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Elastic deformation

• Stress

• Strain

• Young’s modulus

(elastic modulus)
– Rubber: 10 - 100 MPa

– Aluminium: 70 GPa

– Diamond: 1.22 TPa

• Poisson’s ratio
– Rubber: 0.4999 (no volume change)

– Aluminium: 0.33

– Cork: 0.0 (no transverse strain)

– Auxetic materials: <0 (E.g. paper, and some minerals. Stretching in axial

direction, causes expansion in transverse direction.)

L

L
=

]Pa[



=E

axial

transverse




 −=

Measuring force 2

]Pa[
A

F
=

Axial

Transverse

Force



Resistance of a wire
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Resistance of a wire depends on its electrical 

resistivity and geometry
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Strain gauge

• Mechanical strain on the 

strain gauge causes a 

small change in its 

electrical resistance.

• Gauge factor is the ratio 

of the relative change in 

electrical resistance to the 

mechanical strain.

• Typical gauge factor for 

metallic foil gauges is 

around 2.
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Strain gauge as a sensor

 E=

• Strain gauge measures strain ε.

• By gluing it on the surface of the 

object with a known Young’s 

modulus E, the stress σ of the 

object can be measured.

– The relationship between strain ε and 

force F depends also on the geometry 

and direction of applied force.

F ε
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Strain gauge as a sensor

• Relative changes in electrical 

resistance are small

→ Wheatstone bridge

circuit is often used
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Influence of temperature
• Thermal expansion and change in resistivity

– Quarter bridge with temperature compensation: 

A dummy strain gauge in the bridge with no 

strain (the strain caused by thermal expansion 

cancels itself out).

– Half bridge: Two strain gauges that experience 

strain of opposite sign (e.g. glued on the 

opposite sides of a beam).

– Full bridge: Four strain gauges (e.g. two on 

each side of a beam).

– Most sensitive. Linear.

• Self temperature compensation
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– The materials for the strain gauge and the wires can be selected such 

that the change in resistance due to thermal expansion compensates

the change in resistivity due to temperature.

– STC = self-temperature compensation.

𝑅𝑔2

𝑅𝑔1+𝑅𝑔2
=constant



Strain gauge materials

• Constantan (copper-nickel alloy), K = 2.1

– The most commonly used, and the cheapest material. Very constant 

resistivity over a wide temperature range (-30 – 193 ºC). 

– Heat-treated gauges (P alloy) can measure large strains (over 5%). 

However, P alloy gauges exhibit permanent resistivity change when 

strained (not recommended in applications with cyclic strain). 

• Karma (nickel-chrome alloy), K = 2.0

– Very good temporal stability, which makes it suitable for long-term force 

monitoring. Also suitable for measurements in extremely low temperatures.

• Isoelastic (iron-nickel alloy), K = 3.6

– Used in dynamic and cyclic measurements. Good signal-to-noise ratio, but 

relative high temperature sensitivity.

• Nichrome V, Armour D, platinum-based, …

– For high temperatures (>230 ºC) and other special situations.
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Multiaxial strain gauges

(strain gauge rosettes)
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Semiconductor strain gauges 

(piezoresistor)
• Strain causes a change in the electrical resistivity due to 

piezoresistive effect.

– Strain affects the bandgap of a semiconductor, the density of 

current carriers changes.

• Gauge factors as much as 100x higher than with 

traditional gauges.

• Non-linear, highly temperature dependent, but very 

sensitive and small.
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Piezoelectric sensor

• Applied mechanical stress causes electric charge to 

accumulate at the opposite sides of the material.

• Operational mode is determined by the way the crystal 

is cut: longitudinal, transverse, and shear.

• High sensitivity compared to strain gauges.

• Static force results in a fixed amount of charge. Only 

practical in dynamic measurements.

• Lower long-term stability than with strain gauges.
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Piezoelectric sensor

xL Fdq =

a

b
Fdq yT =

Longitudinal

Transverse

Shear xL Fdq = 2

b

a
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Piezoelectric sensor

• Quartz

– Naturally piezoelectric material. Highly stable, but quite low 

charging coefficient: d = -2.3 pC/N.

• Ceramic materials (PZT)

– Artificial materials, high charging coefficient: d = -374 pC/N

(for PZT-5A). Sensitivity degrades over time.

• Resonance frequency determines usable frequency 

range.
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Piezoelectric sensor

• Charge q (typically some pC) of the piezoelectric sensor 

can be measured with a charge amplifier

– High open loop gain and high input impedance
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Torque

• Static torque is easy to measure.

• Dynamic torque measurement requires wireless 

signal transmission from the rotating shaft.

Strain gauge Piezoelectric
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Several piezoelectric

sensors



Load Cells
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Double-ended shear beam

S-type load cell

Compression load cell Tension and compression load cell

Rope clamp load cell



Other measurement methods

• Linear variable displacement 

transducer

• Pneumatic pressure

• Hydraulic pressure
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Other measurement methods

• Equilibrium of forces

– Feedback is used to balance the force.

– Force can be calculated from feedback current.
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Other measurement methods

• Vibrating wire

– The tension of the wire changes as a function of applied force.

– Frequency changes as a function of tension.

– Excitation required to activate the vibrating wire.

Keskusyksikkö

Oheislaitteet

Paikka-

anturi
Lanka

Virran-

syöttö

Taajuuslaskin

Kuorma

ja esijän-

nitys

m

T

l

n
f

2
n =

Measuring force 19

Load and 

pre-strain Wire

Frequency 

counter

Mainframe

External 

devices

Current

feed

Position

sensor



Typical force sensors

1mN 10mN 100mN 1N 10N 100N 1kN 10kN 100kN 1MN 10MN 100MN 1GN

Puolijohde-venymäliuskat

Ohutkalvo-venymäliuskat

Folio-venymäliuskat

Pietsosähköiset

Hydraulinen

Pneumattinen

LVDT, kapasitiivinen, värähtelevä lanka

Magneto-elastinen Gyroskooppinen Voimien tasapaino
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Semiconductor strain gauges

Thin film strain gauge

Foil strain gauges

Piezoelectric

Hydraulic

Pneumatic

LVDT, Capacitive, Vibrating wire

Magneto elastic Gyroscopic Equilibrium of forces



Measuring acceleration
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Speed and acceleration sensors

• Speed is the first derivative of position with respect to 

time. Acceleration is the second derivative.

• However, differentiation and integration increase the 

measurement error.

• For motions under 10 Hz, the use of position sensors is 

accurate enough.

– Strain gauges, motion sensors…

• For 10 Hz – 1 kHz, speed sensor is more accurate.

– E.g. induction based sensors.

• For over 1 kHz direct acceleration measurement.

– Force sensor.
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Measuring speed

• Indirect speed measurement

– Differentiation of periodical position measurements

– Integration of acceleration

• Sensor directly sensitive to speed

– Magnetic induction

(Note: Linear variable differential transformer (LVDT) is a position sensor!)
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• GPS can be used for measuring the 

speed of larger objects.

– Based on Doppler effect.

– Position measurement based on geometry.

– Position data can be used to determine 

average speed (less accurate).



Principle of acceleration measurements
• Spring-mass system

• Acceleration a (e.g. gravitational acceleration) 

related to displacement x.

• Equation of motion

𝑚𝑎 = 𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝜆

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥,

Where k is the spring constant, and λ is the damping 

constant caused by the viscosity of the medium.

• Constant acceleration a, equilibrium position 

x’(t) = x’’(t) = 0:
𝑥

𝑎
=
𝑚

𝑘

• Resonance frequency in the absence of 

damping

𝑓𝑟 =
1

2𝜋

𝑘

𝑚
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Methods of acceleration measurement

a) piezoelectric

b) piezoresistive

c) resonant

d) capacitive

e) optical

f) magnetic

g) inductive

h) Switch based
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• MEMS = Microelectromechanical systems.



Spring structures

1. Spring (beam)

– The amount of springs varies

2. Torsional spring

• The spring constant is 

determined by the structure 

and dimensions of the 

spring(s).
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Spring constants
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Spring constant 𝑘 = 𝑛
𝐸𝑤𝑡3

𝐿3

𝑛 = Number of springs (beams)

𝐸 = Young’s modulus

𝑤 = width of the beam

𝑡 = thickness of the beam

𝐿 = length of the beam



Choosing a sensor for the application

• Vibration or acceleration measurement?

• Operating temperature and temperature fluctuations?

• Operating frequency?

• Requirements for linearity and accuracy?

• Available power supply?

• Corrosive materials?

• Moisture conditions?

• Accelerations beyond the limits?

• Sensitivity for acoustic and electromagnetic fields?

• Grounding?
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Capacitive accelerometer

• Sensitivity is better than that of a piezoresistor.

• Small sensor has small capacitance.

• Measurement circuits must be close to the sensor to 

minimize noise and parasitic capacitances.

• CMOS-circuits often used.

• Frequency range: 0 – 1000 Hz

• Acceleration range: 50 mg – 1000 g
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Capacitive accelerometer
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Differential silicon based capacitive 

accelerometer

• A piece of silicon between two sheets of glass.
– Two capacitances form between the silicon and the sheets of glass.

• The silicon piece is suspended from the edges with multiple 
beams.
– Beams are located symmetrically at both sides of the mass.

• Thermal effects and cross-axis sensitivities are minimized with 
the symmetrical structure.
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Differential silicon based capacitive 

accelerometer
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Dependence of acceleration on the displacement of the mass:

𝑥 = 𝑎
𝑚

𝑘

Acceleration is relative to the difference in capacitances:

𝑎 =
𝑘𝑑

𝑚

𝐶1 − 𝐶2
𝐶1 + 𝐶2

where d is the gap between the electrodes in a steady state and 
k is the spring constant.



Piezoresistive accelerometer

• Piezoresistive elements in a cantilever (spring)

• Can operate in a range of 0 – 13 kHz.

• Dynamic range of -1000 g – +1000 g when uncertainty of 1% or 

better is required.

• The sensor can withstand accelerations as high as 10 000 g. This 

over-shock limit is a critical parameter in many applications.

• The relative change in resistance in piezoresistive sensors is 

smaller than the relative change in capacitance in capacitive 

sensors, i.e. piezoresistive sensor is less sensitive.

• Sensitive to changes in temperature.
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Piezoresistive accelerometer
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Piezoelectric accelerometer

• Piezoelectric crystal connected to a mass

• Changing acceleration/force creates electrical charges 

in the crystal.

– Cannot be used to measure static acceleration.

• High natural frequency

• Wide operating 

temperature range
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Accelerometer comparison

• Capacitive

+ High sensitivity

+ DC

– Limited frequency range (1 kHz)

– Noise

• Piezoelectric

+ High natural frequency

+ Wide operating temperature range

– No DC operation

• Piezoresistive

+ Wide frequency range

+ Over-shock durability

– Sensitive to changes in temperature
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Feedback-based accelerometer

(Closed loop accelerometer)

• Electrostatic or magnetic 

feedback

– Compensates for the deflection 

of the seismic mass.

• Benefits

– Increases the sensitivity.

– Broadens the frequency range 

past the resonance frequency.

– No nonlinearities caused by 

large deflections.

– No stiction (seismic mass can 

get stuck to the structure due 

to static friction).
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3D accelerometer

• 3D accelerometers measure both magnitude and direction of 

acceleration.

• The seismic mass in the pictured accelerometer is hanging by the 

spring with a pole and 4 springs. Piezoresistors measure the bending 

of the springs.

• z component of the acceleration moves the mass up and down 

causing symmetrical bending of the springs.
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• x and y components of 

acceleration cause 

asymmetrical bending of the 

springs.



3D accelerometer

• Piezoresistive

• Capacitive
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Thermal accelerometers

• Heated plate acts as a mass
– Measurement of temperature 

difference 

– Conduction analysis

– Insensitive to ambient temperature 

and electromagnetic fields

• Heated gas acts as a mass
– Multiple temperature sensors

– Convection analysis

– No moving parts: no resonant 

frequency, no stiction (seismic 

mass can get stuck to the 

structure due to static friction).
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Gyroscope

• A rotating mass which is suspended in such a way that 

the rotation axis can change freely. (gimbal)

• According to the law of conservation of momentum the 

mass tends to stay in the same position. (gyroscopic 

resistance force)
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• Mechanical gyroscope is a classic 

navigation instrument.



Vibrating gyroscope

• The rotating mass is replaced with a vibrating element.

• Vibrating element tends to continue vibration in the 

same plane.

– Similar to Foucault’s pendulum.
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Vibrating gyroscope

• Two masses oscillating in opposite directions.

• When the sensor is rotated (angular velocity is applied), 

the Coriolis force displaces the masses in opposite 

directions.

– The displacement is perpendicular to the oscillation direction 

and the rotation axis.

Kiihtyvyyden mittaus 43

http://electroiq.com/blog/2010/11/introduction-to-mems-gyroscopes/

• Displacement can be 

detected e.g. as differential 

capacitance.

– Proportional to angular velocity.

– Linear acceleration moves the 

masses in the same direction. 

No differential capacitance.



MEMS gyroscopes
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MEMS gyroscopes

• The vibrational mode of the ring changes due to the 

Coriolis force.
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Optical gyroscope

• Two beams of light travelling in opposite directions 

create a difference in the transit time when the angle of 

the mirrors change.

– The difference can be seen in the interference pattern.

• Ring laser gyroscope and fiber optic gyroscope.
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Measuring mass
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Mass and weight

• Mass m determines the inertia of an object and is defined 

as the volume V multiplied with the density ρ of the object:

• Mass is a base unit in the International System of Units, SI

• The weight W is the force on the object due to gravity 

(which depends on latitude φ and height h) :

where g is local acceleration of free fall.
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[kg] Vm =

),(),( g hmghW  =



Acceleration due to gravity

• Gravitational force between two objects (masses m1 and m2 and 

distance d) can be expressed with the following equation:

– Gravitational constant G = (6.67428  0.00067) * 10-11 Nm2/kg2

• Gravitational acceleration:

– mearth and r, the mass and the radius of the Earth

• The Earth is flattened on the poles, therefore acceleration due to 

gravity is dependent on the latitude. 

– The difference between the radius at the equator (=6376.14km) and the radius 

at the poles is about 22 km causing a difference of about 0.06 m/s2 in the 

acceleration due to gravity.
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Centrifugal force

• The rotation of the Earth (angular velocity ω) exerts a 

centrifugal force on an object.

– A type of inertial or fictitious force in a rotating frame of 

reference (as opposed to inertial frame of reference).

• Centrifugal acceleration

• The effect of centrifugal force is larger at the equator 

than at the poles.

• Total acceleration measured in gravity measurements
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Acceleration due to centrifugal force
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Acceleration due to gravity
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Measuring acceleration due to gravity
• Prevailing acceleration can be determined empirically 

with a gravimeter either as an absolute or a relative 

value.

• Relative gravimeter

– Spring-based gravimeter: A weight on a spring whose stretch is 

measured.

– Superconducting gravimeter: Cooled diamagnetic 

superconducting object (e.g. niobium sphere) is held suspended 

with a magnetic field. The current generating the magnetic field is 

proportional to the gravity. (Can detect changes of about 10-12g)

• Absolute gravimeter 

– Measuring the acceleration of a falling retroreflector with a 

Michelson interferometer.

– Measuring small masses free-falling in vacuum
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Measurements from orbit

• Twin satellites (GRACE / NASA & DLR)

– Map of Earth’s gravity field anomalies, 

distribution of mass.

– Oceans, ice sheets, the gradual rise of land 

masses since ice age…

– Two satellites in a polar orbit about 220 km apart.

– Changes in gravity affect the distance between 

the satellites. The distance between the satellites 

monitored continuously. 

• Measuring with gradiometer (GOCE / ESA)

– Highly detailed map of Earth’s gravity field.

– Measurement of the gravitational gradient along 

three orthogonal axes using three pairs of 

accelerometers.
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56

”Potsdam gravity potato” 
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Measuring mass

• Comparing masses on a weighing scale.

• Determined using force sensors.

• Most of the electric weighing systems are based on the 

use of a strain gauge.
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International Prototype of Kilogram

• Prototype made of platinum-iridium alloy

– “Le Grand K”

– The only SI unit not yet defined by a 

fundamental physical property.

– IPK and its 6 sister copies stored in a vault at 

the International Bureau of Weights and 

Measures (BIPM) in France.

– Several national prototypes and additional 

copies

– Finnish kilogram (#23) could be the heaviest 

in the world.

– Three verifications 1889, 1948, 1989
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International Prototype of Kilogram
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International Prototype of Kilogram
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For comparison: the metre…
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Avogadro project

• Mass is dependent on the amount of substance of the 

particular atom when Avogadro constant is fixed.

• Nearly perfect sphere made of silicon. The number of 

atoms can be evaluated based on the dimensions of the 

sphere.
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• Very sophisticated processes 

for ultra-pure silicon due to 

semiconductor industry.

• Better long term stability 

compared to IPK needs to be 

demonstrated (but is difficult).

– Silicon dioxide formation? Photo: Master optician Achim Leistner



Kibble balance (previously Watt balance)
• Two steps:

– Weighing mode: Force caused by a 

mass is compensated by driving current 

to a coil located in a static magnetic field.

– Velocity mode: Coil is moved in the 

magnetic field and the induced voltage is 

measured.

– Eliminates the need to measure the 

density of magnetic flux or length of coil.
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• Balance and velocity is measured with an interferometer.

• Gravitational acceleration measured with a gravimeter.

• Voltage measurement based on Josephson effect

– Relates voltage to frequency in a superconducting circuit.

– Definition of kilogram in terms of Planck constant h.



Kibble balance – operation modes
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Kibble balances around the world…
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The NIST-4: Measurement of 

Planck's constant to within 13 

parts per billion in 2017.



Simplified version proposed for 

industrial applications
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Actually… simple enough for a LEGO project
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Chao, L. S., et al. "A LEGO Watt balance: An apparatus to determine a mass 

based on the new SI." American Journal of Physics 83.11 (2015): 913-922.


