Aalto university

Björn Ivarsson
Homework 1, due Monday 8th March 2021 at 23:59.
Differential and integral calculus 3, MS-A0311.
The solutions will be presented Tuesday 9.3 or Wednesday 10.3
(1) Find the volume of the solid under $z=1-x^{2}$ and above the region in the plane given by the inequalities $0 \leq y \leq 1,0 \leq x \leq$ y.
(2) Calculate

$$
\begin{equation*}
\int_{3}^{4} \int_{1}^{2} \frac{1}{(x+y)^{2}} d y d x \tag{4p}
\end{equation*}
$$

(3) Write down the equations for the curves that bound the domain of integration in

$$
\begin{equation*}
\int_{0}^{4} \int_{y}^{10-y} f(x, y) d x d y \tag{4p}
\end{equation*}
$$

Sketch the domain.

