

Pressure measurements

ELEC-E5710 Sensors and Measurement Methods

Pressure

- Compressed gas or liquid aims to expand, this is called pressure.
- Defined as a ratio of force and surface area

SI unit for pressure is Pascal,
– Pa = N/m² = kg/m/s²

• After temperature, pressure is the second most measured process quantity.

Units of pressure

	Pa	bar	psi	at	atm	Torr	mmHg	inHg	cmH ₂ O
1 Pa	1	10 ⁻⁵	1.45·10 ⁻⁴	1.02·10 ⁻⁵	9.87·10 ⁻⁶	7.5·10 ⁻³	7.5·10 ⁻³	2.96.10-4	0.0102
1 bar	10 ⁵	1	14.5	1.02	0.987	750	750	29.6	1020
1 psi	6890	689	1	0.070	0.068	51.7	51.7	2.04	70.3
1 at	9.81·10 ⁴	0.981	14.2	1	0.968	736	736	29	1000
1 atm	101325	1.01	14.7	1.03	1	760	760	30	1030
1 Torr	133	1.33-10 ⁻³	0.0193	1.36-10 ⁻³	1.32·10 ⁻³	1	~1	0.0395	1.36
1 mmHg	133	1.33-10 ⁻³	0.0193	1.36-10 ⁻³	1.32·10 ⁻³	~1	1	0.0395	1.36
1 inHg	3380	338	0.49	0.0344	0.033	25.3	25.3	1	34.4
1 cmH ₂ O	98.1	9.81·10 ⁻⁴	0.0142	0.001	9.68·10 ⁻⁴	0.736	0.736	0.029	1

Types of pressure

- Absolute pressure
 - Compared to vacuum, so pressure is always greater than zero
 - Meters for small absolute pressure are called vacuum gauges
- Current air pressure
 - Depends on circumstances, altitude etc.
 - Gauges are called barometers, absolute measurement
- Overpressure and underpressure
 - Reference pressure is the current air pressure
- Pressure difference measurement
 - Reference value is something else than vacuum or current air pressure

Static and dynamic pressure

• Static pressure: static pressure is measured when the fluid is at rest

p

 Dynamic pressure: caused by directional kinetic energy of matter

$$\frac{1}{2}\rho v^2$$

• Total pressure = static pressure + dynamic pressure

Hydrostatic pressure

 Pressure caused by the gravitational force of the liquid or gas:

 $p = \rho g \Delta h$

 ρ = fluid density ; g = gravitational acceleration; h = depth of fluid

Measuring instruments

- Calibrating instruments are based on the definition of pressure
 - Dead weight testers
 - Manometers
- Field measuring instruments
 - Transitional and force sensors
 - For special applications e.g. thermic and ionization measuring instruments

Dead weight tester

- Typical calibrating device for meters
- Transforms the mass of weights to liquid or gas pressure with the help of a cylinder and a piston
- High accuracy is obtained by dimensional measurements (the diameter of the piston)

Schematic diagram: Dead Weight Tester

Dead weight tester

- Air or nitrogen as a medium when the pressure is low (1kPa – 5 MPa) and oil or water with higher pressure (5 MPa – 2,5 GPa)
- Problems
 - Small pressure: friction
 - High pressure: elastic deformation of the cylinder-piston combination
- Important during calibration
 - Determination of the effective area of the cylinder piston
 - Determination of the mass of the weights

Manometer

Manometer

- Filled with water, mercury or e.g. butyl alcohol
- Pressure difference $p_1 p_2$ can be calculated from the altitude difference of the columns

 $p_1 - p_2 = \rho g h$, $A_2 = A_1$

$$p_1 - p_2 = \rho gh\left(1 + \frac{A_2}{A_1}\right), \ A_2 \neq A_1$$

Manometer (example)

- U-shaped resistive wire in mercury which short circuit the wire
- Measuring with a bridge connection
 - Equilibrium when the pressure difference of the tube is zero
 - When the other side is exposed to pressure, the bridge connection is not in equilibrium and there is an output signal
- When the pressure increases on the left side, the resistance also increases. On the other side, the resistance decreases
- The output voltage is proportional to the resistance difference

Manometer (example)

- Pros:
 - Simple and reliable instrument to measure gas pressure
 - Inexpensive
- Cons:
 - Low time constant
 - Sensitivity to vibrations
 - Large
 - Mercury contaminates the gas

Mechanical pressure sensors (no fluid)

- transition pressure sensors

- (a) Flat film
- (b) Waved film
- (c) Capsule
- (d) Bellows
- (e) Straight tube
- (f) C-shaped bourdon tube
- (g) Bent bourdon tube
- (h) Twisted bourdon tube
- (i) Spiral bourdon tube

Bourdon tube

- Flat tube made of brass or steel
- Functioning based on springback factor
- Inexpensive, reasonable overall accuracy in pressure gauges
- Absolute pressure up to 6 MPa and overpressure up to 700 MPa

Flexible film

- Sensitivity can be enhanced by corrugating the film
 - Releases tension in the film
 - Enhanced sensitivity and linearity

Piezoresistive pressure sensor

- The most common type,
 - To all applications
- Typically a semiconductor stretch slip attached to a flexible film
- Measurement with a Wheatstone bridge

Temperature dependency of a piezo pressure sensor

- The temperature coefficient of a piezo sensor's sensitivity is negative and rather big
- Temperature compensation is required
 - Often with bridge connections

Strain gauge pressure sensor

- Electrical resistance of a strain gauge changes when material deforms.
- When a material comes longer and narrower, its resistance changes.

Capacitive pressure sensor

- Other electrode (e.g. silicon) functions a pressuredisplacement transformer while the other one is fixed
- As pressure increases the distance between the electrodes decreases
 - Capacitance increases

- In differential version, the capacitance of the other one increases and the other one's decreases
- Linearity and stability are good but the measuring electronics is more complicated

Capacitive pressure sensor in practice

- 2 insulator films made of special metal compound
 - Also to measure corrosive materials
- Pressure difference to sensor film via oil
 - Desired permittivity to capacitor
 - Absorbs shocks and vibrations

Piezo sensor vs. capacitive sensor

- Films can be protected against overpressure with a mechanical support
 - Movement of a capacitive film is bigger than in piezo sensors (better support is possible)
 - In film based sensors, meter breaks down at pressures 10 times (piezo) and 1000 times (capacitive) higher than the upper limit of the measurement range
- Flatness of the film is important for capacitive sensors
 - Displacements are often smaller that thicknesses
- Capacitive sensors have better relative sensitivity
- Stray capacitance can easily be as big as nominal capacitances (Measuring circuits must be close to sensors!)
- Both have low hysteresis

Inductive (reluctance) pressure sensor

- Change in pressure bends magnetic film
 - Air gap between the iron core and the film changes and, thus, the reluctance also changes
 - Inductance of the coil changes
- Measurements with small displacements (< 30 mm)
 - → Small pressures

Reluctance sensor

Material *i* causes a reluctance $R_i = \frac{l_i}{\mu_i A_i}$

 l_i = distance experienced by flux in material

 μ_i = permeability of the material

 A_i = area in material which is perpendicular to direction of propagation

Inductance of a coil, which contains N turns $L = \frac{N^2}{\sum_{i=0}^{M} R_i}$

Pros of reluctance sensor

- Low temperature dependency
- Very small pressure difference measurements
- Due to small pressure cavity, there is good endurance to overpressure ('short circuit' of the magnetic parts does not disturb)
 - In practice, it almost never breaks down

Inductive pressure sensor, Linear Variable Differential Transformer (LVDT)

• Moving iron core changes the transformer ratio

Piezoelectric pressure sensor

- Electric charge of the crystal surfaces change when the surface is strained
- Leakage currents compensate the charges on the crystal surfaces
 - Not suitable to measure static pressure

Piezoelectric pressure sensor

- Pros
 - High output signal and specific frequency
 - Small size, durable
- Cons
 - High output impedance and temperature sensitivity
 - Requires an amplifier
 - Only dynamic measurement

Cantilever Pressure sensor

Schematic diagram of Photoacoustic radiation detection setup with cantilever pressure sensor.

