm	101325	1.01	14.7	1.03	1	760	760	30	1030
1 Torr	133	$1.33 \cdot 10^{-3}$	0.0193	$1.36 \cdot 10^{-3}$	$1.32 \cdot 10^{-3}$	1	~ 1	0.0395	1.36
1 mmHg	133	$1.33 \cdot 10^{-3}$	0.0193	$1.36 \cdot 10^{-3}$	$1.32 \cdot 10^{-3}$	~ 1	1	0.0395	1.36
1 inHg	3380	338	0.49	0.0344	0.033	25.3	25.3	1	34.4
$1 \mathrm{cmH}_{2} \mathrm{O}$	98.1	$9.81 \cdot 10^{-4}$	0.0142	0.001	$9.68 \cdot 10^{-4}$	0.736	0.736	0.029	1

Types of pressure

- Absolute pressure
- Compared to vacuum, so pressure is always greater than zero
- Meters for small absolute pressure are called vacuum gauges
- Current air pressure
- Depends on circumstances, altitude etc.
- Gauges are called barometers, absolute measurement
- Overpressure and underpressure
- Reference pressure is the current air pressure
- Pressure difference measurement
- Reference value is something else than vacuum or current air pressure Pressure difference

Static and dynamic pressure

- Static pressure: static pressure is measured when the fluid is at rest
p
- Dynamic pressure: caused by directional kinetic energy of matter

$$
\frac{1}{2} \rho v^{2}
$$

- Total pressure = static pressure + dynamic pressure

Hydrostatic pressure

- Pressure caused by the gravitational force of the liquid or gas:

$$
p=\rho g \Delta h
$$

$\rho=$ fluid density $; \mathrm{g}=$ gravitational acceleration; $\mathrm{h}=$ depth of fluid

Measuring instruments

- Calibrating instruments are based on the definition of pressure
- Dead weight testers
- Manometers
- Field measuring instruments
- Transitional and force sensors

- For special applications e.g. thermic and ionization measuring instruments

Dead weight tester

- Typical calibrating device for meters
- Transforms the mass of weights to liquid or gas pressure with the help of a cylinder and a piston
- High accuracy is obtained by dimensional measurements (the diameter of the piston)

Schematic diagram: Dead Weight Tester

Dead weight tester

- Air or nitrogen as a medium when the pressure is low ($1 \mathrm{kPa}-5 \mathrm{MPa}$) and oil or water with higher pressure (5 $\mathrm{MPa}-2,5 \mathrm{GPa}$)
- Problems
- Small pressure: friction
- High pressure: elastic deformation of the cylinder-piston combination
- Important during calibration
- Determination of the effective area of the cylinder piston
- Determination of the mass of the weights

Manometer

a)

b)

a) U-tube manometer,
b) Well type manometer,
c) Inclined tube manometer,
d) Micro manometer
e) Barometer

Manometer

- Filled with water, mercury or e.g. butyl alcohol
- Pressure difference $p_{1}-p_{2}$ can be calculated from the altitude difference of the columns

$$
\begin{aligned}
& p_{1}-p_{2}=\rho g h, A_{2}=A_{1} \\
& p_{1}-p_{2}=\rho g h\left(1+\frac{A_{2}}{A_{1}}\right), A_{2} \neq A_{1}
\end{aligned}
$$

Manometer (example)

- U-shaped resistive wire in mercury which short circuit the wire
- Measuring with a bridge connection
- Equilibrium when the pressure difference of the tube is zero
- When the other side is exposed to pressure, the bridge connection is not in equilibrium and there is an output signal
- When the pressure increases on the left side, the resistance also increases. On the other side, the resistance decreases
- The output voltage is proportional to the
 resistance difference

Manometer (example)

- Pros:
- Simple and reliable instrument to measure gas pressure
- Inexpensive
- Cons:
- Low time constant
- Sensitivity to vibrations
- Large
- Mercury contaminates the gas

Mechanical pressure sensors (no fluid)
 - transition pressure sensors

(a) Flat film
(b) Waved film
(c) Capsule
(d) Bellows
(e) Straight tube
(f) C-shaped bourdon tube
(g) Bent bourdon tube
(h) Twisted bourdon tube
(i) Spiral bourdon tube

(a)	(b)	(c)
(d)	(e)	(f)
(g)	Motion (h)	(i)

Bourdon tube

- Flat tube made of brass or steel
- Functioning based on springback factor
- Inexpensive, reasonable overall accuracy in pressure gauges
- Absolute pressure up to 6 MPa and overpressure up to 700 MPa

Flexible film

- Sensitivity can be enhanced by corrugating the film
- Releases tension in the film
- Enhanced sensitivity and linearity

(B)

Piezoresistive pressure sensor

- The most common type,
- To all applications
- Typically a semiconductor stretch slip attached to a flexible film
- Measurement with a Wheatstone bridge

Temperature dependency of a piezo pressure sensor

- The temperature coefficient of a piezo sensor's sensitivity is negative and rather big
- Temperature compensation is required
- Often with bridge connections

Strain gauge pressure sensor

- Electrical resistance of a strain gauge changes when material deforms.
- When a material comes longer and narrower, its resistance changes.

Capacitive pressure sensor

- Other electrode (e.g. silicon) functions a pressuredisplacement transformer while the other one is fixed
- As pressure increases the distance between the electrodes decreases

- Capacitance increases
- In differential version, the capacitance of the other one increases and the other one's decreases
- Linearity and stability are good but the measuring electronics is more complicated

Capacitive pressure sensor in practice

- 2 insulator films made of special metal compound
- Also to measure corrosive materials
- Pressure difference to sensor film via oil
- Desired permittivity to capacitor
- Absorbs shocks and vibrations

Piezo sensor vs. capacitive sensor

- Films can be protected against overpressure with a mechanical support
- Movement of a capacitive film is bigger than in piezo sensors (better support is possible)
- In film based sensors, meter breaks down at pressures 10 times (piezo) and 1000 times (capacitive) higher than the upper limit of the measurement range
- Flatness of the film is important for capacitive sensors
- Displacements are often smaller that thicknesses
- Capacitive sensors have better relative sensitivity
- Stray capacitance can easily be as big as nominal capacitances (Measuring circuits must be close to sensors!)
- Both have low hysteresis

Inductive (reluctance) pressure sensor

- Change in pressure bends magnetic film
- Air gap between the iron core and the film changes and, thus, the reluctance also changes
- Inductance of the coil changes
- Measurements with small displacements (<30 mm)
\rightarrow Small pressures

Reluctance sensor

Material i causes a reluctance $R_{i}=\frac{l_{i}}{\mu_{i} A_{i}}$
$l_{i}=$ distance experienced by flux in material
$\mu_{i}=$ permeability of the material
$A_{i}=$ area in material which is perpendicular to direction of propagation

Inductance of a coil, which contains N turns $L=\frac{N^{2}}{\sum_{i=0}^{M} R_{i}}$

Pros of reluctance sensor

- Low temperature dependency
- Very small pressure difference measurements
- Due to small pressure cavity, there is good endurance to overpressure ('short circuit' of the magnetic parts does not disturb)
- In practice, it almost never breaks down

Inductive pressure sensor, Linear Variable Differential Transformer (LVDT)

- Moving iron core changes the transformer ratio

Piezoelectric pressure sensor

- Electric charge of the crystal surfaces change when the surface is strained
- Leakage currents compensate the charges on the crystal surfaces
- Not suitable to measure static pressure

Piezoelectric pressure sensor

- Pros
- High output signal and specific frequency
- Small size, durable
- Cons
- High output impedance and temperature sensitivity
- Requires an amplifier
- Only dynamic measurement

Cantilever Pressure sensor

