ECON-C4200 - Econometrics II

Lecture 1: Panel data

Otto Toivanen

Toivanen

Professor Otto Toivanen

Economics dept. Aalto U.

otto.toivanen@aalto.fi

Office hours: on appointment.

TA Jaakko Markkanen Economics dept. Aalto U. jaakko.m.markkanen@aalto.fi Office hours: on appointment.

- Tools: economic theory + statistical tools + data + knowledge. In short: econometrics.
- Learning outcomes: Students
 - 1 are acquainted with the principles of empirical methods in economics.
 - 2 know how to perform descriptive analysis of data.
 - 3 are acquainted with econometrics methods for cross-section data.
 - 4 understand the difference between descriptive and causal analysis.
 - 5 have basic knowledge of the econometrics software package Stata.
 - 6 know the basics of how to program, how to document and how to ensure replicability of their econometric analysis.

Learning outcomes: Students

- 1 understand the benefits of panel data and how to make use of them
- 2 are familiar with Difference-in-Difference analysis and its basic use
- 3 know how to model limited dependent variables
- 4 have basic knowledge of the time series econometrics, including forecasting models
- 5 have basic knowledge of the VAR (Vector AutoRegressive) models
- 6 understand what cointegration is
- 7 have a basic knowledge of (G)ARCH (Generalized AutoRegressive Conditional Heteroskedasticity) models and their use.

- Exercises 50%
- Exam 50%
 - Course exam 12.04.2021
 - Retake exam 21.05.2021

- 2.3 Lecture 1 panel data #1, ch10
- 4.3 Lecture 2 panel data #2, ch10
- 9.3 Lecture 3 causal parameters #3.1: Difference-in-Difference, ch10
- 11.3 Lecture 4 causal parameters #3.2: Difference-in-Difference, examples

16.3 Lecture 5 limited dependent variables #1, ch11
18.3 Lecture 6 limited dependent variables #2, ch11
23.3 Lecture 7 Econometrics and machine learning, ch14 (4^t h ed.)
25.3 Lecture 8 time series #1: forecasting ch14

30.3 Lecture 9 time series #2: dynamic causal effects, ch15
1.4 Lecture 10 time series #3: VAR models, ch16
6.6 Lecture 11 time series #4: Cointegration & ARCH models, ch16
8.4 Lecture 12 recap

- 5 graded problem sets and 6 exercise sessions.
- Problem sets are published a week before the deadline. All deadlines are before the start of the next exercise session (14:00 EET).
- Problem sets have equal weight and include both analytical and empirical problems.
- You need at least 50% of points to pass the course.

- Deadlines are strict do not email us your solutions.
- Plagiarism is strictly forbidden. Do not share your answers or code. You can discuss the exercises in small groups but all answers must be self-written.
- Detailed instructions are found on MyCourses.

Stata session - 05.03.

Problem Set 1 - 12.03. Panel data

Problem Set 2 - 19.03. DiD

Problem Set 3 - 26.03. LDV

Problem Set 4 - 02.04. Time series

Problem Set 5 - 09.04. Time series

Panel data

- At the end of lectures 1 & 2, you
- $1\,$ understand what panel data is
- 2 how a first-difference estimator works
- 3 how a least squares dummy variable estimator works
- 4 how a fixed effects estimator works.
- 5 how a random effects estimator works.
- 6 how to think about measurement error in a panel data context
- 7 why there could a need to cluster standard errors.

- Many observation units.
- Each observed just once.
- Examples:
 - **1** Student grades in the n^{th} year of studies.
 - **2** Customer decision(s) during a single shopping trip.
 - **3** Firm's bids in a procurement auction.

- Same phenomenon for the same unit observed many times at different points in time.
- Examples:
 - Inflation at the monthly level for a country.
 - 2 Stock market index by minute during a day.
 - **3** Electricity prices at 12.00 for 400 days in a row.

- Observe same units several times.
- Examples:
 - Individuals annual income and jobs for t years in the Finnish job market.
 - 2 Finnish firms' accounting information since 2000.
 - 3 Prices and sold quantities for each car type on sale in Finland 2000 -2015.
 - Our FLEED data.

- Formally, one observes Y_{it}, X_{it} for
- units i = 1, ..., n and
- periods *t* = 1, ..., *T*
- NOTE: there can be more than two dimensions, e.g., individuals, regions, time.

- Panel data is **balanced** if all units are observed for the same time periods.
- Panel data is **unbalanced** if this is not the case.
- Examples:
 - 1 Firm panel data unbalanced because firms are born and die.
 - 2 Customer panel data unbalanced because customers appear and disappear.

- In a cross-section, the only source of variation is across observation units.
- In time-series, the only source of variation is changes over time.
- Panel data combines these.
- FLEED: income, age and education observed for same individuals over many years.

• Consider the univariate regression

$$Y_{it} = \alpha_0 + \beta_1 X_{it} + \epsilon_{it}$$

Notice we now need also a t - index.

$$Y_{it} = \alpha_0 + \beta_1 X_{it} + u_{it}$$

• With enough time-series data, you could estimate this separately for each observation unit.

$$Y_{it} = (\beta_{0i}) + (\beta_{1i})X_{it} + \epsilon_{it}$$

$$Y_{iy} = \alpha_0 + \beta_1 X_{it} + u_{it}$$

• With enough observation units, you could estimate this separately for each time period.

$$Y_{it} = \alpha_{0t} + \beta_{1t} X_{it} + \epsilon_{it}$$

$$Y_{it} = \alpha_0 + \beta_1 X_{it} + \epsilon_{it}$$

- Or you could decide on some combination.
- Why? To reduce bias & increase precision of your parameter estimates.
- Is there any reason to think the effect of X on Y varies over time?
- Is there reason to think the effect of X on Y varies across observation units?

What does panel data bring to the table?

The panel data estimator

$$Y_{it} = (\alpha_{0i}) + (\beta_1) X_{it} + \epsilon_{it}$$

- Example: Effect of R&D (=X) on productivity (=Y).
- What is the interpretation of *α*_{0*i*}?
- Firms have different productivity levels even when they invest the same amount in R&D.

The panel data estimator

$$Y_{it} = \alpha_{0i} + \beta_1 X_{it} + \epsilon_{it}$$

- It is natural to see the panel data estimators as generalizations of the cross-section regression that you would (have) run.
- Key question: how to model α_{0i} ?

4. General set-up

• Consider the following model:

$$Y_{it} = \alpha_i + \mathbf{X}'_{it}\boldsymbol{\beta} + \epsilon_{it}$$

where α_i is a time invariant individual effect.

• Written in matrix form:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{bmatrix} = \begin{bmatrix} i & 0 & \dots & 0 \\ 0 & i & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & i \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{bmatrix} + \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_N \end{bmatrix} \boldsymbol{\beta} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{bmatrix}$$

• *Y_{it}* and *X_{it}* are the *T* time observations on the outcome and on the *K* explanatory factors for observation unit *i* in period *t*.

- Y_{it} and X_{it} are the T time observations on the outcome and on the K explanatory factors for observation unit *i* in period *t*.
- β is the column vector of K parameters.

- Y_{it} and X_{it} are the T time observations on the outcome and on the K explanatory factors for observation unit *i* in period *t*.
- β is the column vector of K parameters.
- α_i is the time invariant individual effect.

- *Y_{it}* and *X_{it}* are the *T* time observations on the outcome and on the *K* explanatory factors for observation unit *i* in period *t*.
- β is the column vector of K parameters.
- α_i is the time invariant individual effect.
- ϵ_{it} is the vector T disturbances for observation unit *i*.

- Y_{it} and X_{it} are the T time observations on the outcome and on the K explanatory factors for observation unit *i* in period *t*.
- β is the column vector of K parameters.
- α_i is the time invariant individual effect.
- ϵ_{it} is the vector T disturbances for observation unit *i*.
- i is a T dimensional column vector with all elements equal to 1.

- Y_{it} and X_{it} are the T time observations on the outcome and on the K explanatory factors for observation unit *i* in period *t*.
- β is the column vector of K parameters.
- α_i is the time invariant individual effect.
- ϵ_{it} is the vector T disturbances for observation unit *i*.
- i is a T dimensional column vector with all elements equal to 1.
- We are interested in β .

• α_i is the time invariant individual effect. It is also called the

- α_i is the time invariant individual effect. It is also called the
- the unobserved component,

- α_i is the time invariant individual effect. It is also called the
- the unobserved component,
- latent variable,

- α_i is the time invariant individual effect. It is also called the
- the unobserved component,
- latent variable,
- individual or unobserved heterogeneity.

- (First) difference estimator.
- Least Squares Dummy Variable (LSDV) estimator.
- Fixed Effects (FE) estimator.
- Random Effects (RE) estimator.

- Imagine you observe customers in 2 time periods and know how much advertising they are subjected to.
- You are interested in the amount of sales that ads generate.
- For simplicity, let's assume you have randomized the ads.
- Let's denote quantity bought by customer *i* in period *t* by *q_{it}*, and the amount of advertising the customer is subjected to by *a_{it}*.

- α_{0i} disappear.
- \rightarrow they could be correlated with u_{it} .
 - Note what variation ("within variation") is left to identify the parameters.
- $\rightarrow\,$ Needed: changes w/in an observation unit in both X and Y.

- If no variation left, then "everything" explained by α_{0i} .
- Famous example: Firm level R&D.
- Potential problem: dummy variables.

Table: example of within-variation from FLEED

shtun	year	age	high_educ
41	11	21	0
41	12	22	0
41	13	23	0
41	14	24	0
41	15	25	0
42	1	22	
42	2	23	
42	3	24	0
42	4	25	0
42	5	26	0
42	6	27	0
42	7	28	0
42	8	29	0
42	9	30	0
42	10	31	0
42	11	32	0
42	12	33	0
42	13	34	0
42	14	35	1
42	15	36	1

1

Table

shtun	year	age	high_educ
41	11	21	0
41	12	22	0
41	13	23	0
41	14	24	0
41	15	25	0
42	1	22	\smile
42	2	23	
42	3	24	0
42	4	25	0
42	5	26	0
42	6	27	0
42	7	28	0
42	8	29	0
42	9	30	0
42	10	31	0
42	11	32	0
42	12	33	0
42	13	34	0
42	14	35	1
42	15	36	1

2

Table

shtun	year	age	high_educ
41	11	21	0
41	12	22	0
41	13	23	0
41	14	24	0
41	15	25	0
42	1	22	\smile
42	2	23	
42	3	24	0
42	4	25	A
42	5	26	0
42	6	27	0
42	7	28	0
42	8	29	0
42	9	30	0
42	10	31	0
42	11	32	0
42	12	33	0
42	13	34	0
42	14	35	\ 1 /
42	15	36	1

3

. sum high_educ dhigh_educ

Variable	Obs	Mean	Std. Dev.	
high_educ	53,938	.0727131	.2596674	
dhigh_educ	48,992	.0051845	.0718174	

. tab dhigh_educ if e(sample)

dhigh_educ	Freq.	Percent	Cum.
0 1	47,497 249	99.48 0.52	99.48 100.00
Total	47,746	100.00	

• Consider the standard model and consider two contiguous observations for the same observation unit *i*:

$$Y_{it} = \alpha_i + \mathbf{X}'_{it}\beta + \epsilon_{it}$$

$$Y_{it-1} = \alpha_i + \mathbf{X}'_{it-1}\beta + \epsilon_{it-1}$$

• Consider the standard model and consider two contiguous observations for the same observation unit *i*:

$$Y_{it} = \alpha_i + \mathbf{X}'_{it}\beta + \epsilon_{it}$$

$$Y_{it-1} = \alpha_i + \mathbf{X}'_{it-1}\beta + \epsilon_{it-1}$$

Subtracting the period *t* − 1 observation from period *t* observation yields:

$$Y_{it} - Y_{it-1} = [\boldsymbol{X}_{it} - \boldsymbol{X}_{it-1}]'\beta + \epsilon_{it} - \epsilon_{it-1}$$

• Consider the standard model and consider two contiguous observations for the same observation unit *i*:

$$Y_{it} = \alpha_i + \mathbf{X}'_{it}\beta + \epsilon_{it}$$

$$Y_{it-1} = \alpha_i + \mathbf{X}'_{it-1}\beta + \epsilon_{it-1}$$

Subtracting the period *t* − 1 observation from period *t* observation yields:

$$Y_{it} - Y_{it-1} = [\boldsymbol{X}_{it} - \boldsymbol{X}_{it-1}]'\boldsymbol{\beta} + \epsilon_{it} - \epsilon_{it-1}$$

• What assumption is needed for consistency (besides a rank condition)?

$$\mathbb{E}[\epsilon_{it} - \epsilon_{it-1} \mid \boldsymbol{X}_{it} - \boldsymbol{X}_{it-1}] = 0$$

• Consider the standard model and consider two contiguous observations for the same observation unit *i*:

$$Y_{it} = \alpha_i + \mathbf{X}'_{it}\beta + \epsilon_{it}$$

$$Y_{it-1} = \alpha_i + \mathbf{X}'_{it-1}\beta + \epsilon_{it-1}$$

• Subtracting the period *t* - 1 observation from period *t* observation yields:

$$Y_{it} - Y_{it-1} = [\boldsymbol{X}_{it} - \boldsymbol{X}_{it-1}]'\boldsymbol{\beta} + \epsilon_{it} - \epsilon_{it-1}$$

• What assumption is needed for consistency (besides a rank condition)?

$$\mathbb{E}[\epsilon_{it} - \epsilon_{it-1} \mid \boldsymbol{X}_{it} - \boldsymbol{X}_{it-1}] = 0$$

• Example:
$$T = 2$$

• Add a dummy variable for each **observation unit**.

$$Y_{it} = \alpha_1 D_1 + \alpha_2 D_2 \dots + \alpha_N D_N + \mathbf{X}'_{it} \mathbf{\beta} + \epsilon_{it}$$

- These are analogous to other dummy variables, almost.
- The differences: what happens to #variables when n increases?

- Number of variables should not be a fcn of the number of observation units.
- Remedy:
 - 1 (First) differencing.
 - 2 Taking deviations from observation unit specific means (and using software do this).

• Calculate observation unit specific means of all variables. Start from

$$Y_{it} = \alpha_i + \beta_1 X_{it} + \epsilon_{it}$$

• Sum up and divide by number of observations / unit:

$$\overline{Y}_i = \overline{\alpha}_{0i} + \beta_1 \overline{X}_i + \overline{\epsilon}_{it}$$

- Substract mean equation from "base" equation.
- Substract these from each observation.

$$Y_{it} - \overline{Y}_i = \alpha_i - \overline{\alpha}_i + \beta_1 (X_{it} - \overline{X}_i) + \epsilon_{it} - \overline{\epsilon}_{it}$$

$$=\beta_1(X_{it}-\overline{X}_i)+\epsilon_{it}-\overline{\epsilon}_{it}$$

This is often called the **within transformation**, as it takes place within each observation unit.

- Let us study the effect of age and having a university degree on log income.
- We use as data all the FLEED learning sample observations.

- Let's use our FLEED data for demonstration purposes.
- Stata has some handy commands for checking the panel dimensions.

Stata code

1 gen high_educ = . 2 replace high_educ = 0 if ktutk != . 3 replace high_educ = 1 if educ >= 4 4 xtset shtun year 5 xtdescribe . xtdescribe

shtun: 1, 2, ..., 8444 n = 8444 year: 1, 2, ..., 15 T = 15 Delta(year) = 1 unit Span(year) = 15 periods (shtun*year uniquely identifies each observation)

Comparison of estimators

. xtdescribe

shtun: 1, 2, ..., 8444 n = 8444 year: 1, 2, ..., 15 T = 15 Delta(year) = 1 unit Span(year) = 15 periods (shtun*year uniquely identifies each observation) Distribution of T i: min 5% 25% 50% 75% 95% max 2 6 13 15 15 1 15 Freq. Percent Cum. | Pattern ----+ 3680 43.58 43.58 | 111111111111111 333 3.94 47.52 | 111..... 313 3.71 51.23 |11 305 3.61 54.84 | ...111111111111 229 2.71 60.62 |11111111 214 2.53 63.16 | 11111111111111... 208 2.46 65.62 | 11..... 206 2.44 68.06 ...1111111111111 2697 31.94 100.00 | (other patterns) ----+ 8444 100.00

. pwcorr lnincome age high_educ, sig

	lnincome	age	high_e~c
lnincome	1.0000		
age	0.2590 0.0000	1.0000	
high_educ	0.2284 0.0000	0.0486 0.0000	1.0000

. tabstat lnincome age high_educ, stat(mean sd p50 n) by(high_educ)

Summary statistics: mean, sd, p50, N by categories of: high_educ

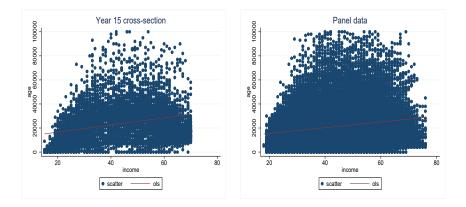
high_educ	lnincome	age	high_e~c
0	9.651306	42.78691	0
	.7869909	13.22139	0
	9.798127	42	0
	48698	50016	50016
1	10.36468	45.24554	1
	.6980709	11.86615	0
	10.49127	43	1
	3724	3922	3922
Total	9.701983	42.96568	.0727131
	.8022147	13.14298	.2596674
	9.852194	43	0
	52422	53938	53938

. ttest lnincome, by(high_educ)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	48,698 3,724	9.651306 10.36468	.0035663	.7869909	9.644316 10.34225	9.658296 10.38711
combined	52,422	9.701983	.0035038	.8022147	9.695116	9.70885
diff		7133719	.0132786		7393982	6873457
diff = mean(0) - mean(1) t = -53.7234 Ho: diff = 0 degrees of freedom = 52420						
	iff < 0) = 0.0000	Pr(Ha: diff != T > t) = 0			iff > 0) = 1.0000

2010 cross section (LHS) vs panel data (RHS)



Stata code

```
sort shtun year
  by sort shtun: gen dinincome = inincome - inincome[_n - 1]
2
  bysort shtun: gen dlnincome_v2 = d.lnincome
4
  by sort shtun: gen dage = age - age[-n - 1]
  bysort shtun: gen dhigh_educ = high_educ - high_educ [-n - 1]
5
6
7
  regr Inincome age high_educ, robust
8 eststo ols
9
  regr dlnincome dage dhigh_educ, robust
10
  eststo fd
11
  xtreg Inincome age high_educ , robust fe
12
  eststo fe
13 xtreg lnincome age if high_educ != ., robust fe
14 eststo fe_age
15 xtreg Inincome high_educ , robust fe
16 eststo fe_high_educ
17 estout ols fd fe*, keep(age dage high_educ dhigh_educ) cells(b(star fmt(3)) se(par fmt(2))
   stats(r2 r2_a F N, fmt(%9.5f %9.5f %9.0g))
```


(Std. Err. adjusted for 4,921 clusters in shtun)

lnincome	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
age high_educ _cons	.0611717 1.050748 6.995669	.0011271 .0477944 .0482626	54.27 21.98 144.95	0.000 0.000 0.000	.0589621 .9570499 6.901052	.0633814 1.144447 7.090285
sigma_u sigma_e rho	94629399 48687442 79069076	(fraction	of varia	nce due t	o u_i)	

. estout ols fd fe*, keep(age dage high_educ dhigh_educ) cells(b(star fmt(3)) se(par fmt(2))) > mt(9.5f

	ols b/se	fd b/se	fe b/se	fe_age b/se	fe_high_educ b/se
age	0.016***		0.061***	0.066***	
high_educ	0.677***		1.051***) ((0.00)	1.429**
dage	(0.01)	-0.070	(0.05)		(0.05)
dhigh_educ		(0.05) 0.496*** (0.05)			
r2	0.11995	0.00643	0.26025	0.22179	0.07303
r2_a	0.11992	0.00639	0.26022	0.22177	0.07301
F	3406.003	51.03453	1855.018	3016.825	914.4404
N	52422	47096	52422	52422	52422

- The *dhigh_educ* dummy only takes values 0, 1.
- More generally, the time-difference of a dummy can at most take values -1, 0, 1.
- Contrast this to the FE-version of *high_educ*.

Stata code

```
bysort shtun: egen high_educ_mean = mean(high_educ) if e(sample)
1
2
   gen high_educ_fe = high_educ - high_educ_mean
3
4
  gen high_educ_fe_d
                       = 0
5
  replace high_educ_fe_d = 0.5 if high_educ_fe > 0 & high_educ_fe != .
  replace high_educ_fe_d = 1 if high_educ_fe == 1
6
  tab high_educ_fe_d if e(sample)
7
8
  centile high_educ_fe if e(sample), centile(0(10)100)
9
  centile high_educ_fe if e(sample), centile(0(1)10)
10 centile high_educ_fe if e(sample), centile(90(1)100)
```

Tabulation of dhigh_educ and high_educ_fe

. tab dhigh_educ if e(sample)

dhigh_educ	Freq.	Percent	Cum.
0	47,497 249	99.48 0.52	99.48 100.00
	47,746 duc_fe_d if e		
high_educ_f d	Freq.	Percent	Cum.
0 .5	50,894 1,528	97.09 2.91	97.09 100.00
Total	52,422	100.00	

. centile high_educ_fe if e(sample), centile(0(10)100)

Variable	Obs	Percentile	Centile		Interp. — . Interval]
high_educ_fe	52,422	0	9333333	9333333	93333333*
		10	0	0	0
		20	0	0	0
		30	0	0	0
		40	0	0	0
		50	0	0	0
		60	0	0	0
		70	0	0	0
		80	0	0	0
		90	0	0	0
		100	.9230769	.9230769	.9230769*

. centile high_educ_fe if e(sample), centile(0(1)10)

Variable	Obs	Percentile	Centile	— Binom. : [95% Conf.	-
high educ fe	52,422	0	9333333	9333333	9333333*
		1	4615385	5	4444444
		2	1818182	2	1666667
		3	0	0	0
		4	0	0	0
		5	0	0	0
		6	0	0	0
		7	0	0	0
		8	0	0	0
		9	0	0	0
		10	0	0	0

. centile high_educ_fe if e(sample), centile(90(1)100)

Variable	Obs	Percentile	Centile		Interp. — Interval]
high educ fe	52,422	90	0	0	0
		91	0	0	0
		92	0	0	0
		93	0	0	0
		94	0	0	0
		95	0	0	0
		96	0	0	0
		97	0	0	.0666667
		98	.2142857	.2	.2307692
		99	.4	.3571429	.4545454
		100	.9230769	.9230769	.9230769*

• The Fixed effects panel data estimator with time FE is

$$Y_{it} = \alpha_{0i} + \beta_1 X_{it} + (\beta_t) + \epsilon_{it}$$

Stata code

1 xtreg lnincome age high_educ i.year, fe

. xtreg lnincome age high_educ i.year, fe note: 15.year omitted because of collinearity

Fixed-effects (within) regression	Number of obs = 52,422
Group variable: shtun	Number of groups = 4,921
R-sq:	Obs per group:
within = 0.2679	min = 1
between = 0.1360	avg = 10.7
overall = 0.1123	max = 15
corr(u_i, Xb) = -0.6608	F(15,47486) = 1158.46 Prob > F = 0.0000

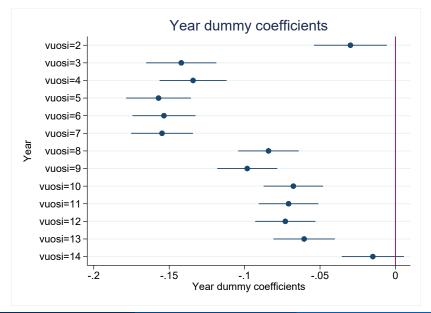
lnincome	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0560064	.0008854	63.25	0.000	.0542709	.0577419
high_educ	1.038665	.0210499	49.34	0.000	.9974063	1.079923
year						
2	0298515	.0123284	-2.42	0.015	0540154	005687
3	1419788	.0118634	-11.97	0.000	1652312	118726
4	1341604	.0113356	-11.84	0.000	1563783	111942
5	1570662	.0109702	-14.32	0.000	1785678	135564
6	1534954	.0106757	-14.38	0.000	1744199	1325708
7	1547472	.010452	-14.81	0.000	1752334	1342611
8	0841672	.0102395	-8.22	0.000	1042367	0640976
9	0982579	.010146	-9.68	0.000	1181442	0783716
10	0676674	.0100515	-6.73	0.000	0873685	0479663
11	0708523	.0100877	-7.02	0.000	0906242	0510803
12	073004	.0102014	-7.16	0.000	0929988	0530092
13	0605306	.0103793	-5.83	0.000	0808742	040187
14	0149915	.0105041	-1.43	0.154	0355797	.0055967
15	0	(omitted)				
_cons	7.299694	.0389636	187.35	0.000	7.223324	7.376063
sigma u	.88686083					
sigma e	.48441542					
rho	.77020878	(fraction	of varia	nce due t	oui)	

12

Stata code

```
1 coefplot, drop(age high_educ _cons) ///
2 xtitle("Year dummy coefficients") ///
3 ytitle("coef.") ///
4 title("Year dummy coefficients") ///
5 xline(0) ///
6 graphregion(fcolor(white))
7 graph export "YDcoef_fleed.pdf", replace
```

Time Fixed effects, base year = 15



Toivanen

A1: conditional distribution of u has mean zero given **X**.

 $\mathbb{E}[\epsilon_{it} \mid \mathbf{X}_{it}, \alpha_i] = \mathbf{0}$

this is called the strict exogeneity assumption.

A2: X_{it} , Y_{it} , i = 1..., n and t = 1, ..., T are i.i.d.

A3: X_{it} and Y_{it} have nonzero finite *fourth* moments.

- A4: No perfect multicollinearity.
- A5: the errors for a given obs. unit are uncorrelated over time conditional on the observables.

 $corr[\epsilon_{it}, \epsilon_{is} \mid \mathbf{X}_{it}, \alpha_i] = 0$ for $t \neq s$.

FE A1 - Key benefit of the Fixed effects estimator

A1: We can rewrite the strict exogeneity assumption as

$$\mathbb{E}[\epsilon_{it}|\boldsymbol{x_{i1}},...,\boldsymbol{x_{iT}},\alpha_i]=0$$

A1: We can rewrite the strict exogeneity assumption as

$$\mathbb{E}[\epsilon_{it}|\boldsymbol{x_{i1}},...,\boldsymbol{x_{iT}},\alpha_i]=0$$

Notice this says nothing about the relationship between X_{i1}, ..., X_{iT} and α_i.

A1: We can rewrite the strict exogeneity assumption as

$$\mathbb{E}[\epsilon_{it}|\mathbf{x}_{i1},...,\mathbf{x}_{iT},\alpha_i]=0$$

- Notice this says nothing about the relationship between *X_{i1}, ..., X_{iT}* and α_i.
- Thus the strict exogeneity assumption allows for arbitrary correlation between X_{it} and α_i.

A1: We can rewrite the strict exogeneity assumption as

$$\mathbb{E}[\epsilon_{it}|\mathbf{x}_{i1},...,\mathbf{x}_{iT},\alpha_i]=0$$

- Notice this says that \(\epsilon_{it}\) may not be correlated with the previous values of X as well as the future values of X. This feature is what gives it its name.
- As an example, the income-earnings shocks in year 5 cannot be correlated with level of education in year 1, nor in year 8.
- Think of how your current income earnings shock may be correlated with your future level of education.

- A5: the errors for a given obs. unit are uncorrelated over time conditional on the observables.
 - Let's use the R&D example.
 - A5 implies that the "shock" that leads to high (low) productivity today disappears and the new "shock" tomorrow is uncorrelated.

• What could be a shock to productivity? E.g.,

1 A new idea that gets implemented (and e.g. decreases waste).

2 A new product that is introduced (and sells well at a high price).

- Some shocks are not transitory (i.e., they affect Y over many periods).
- In such cases A5 is violated: this period's shock is correlated with future values of the error term.

- What could be a shock to productivity? E.g.,
 - R&D investment leads to a new idea that gets implemented (and e.g. decreases waste).
 - **2** A new product that is introduced (and sells well at a high price).
 - 3 The extra profits lead to more R&D in the future.
- In other words, this period's shock (\(\earepsilon_{it}\)) leads to a higher value of X_{it} in the future.
- This means that Assumption A1 is violated.

- Another way of seeing the problem with "too little" within-unit, over-time variation: measurement error.
- Measurement error in a panel setting is more complex than in a cross-sectional setting.
- Recall that in cross-section, the noise-to-signal ratio is the source of measurement error, and we have **attenuation** bias towards zero.

Measurement error and panel data

- Now the measurement error can be
 - **1 between** units and/or
 - 2 within units.
- If the measurement error is mostly between units, FE (or FD) removes it.
- If the measurement error is mostly within units **and** *X* is highly correlated over time , the bias due to measurement error is larger than in cross-section.
- In the R&D example, true RD is nearly constant over time and differences in reported RD are due to e.g. tax considerations or accounting issues.

9. Random effects estimator

• Think of the individual - specific constant as follows:

$$\alpha_i = \alpha + (\alpha_i - \alpha)$$

- That is, there is a common constant α and deviations from it.
- The FE estimator assumes that the deviations are "fixed". What if they were part of the stochastic error term? That is what the **random effects** estimator does.
- In the RE model the error term has two components: The within-unit constant η_i and the "regular" error term ε_{it}.
- The first one, η_i captures the permanent observation-unit specific shocks.
- The second one, e_{it}, captures the observation-unit time period specific shocks, just as before.

- Both η_i and ϵ_{it} need to be uncorrelated with x_{it} .
- No autocorrelation in ϵ_{it} is allowed.
- No correlation across random effects η_i (across observation units) is allowed.
- Under the above assumptions, we can write:

$$y_{it} = \alpha + \mathbf{x}_{it}'\beta + \eta_i + \epsilon_{it}$$
$$y_{it} = \alpha + \mathbf{x}_{it}'\beta + w_{it}$$

- If the RE assumptions hold, it is the efficient estimator and FE is inefficient.
- However, the RE assumptions are stricter as the explanatory variables are not allowed to be correlated with the random effect η_i whereas the fixed effects α_i are.

- Examples of clusters:
- 1 observation units in panel data.
- 2 individuals from a given firm in a cross-section or panel.
- **3** individuals in a family in a cross-section or panel.
- 4 firms in a multi-country cross-section or panel.

Key worry / insight

- Given a cluster-structure, errors may be correlated in a particular way.
- Errors may be correlated within clusters.
- Using (group) FE does not necessarily do away with the problem.
- In the presence of w/in-cluster correlation, se's are downward biased (Moulton 1986).
- Applies in particular to se's of regressors that are at a higher level of aggregation (=same value for each member in group g).
- Example: Using region dummies when estimating the effect of education on income in the FLEED data.

- With clustering, one assumes that errors are uncorrelated across clusters, but may be correlated within clusters.
- This means that $\mathbb{E}[\epsilon_i \epsilon_j] = 0$ unless *i* and *j* are in the same cluster, but can be non-zero within a cluster.

- It can then be shown that the following regular standard errors are biased if there is within-cluster correlation.
- The size of bias depends on other things, too.

- Do not use the standard (even heterosk. robust) standard errors.
- Use cluster-robust standard errors.
- Most packages calculate them.

- We face a traditional bias-variance trade-off: larger and fewer clusters have less bias, but more variability.
- The consensus is to be conservative and avoid bias and to use **bigger** and more aggregate clusters when possible, up to and including the point at which there is a concern about having too few clusters.
- One should keep in mind that the art and science of clustering is developing.