Hard Magnetic Materials Learning outcome

At the end of this lecture you will be able to:

• List different types of permanent magnets and their characteristics

• Explain the manufacturing process of Neodymium Iron Boron magnets

• Calculate the needed magnet volume for given applications

Hard Magnetic Materials

- Hard magnetic materials refer to materials used for making permanent
 magnets
 - Characterized by a high coercivity 50 1600 kA/m
- Permanent magnets (or hard magnets) are useful for their capability to generate a magnetic field without continuous expenditure of energy
- They have the property of retaining firmly their magnetization against external spurious fields and their own demagnetizing field
- From practical point of view a permanent magnet is like a coil with electric current but, be carful with demagnetization.

Hard Magnetic Materials

Brain storming

• Take 10 min and list the permanent magnets you know about

- we will compile the results during the lecture
- List of permanent magnet types or materials

Hard Magnetic Materials

- Some hard magnetic materials and their properties:
- AlNiCo-magnets (1930s)
 - Br > 1T, H_c= 50 kA/m, good corrosion resistance
- Ferrite Magnets (1950s)
 - Br = 0.4 T, non conductive, Hc=300 kA/m, low price
 - MO•(Fe2O3)6 where the metal M can be barium, lead or strontium
- SmCo magnets (1970s)
 - Br=1 T, Hc=1600 kA/m, high price, low demagnetization with temperature
 - SmCo5 and Sm2Co17
- NdFeB-magnets (1984)
 - Br = 1 .. 1.4 T, Hc= 1000 .. 3200 kA/m, conductive and prone to corrosion
- Bonded magnets
 - Injection molding, compression molding, extruding, Complex shapes, Non-conductive

Alnico

Major manufacturers by countries

	China	Japan & Korea	USA	Europe
ALNICO	Atlas Magtech Chengdu Amoeba China Hope Magnet HPMG Shanghai Dao Ye Many others	Pacific Metals	Arnold T&S	SG Magnets Ltd Magnetfabrik Bonn Magneti Ljubljana
FERRITE	Anshang Dekang BGRIMM DMEGC Dongyang Gelin Jiangmen >50 more	Hitachi SsangYong TDK Ugimag	Hitachi TDK	Magnetfabrik Bonn Magnetfabrik Schramburg
SmCo	Arnold Chengdu Mag Mat'l TianHe Tiannu Group >20 more	Hitachi Shin-Etsu TDK	(Arnold) EEC	Arnold Magnetfabrik Bonn Magnetfabrik Schramburg Vacuumschmelze
NdFeB*	Anhui Earth-Panda AT&M BGMT Ningbo Jinji San Huan Thinova	Daido Hitachi Shin-Etsu TDK	(Hitachi)	Magnetfabrik Bonn (not licensed) Magnetfabrik Schramburg Magneti Ljubljana (not licensed) Vacuumschmelze (Neorem)

Chemical components

6.	ft bla an atia blatanial	Maj	or co	nstit	uent	S		Min	or co	nstitu	ents	Comments
50	Iron	s Fe										Low carbon mild steel
	Silicon Steel	Fe						Si				Si at 2.5 to 6%
	Nickel-Iron	Fe	Ni									Ni at 35 to 85%
	Moly Permalloy	Ni	Fe					Mo				Ni at 79%, Mo at 4%, bal. Fe
	Iron-Cobalt	Fe	Со					V				23 to 52% Co
	Soft Ferrite	Fe	Mn	Ni	Zn			0				Oxygen dilutes, required for structure
	Metallic Glasses	Fe	Co	Ni				В	Si	Ρ		Amorphous and nanocrystalline
Pe	rmanent Magnets											
	Co-Steels	Fe	Со									
	Alnico	Fe	Ni	Со	Al	Cu		Ti	Si			
	Platinum Cobalt	Pt	Со									
	Hard Ferrites	Fe	Sr									Oxygen dilutes; Ba no longer used
	SmCo	Со	Sm	(Gd)	Fe	Cu	Zr					Sm is underutilized; excess supply
	Neodymium-iron-boron	Fe	Nd	Dy	(Y)	В	Со	Cu	Ga	Al	Nb	
	Cerium-iron-boron	Fe	Nd	Ce	В							Limited use in bonded magnets
	SmFeN	Fe	Sm	Ν								Nitrogen is interstitial; stability issue
	MnBi	Mn	Bi									Never commercialized
	MnAI(C)	Mn	AI					Cu	С			Not successfully commercialized

Effect Dy on NdFeB magnets characteristics

Dysprosium is added as substitute of Neodymium to enhance the material coercivity and temperature withstand but it is very expensive

٠

•

- Low Dy content
 - High remanence
 - Low temperature

Investigation work 20 min

- Look in internet for what are the other components used as substitute for Neodymium in rare earth magnets (10 min)
 - If possible find their price and compare it with Dysprosium price (451 \$/kg in 2017)
- List of materials:

https://www.statista.com/statistics/450164/global-reo-dysprosium-oxide-price-forecast/

Magnetization process and energy product

- Permanent magnets are magnetized to saturation by means of a strong field transient generated by a Pulsed Field Magnetizer
- The strength of permanent magnets can be measured by the maximum energy product (BH)max, which reflects the capability to store magnetic energy in the unit volume.

Energy product and thermal strength

Permanent magnets in use

- Permanent magnets are used in many applications
- The applications can be summarized as follows, depending on the spatial and temporal variation of the field

Field	Magnetic effect	Туре	Examples
Uniform	Zeeman splitting	Static	Magnetic resonance imaging
	Torque	Static	Alignment of magnetic powder
	Hall effect, magnetoresistance	Static	Sensors, read-heads
	Force on conductor	Dynamic	Motors, actuators, loudspeakers
	Induced emf	Dynamic	Generators, microphones
Nonuniform	Force on charged particles	Static	Beam control, radiation sources (microwave, uv, X-ray)
	Force on magnet	Dynamic	Bearings, couplings, Maglev
	Force on paramagnet	Dynamic	Mineral separation
Time varying	Varying field	Dynamic	Magnetometers
i na mananana ing kanalan 🔸 sarahar 🗨	Force on iron	Dynamic	Switchable clamps, holding magnets
	Eddy currents	Dynamic	Metal separation, brakes

Permanent magnets in use

Permanent magnets in use

Operation of permanent magnet in unloaded circuits

- Ampere's law:
- $\oint H \mathrm{d}l = H_{\mathrm{PM}} h_{\mathrm{PM}} + H_{\delta} \delta = 0$
- The flux of the magnet is:

$$\Phi_{\rm PM} = S_{\rm PM} B_{\rm PM} = (1+\sigma) S_{\delta} B_{\delta} = (1+\sigma) S_{\delta} \mu_0 H_{\delta}$$

$$B_{\rm PM} = -\left(1 + \sigma\right) \mu_0 \frac{S_{\delta}}{\delta} \frac{h_{\rm PM}}{S_{\rm PM}} H_{\rm PM}$$

Typical demagnetization curves B(H) and J(H) at different temperatures

Operation under load

Demagnetization

$$\oint H \mathrm{d}l = H_{\mathrm{PM}} h_{\mathrm{PM}} + H_{\delta} \delta - N I = 0$$

$$\Phi_{\rm PM} = S_{\rm PM} B_{\rm PM} = (1+\sigma) S_{\delta} B_{\delta} = (1+\sigma) S_{\delta} \mu_0 H_{\delta}$$

$$H_{\delta} = -\frac{h_{\rm PM}}{\delta}H_{\rm PM} + \frac{NI}{\delta}$$

$$B_{\rm PM} = -(1+\sigma)\mu_0 \frac{S_{\delta}}{\delta} \frac{h_{\rm PM}}{S_{\rm PM}} H_{\rm PM} + (1+\sigma)\mu_0 \frac{S_{\delta}}{\delta} \frac{NI}{S_{\rm PM}}$$

Neorem 453a

Magnetic materials and field computation

- Recall line can be approximated by linear single valued curve as far as the flux density does not exceed B_r
- When B_r exceeds, hysteretic behavior takes place and magnet losses increase
 BPM [T]

Magnetic materials and field computation

- Magnetic materials are non linear but useful in energy conversion device
- The solution of electromagnetic field is required for device design
- Electromagnetic field solution is based on numerical analysis (FEM)
- FE computation requires material models
 - Nonlinear magnetic material
 - Spline or analytical equation for either HB-relationship or permeability as function of B
 - Results in iterative solving of the field
 - Newton-Raphson or fixed point method
 - Permanent magnet machine
 - Linear relationship between B and H defined by $\rm B_r$ and $\rm H_c$
 - Thermal effect modelled as linear change in $\rm B_{r}$ and/or $\rm H_{c}$
 - Does not account for demagnetization risk
 - Demagnetization check in post processing