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Topics:

Turing machines
Extensions of Turing machines

I Multitrack machines
I Multitape machines
I Nondeterministic machines

Excursion: The halting problem, first encounter

Material:

In Finnish: Sections 4.1–4.2 and 6.1 in the Finnish lecture notes

In English: Sections 3.1–3.3 in the Sipser book, multitrack
machines on these slides
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Turing Machines
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8.1 Turing machines

Alan Turing 1935–36

δ

q1 q2

q0

tape:

tape head:

control unit:

⊲ T U G ⊳ · · ·IR N
A Turing machine is like a finite
automaton and has a tape ...

but it can move both left and right
on the tape

and it can also write on the tape,
not just read it.

In addition, the tape is unbounded
to the right.

The Church-Turing Thesis (∼1936)

Any mechanically (= physically) solvable computational problem can
also be solved with a Turing machine.
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Other models of computation that are equivalent to Turing machines:

Recursive function systems by Gödel and Kleene (1936)

Church’s λ-calculus (1936)

String rewriting systems by Post (1936) and Markov (1951)

All current programming languages (when the amount of and
access to the memory are not limited)

From the modern point of view:

Turing machines ≡ (assembly-language) computer programs
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Definition 8.1
A Turing machinea is a tuple

M = (Q,Σ,Γ,δ,q0,qacc,qrej),

where

Q is the finite set of states,

Σ is the finite input alphabet,

Γ⊇ Σ is the finite tape alphabet (we assume .,/ /∈ Γ),

δ : (Q−{qacc,qrej})× (Γ∪{.,/})→Q× (Γ∪{.,/})×{L,R} is
the transition function,

q0 ∈ Q is the start state (q0 6= qacc and q0 6= qrej),

qacc ∈ Q is the accept state, and

qrej ∈ Q is the reject state (qrej 6= qacc).

aSipser’s book uses a slightly different (but effectively equivalent) formalisation of
Turing machines that (i) does not contain the start- and end-of-tape symbols . and /
but (ii) has a special “blank” symbol for the yet-unused positions on the tape.
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The interpretation for a value

δ(q,a) = (q′,b,∆)

of the transition function is that when in state q and reading symbol a
on the tape, the machine:

moves to state q′,

writes symbol b at the same position on the tape, and

moves the tape head one position in direction ∆ (L ∼ “left”, R ∼
“right”).
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The set of symbols the machine is allowed to write and the move
directions are restricted in some cases:

The transition function is not defined for the states qacc and qrej.
When in either of these states, the machine halts immediately.
For all transitions δ(q,a) = (q′,b,∆) it is required that:

I if a = ., then b = . and ∆ = R
That is, the start-of-tape symbol is never overwritten and the
machine cannot move left beyond that symbol (i.e., off the tape).

I b = . is allowed only if a = .
In other words, new start-of-tape symbols cannot be written.

I b = / is allowed only if a = / and ∆ = L
The machine does not explicitly write new end-of-tape symbols;
they are introduced automatically when the machine moves past
(and overwrites) the current end-of-tape symbol.
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A configuration of the machine is a tuple

(q,u,a,v) ∈ Q×Γ∗× (Γ∪{ε})×Γ∗,

where possibly a = ε if also either u = ε or v = ε.
Interpretation: the machine is in state q and the contents of the
tape are (i) from the beginning to the left of the tape head u, (ii) at
the tape head position a and (iii) from the right of the tape head to
the end of the tape v.
When at the very start/end of the tape, a = ε and u = ε/v = ε. In
the “start” case u = ε, the machine is thought to read the symbol
. and in the “end” case v = ε the symbol /.
The start configuration on input x = a1a2 . . .an is the tuple

(q0,ε,a1,a2 . . .an).

A configuration (q,u,a,v) is more compactly denoted as (q,uav)
and the start configuration on input x as (q0,x)
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A configuration (q,w) leads in one step to (or yields)
configuration (q′,w′), denoted as

(q,w)
M̀
(q′,w′),

as determined by the following rules:
I if δ(q,a) = (q′,b,R), then (q,uacv)

M̀
(q′,ubcv);

I if δ(q,a) = (q′,b,L), then (q,ucav)
M̀
(q′,ucbv);

I if δ(q,.) = (q′,.,R), then (q,εcv)
M̀
(q′,cv);

I if δ(q,/) = (q′,b,R), then (q,uε)
M̀
(q′,ubε);

I if δ(q,/) = (q′,b,L), then (q,ucε)
M̀
(q′,ucb);

I if δ(q,/) = (q′,/,L), then (q,ucε)
M̀
(q′,uc).

where q,q′ ∈ Q, u,v ∈ Γ∗, a,b ∈ Γ and c ∈ Γ∪{ε}.
Configurations of form (qacc,w) and (qrej,w) do not yield any
other configuration. In these configurations the machine halts.
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A configuration (q,w) leads to a configuration (q′,w′), denoted as

(q,w)
M̀
∗ (q′,w′),

if there is a finite sequence of configurations (q0,w0), (q1,w1),
. . . , (qn,wn), n≥ 0, such that

(q,w) = (q0,w0)
M̀
(q1,w1)

M̀
· · ·

M̀
(qn,wn) = (q′,w′).

A Turing machine M accepts a string x ∈ Σ∗ if

(q0,x)
M̀
∗ (qacc,w) for some w ∈ Γ∗;

otherwise M rejects x.

The language recognised by the machine M is

L(M) = {x ∈ Σ? | (q0,x)
M̀
∗ (qacc,w) for some w ∈ Γ∗}.
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Example:

The (regular) language {a2k | k ≥ 0} can be recognised with the Turing
machine

M = ({q0,q1,qacc,qrej},{a},{a},δ,q0,qacc,qrej),

where

δ(q0,a) = (q1,a,R),

δ(q1,a) = (q0,a,R),

δ(q0,/) = (qacc,/,L),

δ(q1,/) = (qrej,/,L).

State diagram representation:

⊳/⊳, L ⊳/⊳, L

q1

a/a, R

a/a,R

q0
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The notations used in the state diagram representation:

q q′
a/b,∆

Transition δ(q, a) = (q′, b,∆)

Reject state (qrej)

Accept state (qacc)

Start state

State qq

q0
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⊳/⊳, L ⊳/⊳, L

q1

a/a, R

a/a,R

q0

The computation of machine M on input aaa:

(q0,aaa)
M̀

(q1,aaa)
M̀
(q0,aaa)

M̀
(q1,aaaε)

M̀
(qrej,aaa).

The machine halts in state qrej and thus aaa /∈ L(M).

(Note: As this machine moves its tape head only to the right and accepts/re-
jects at the end of the string, it is effectively a finite automaton.)
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Example:

A Turing machine recognising the (non-context-free) language
{akbkck | k ≥ 0}:

q3

⊳/⊳, L

⊳/⊳, L

b/b, Ra/a, R

B/B,R
C/C,R

a/a, L
B/B, L
b/b, L
C/C, L

q0 q1 q2

q4

a/A,R

B/B,R

b/B,R

C/C,R

c/C, L

A/A,R

a/A,R

B/B,R

q5

For the sake of clarity, the reject
state is not drawn here, but
again one interpretes that all the
“missing transitions” implicitly
lead to the reject state.
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q3

⊳/⊳, L

⊳/⊳, L

b/b, Ra/a, R

B/B,R
C/C,R

a/a, L
B/B, L
b/b, L
C/C, L

q0 q1 q2

q4

a/A,R

B/B,R

b/B,R

C/C,R

c/C, L

A/A,R

a/A,R

B/B,R

q5

The computation of the machine on
input aabbcc:

(q0,aabbcc) ` (q1,Aabbcc) `
(q1,Aabbcc) ` (q2,AaBbcc) `
(q2,AaBbcc) ` (q3,AaBbCc) `
(q3,AaBbCc) ` (q3,AaBbCc) `
(q3,AaBbCc) ` (q4,AaBbCc) `
(q1,AABbCc) ` (q1,AABbCc) `
(q2,AABBCc) ` (q2,AABBCc) `
(q3,AABBCC) ` (q3,AABBCC) `
(q3,AABBCC) ` (q3,AABBCC) `
(q4,AABBCC) ` (q5,AABBCC) `
(q5,AABBCC) ` (q5,AABBCC) `
(q5,AABBCCε) ` (qacc,AABBCC).



CS-C2160 Theory of Computation / Lecture 8

Aalto University / Dept. Computer Science

17/53

q3

⊳/⊳, L

⊳/⊳, L

b/b, Ra/a, R

B/B,R
C/C,R

a/a, L
B/B, L
b/b, L
C/C, L

q0 q1 q2

q4

a/A,R

B/B,R

b/B,R

C/C,R

c/C, L

A/A,R

a/A,R

B/B,R

q5

The computation of the machine on
input aabcbc:

(q0,aabcbc) ` (q1,Aabcbc) `
(q1,Aabcbc) ` (q2,AaBcbc) `
(q3,AaBCbc) ` (q3,AaBCbc) `
(q3,AaBCbc) ` (q4,AaBCbc) `
(q1,AABCbc) ` (q1,AABCbc) `
(qrej,AABCbc).
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Note
The definition of “language recognised by a machine” does not require
that the machine halts on strings that do not belong to the language.

Example:

A Turing machine that enters an infinite loop on some inputs:

q1 q2

a/b,R
b/a,R

b/a,L
a/b,L

accc/c,R

The computation on input abc:

(q1,abc) ` (q2,bbc) ` (q1,bac) ` (q2,aac) `
(q1,abc) ` (q2,bbc) ` (q1,bac) ` (q2,aac) ` . . .
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Example:

A Turing machine that has an infinite computation using an unbounded
amount of tape on some inputs:

s1

s2
a/b,R
b/a,R
◁/a,R

s3

a/b,R
b/a,R
◁/a,R

b/a,L
a/b,L
◁/a,L

accc/c,R

The computation on input a:

(q1,a) ` (q2,bε) ` (q3,baε) ` (q1,baa) ` (q2,bba) ` (q3,bbbε) `
(q1,bbba) ` (q2,bbaa) ` (q3,bbabε) ` (q1,bbaba) ` . . .
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Extensions of Turing Machines
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Could we obtain even stronger models of computation if we
extended the definition of Turing machines with new features?

We could, for instance, allow multiple read/write tapes or
non-determinism (like we did earlier with finite automata).

In the following we study some such extensions and ...

show that all the languages that one can recognise with such
extended machines, can also be recognised with standard Turing
machines.

Witness the Church-Turing Thesis: Any mechanically solvable
computational problem can be solved with a (standard) Turing
machine.

The extensions are also useful in designing machines for more
complex purposes. (Cf. the uses of NFA as a design tool for DFA.)
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8.2 Multitrack machines

The tape of the Turing
machine now consists of k
parallel “tracks” that are all
read and written in one
computation step. tape head:

I

# #

###

· · ·
GNIRUT

NOSHTAM

#NALA

The transition function of such a machine is of form

δ(q,(a1, . . . ,ak)) = (q′,(b1, . . . ,bk),∆),

where a1, . . . ,ak are the symbols read on tracks 1, . . . ,k,
b1, . . . ,bk the symbols written over them, and ∆ ∈ {L,R} is the
move direction as before.
In the beginning of a computation, the input string is placed on
the first track and the other tracks contain special “blank symbols”
# in the same positions.
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Formally, a k-track Turing machine is a tuple

M = (Q,Σ,Γ,δ,q0,qacc,qrej),

where the other components are as in the standard model but the
transition function is:

δ : (Q−{qacc,qrej})× (Γk∪{.,/})→Q× (Γk∪{.,/})×{L,R}.

The “leads to” relation
M̀

, start configuration etc. are defined

similarly as in the standard model.
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Example:

A 2-track Turing machine rewind that rewinds the tape head to the
beginning of the tape:

(x, y)/(x, y), L

⊲/⊲,R
q0 q1

(The notation (x,y)/(x,y),L is here a shorthand meant to cover all the
transitions that can be obtained by replacing the variables x and y with
some tape alphabet symbols.)
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Example:

A 2-track Turing machine succ that computes the successor of a num-
ber given on track 1 to track 2 (the numbers are written in binary, least
significant bit first):

(1, x)/(1, 0), R

(1, x)/(1, 0), R

(x, y)/(x,#), L(0, x)/(0, 1), R

(#, x)/(#, 1), R

(#, x)/(#,#), R(0, x)/(0, 1), R

(1, x)/(1, 1), R
(0, x)/(0, 0), R

q4q1

q2 q3

q0
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The computation of the machine on input number 310 = 0112 (provided
in lsb first representation on track 1):

(1, x)/(1, 0), R

(1, x)/(1, 0), R

(x, y)/(x,#), L(0, x)/(0, 1), R

(#, x)/(#, 1), R

(#, x)/(#,#), R(0, x)/(0, 1), R

(1, x)/(1, 1), R
(0, x)/(0, 0), R

q4q1

q2 q3

q0

(
q0,

1 1 0 #
# # # #

)
`

(
q2,

1 1 0 #
0 # # #

)
`

(
q2,

1 1 0 #
0 0 # #

)
`

(
q1,

1 1 0 #
0 0 1 #

)
`

(
q4,

1 1 0 # ε
0 0 1 #

)
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Example:

The sequential composition of the 2-track Turing machines succ and
rewind:

rewindsucc

which means the following:

(1, x)/(1, 0), R

(#, x)/(#, 1), R

(0, x)/(0, 1), R (x, y)/(x,#), L

(1, x)/(1, 0), R

(0, x)/(0, 0), R
(1, x)/(1, 1), R

(0, x)/(0, 1), R (#, x)/(#,#), R ⊲/⊲,R

(x, y)/(x, y), L
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Lemma 8.1
If a language L can be recognised with a k-track Turing machine, then
it can be recognised with a standard Turing machine as well.

Proof

Let M = (Q,Σ,Γ,δ,q0,qacc,qrej) be a k-track Turing machine recognis-
ing the language L. An equivalent standard Turing machine M̂ can be
constructed as follows:

M̂ = (Q̂,Σ, Γ̂, δ̂, q̂0,qacc,qrej),

where Q̂ = Q∪{q̂0, q̂1, q̂2}, Γ̂ = Σ∪Γk and for all q ∈ Q we have

δ̂(q,

[
a1
.
.
.

ak

]
) = (q′,

[
b1
.
.
.

bk

]
,∆),

when δ(q,(a1, . . . ,ak)) = (q′,(b1, . . . ,bk),∆).
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In the beginning of its computation, the machine M̂ must “lift” the input
string to the (simulating) first track, meaning that it replaces the input
a1a2 . . .an with 


a1
#
.
.
.
#






a2
#
.
.
.
#


 · · ·




an
#
.
.
.
#


 .

For this, the transition function of M̂ includes, in addition to the transi-
tions copied from M, a small “preprocessor” sub-machine




x
#
· · ·
#


/




x
#
· · ·
#


, L

⊳/⊳, L
q̂1

⊲/⊲, R
q0 · · ·

x/




x
#
· · ·
#


, R

q̂0
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8.3 Multitape machines

δ

3.

2.

1.

NOSIHTAM · · ·

GNIRUT · · ·

NALA · · ·

q1 q2

q0

We now allow a Turing machine to have k independent tapes,
each with its own tape head.
The machine reads and writes all the tapes in each step.
In the beginning of the computation, the input is on the first tape,
the other tapes are empty, and all the tape heads point to the
beginning of their tapes.
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The transitions of such a machine are of form

δ(q,a1, . . . ,ak) = (q′,(b1,∆1), . . . ,(bk,∆k)),

where
I a1, . . . ,ak are the symbols read from the tapes 1, . . . ,k,
I b1, . . . ,bk are the symbols written on the tapes 1, . . . ,k, and
I ∆1, . . . ,∆k ∈ {L,R,S} are the move directions of the tape heads

(S means “stay”, i.e., the tape head is not moved).

Formally, a k-tape Turing machine is a tuple

M = (Q,Σ,Γ,δ,q0,qacc,qrej),

where all the other components are as in the standard model, but
the transition function is of form:

δ : (Q−{qacc,qrej})×(Γ∪{.,/})k→Q×((Γ∪{.,/})×{L,R,S})k.

The “leads to” relations and other concepts are defined similarly
as in the standard model.
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Example:

A 3-tape Turing machine Rew2 that moves the tape head of the second
tape to the beginning (other tape heads stay in their original places):

rew

x,z,y/(x,S),(z,L),(y,S) when z ≠ ▷

accx,▷,y/(x,S),(▷,R),(y,S)

Here x, y, and z are again parameters for abbreviations and, for in-
stance, the transition “x,z,y/(x,S),(z,L),(y,S) when z 6= .” represents
all the possible transitions that can be obtained by replacing x, y and z
with any tape alphabet symbols (excluding the case z = .).
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Example:

A 3-tape machine 4Succ2 that computes the successor of the number
given on tape 2. Numbers are in base 4, in “least significant digit first”
order and terminated by a semicolon. The machine shall be started in
a situation where the tape head of the second tape is in the beginning.

s

x,3,y/(x,S),(0,R),(y,S)

acc

x,0,y/(x,S),(1,S),(y,S)
x,1,y/(x,S),(2,S),(y,S)
x,2,y/(x,S),(3,S),(y,S)

t
x,;,y/(x,S),(1,R),(y,S) x,z,y/(x,S),(;,S),(y,S)

E.g., computing the successor 1004 of 334 (i.e., 1510):
s,

abba
33;
111;


 `


s,

abba
03;
111;


 `


s,

abba
00;
111;


 `


t,

abba
001ε
111;


 `


acc,

abba
001;
111;
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Example:

The sequential composition of machines 4Succ2 and Rew2. It
computes the successor of the number given on tape 2 (in base
4, “least significant digit first” order and ;-terminated) and rewinds
the second tape head to the beginning after the computation.

x,3,y/(x,S),(0,R),(y,S)

x,0,y/(x,S),(1,S),(y,S)
x,1,y/(x,S),(2,S),(y,S)
x,2,y/(x,S),(3,S),(y,S)

x,;,y/(x,S),(1,R),(y,S)

x,z,y/(x,S),(z,L),(y,S) when z ≠ ▷

accx,▷,y/(x,S),(▷,R),(y,S)

x,z,y/(x,S),(;,S),(y,S)

The machine shall be started in a situation where the tape head of the
second tape is in the beginning.
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Lemma 8.2
If a language L can be recognised with a k-tape Turing machine, then
it can be recognised with a standard Turing machine as well.

Proof

N

· · ·

##

####

5.

6.

4.

↑

↑

↑
3.

2.

1.

NOSIHTAM

GNIRUT

ALA

δ

q1 q2

q0

Let

M = (Q,Σ,Γ,δ,q0,qacc,qrej)

be a k-tape Turing machine recognising
the language L. We can simulate it with a
2k-track Turing machine M̂ as follows. The
odd tracks 1,3,5, . . . ,2k−1 of M̂
correspond to the tapes 1,2, . . . ,k of M
and for each odd track, the following even
track contains exactly one ↑ symbol that
indicates the tape head position on the
tape of the odd track.
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In the beginning, the input string is placed on the first track as usual,
and in its first move M̂ writes the ↑ symbols to the first positions of the
even tracks.

After this, M̂ operates by “sweeping” across the tape forwards and
backwards.

On each forward sweep from the beginning to the end, M̂ collects
information about which symbols are at the positions indicated by the ↑
symbols, i.e., at the tape head positions of the simulated machine M.

Based on this information, M̂ then performs a backward sweep to the
beginning and makes the changes on its multitrack tape (writes tape
symbols, moves tape head markers ↑) that correspond to the changes
made by a single transition of the simulated machine M.

The multitrack machine M̂ can then be simulated with a standard Turing ma-
chine, as presented in Lemma 8.1.
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8.4 Nondeterministic machines

Formally, a nondeterministic Turing machine is a tuple

M = (Q,Σ,Γ,δ,q0,qacc,qrej),

where the other components are as in the standard model but the
transition function is of form:

δ : (Q−{qacc,qrej})×(Γ∪{.,/})→P (Q×(Γ∪{.,/})×{L,R}).

The interpretation of a value

δ(q,a) = {(q1,b1,∆1), . . . ,(qk,bk,∆k)}

of the transition function is that, when in state q and reading tape
symbol a, the machine can act according to some triple (qi,bi,∆i)
in the list.
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For nondeterministic machines, the configurations, “leads to”
relations etc. are defined as for the standard deterministic
machines, except that the condition δ(q,a) = (q′,b,∆) is
replaced with the nondeterminic version (q′,b,∆) ∈ δ(q,a).
Because of this, the “leads to” relation

M̀
is no longer

single-valued, meaning that a configuration (q,w) can now have
many possible successor configurations (q′,w′) (i.e., those for
which (q,w)

M̀
(q′,w′) holds).

The language recognised by the machine M is now

L(M) = {x ∈ Σ? | (q0,x)
M̀
∗ (qacc,w) for some w ∈ Γ∗}.

That is, a string x belongs to the language recognised by a
nondeterministic machine M if some finite sequence of
configurations leads from the start configuration to an accepting
configuration.
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Example: Recognising composite numbers with nondeterministic Tur-
ing machines

A non-negative integer n is a composite number if it has integer factors
p,q ≥ 2 s.t. pq = n. A non-negative integer that is not composite is
either unit (1) or a prime number.

Assume that we already have a deterministic Turing machine
check_mult that recognises the language

L(check_mult) = {n#p#q | n,p,q are binary numbers and n = pq}.

In addition, let go_start be a deterministic Turing machine that moves
the tape head to the beginning of the tape.
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Furthermore, let gen_int be the following nondeterministic machine. It
writes an arbitrary binary number (in the most-significant-bit-first order)
that is greater than 1 at the end of the tape:

⊳/1, R

⊳/1, R

⊳/0, R
⊳/#, R

1/1, R
0/0, R

⊳/1, R

⊳/0, R
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Some computations of machine gen_int on input string ’0’:

q1,0

q1,0ε

q2,0#ε

q3,0#1ε

q4,0#10ε q3,0#10ε

q4,0#100ε q3,0#100ε

...
...

...
...

q4,0#101ε q3,0#101ε

...
...

...
...

q4,0#11ε q3,0#11ε

...
...

...
...

CS-C2160 Theory of Computation / Lecture 8

Aalto University / Dept. Computer Science

42/53

A nondetermistic Turing machine that recognises the language

L(test_composite) = {n | n is a binary compound number}

can now be constructed by combining the above mentioned machines:

gen int gen int go start check mult

n#p#q↓
↓
n ↓

n#p#qn#p↓

The resulting machine accepts an input binary string n if and only if
there exist binary numbers p,q≥ 2 for which n = pq holds — that is, if
and only if n is a composite number.
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Note. A common diagram notation for an “if-then-else” combination of
Turing machines:

M2

M1

M0
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Theorem 8.3
If a language L can be recognised with a nondeterministic Turing
machine, then it can be recognised with a standard deterministic
Turing machine as well.

Proof (idea)

Let
M = (Q,Σ,Γ,δ,q0,qacc,qrej)

be a nondeterministic Turing machine recognising the language L.

One can simulate M with a 3-tape deterministic machine M̂ that
systematically explores all the computations of M until it finds a
computation that ends in an accepting configuration — if such a
computation exists.

The 3-tape machine M̂ can then be transformed into a standard
deterministic machine as presented in Lemmas 8.1 and 8.2.
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D3D2D3 D2 D4D1D1

KROWni

tupni

3.

2.

1.

· · ·

· · ·

· · ·

δ

q1 q2

q0

In more (but not full) detail:

On tape 1, M̂ stores the input string.

On tape 2, M̂ simulates the work
tape of machine M.

In the beginning of each simulated
computation, M̂ copies the input
string from tape 1 to tape 2 and
erases any spurious symbols that
were left on tape 2 from the
simulation of the previous
computation.

On tape 3, M̂ stores the “index” of
the current computation of M to be
simulated.
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D3D2D3 D2 D4D1D1

KROWni

tupni

3.

2.

1.

· · ·

· · ·

· · ·

δ

q1 q2

q0

Let r be the size of the biggest
alternative-moves set in the
transition function of M.

Then machine M̂ has special tape
symbols D1, . . . ,Dr and it
enumerates all possible sequences
of these on tape 3 in lexicographic
(“shortlex”) order: ε, D1, D2, . . . , Dr,
D1D1, D1D2, . . . , D1Dr, D2D1, . . .

For each such generated sequence,
M̂ simulates one (possibly
incomplete) computation of machine
M, in which the nondeterministic
moves are made according to the
sequence currently listed on tape 3.
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D3D2D3 D2 D4D1D1

KROWni

tupni

3.

2.

1.

· · ·

· · ·

· · ·

δ

q1 q2

q0

For instance, if tape 3 contains the
sequence D1D3D2, then the
simulated computation takes the first
choice in the first move, the third in
the second, and the second in the
third.

If this computation did not end up in
an accepting configuration, the next
sequence D1D3D3 is generated on
tape 3 and a new simulation is
performed.

If the sequence on tape 3 is not valid
because it contains a too large
choice number at some point, the
simulated computation is simply
cancelled and the next sequence is
generated.
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D3D2D3 D2 D4D1D1

KROWni

tupni

3.

2.

1.

· · ·

· · ·

· · ·

δ

q1 q2

q0

Clearly this systematic simulation of computations of M leads M̂ to ac-
cept the input string if and only if M has an accepting computation. If
M has no accepting computations on an input string, then machine M̂
does not halt.a

aWith a bit more bookkeeping, the machine M̂ could also reject the input string (and
halt) if for some n, all the computations of M of length n or less halt in a rejecting
configuration. Even in this case, M̂ would obviously not halt if M had some nonhalting
computations.
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* Excursion: The Halting Problem, First Encounter
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8.5 The halting problem
As will be seen in Lecture 9, there are infinitely many more
languages than Turing machines (or C/Python/Scala... programs).
As languages correspond to decision problems, this means that
not all decision problems can be solved.
What about concrete examples of such undecidable problems?
The best-known example is so-called Turing’s halting problem
(Alan Turing, 1936).
In terms of C programs, we can formulate this result as follows:

Claim
There is no C function halt(p,x) that, given the source code string p
of some C function and an input string x for p, outputs 1 if the
execution of p on input x eventually terminates, and 0 if the execution
of p on x never terminates. Here it is assumed that the programs can
access an unlimited amount of memory.
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Proof
Suppose, contrary to the claim, that such a function halt existed. By
using this hypothetical function, we construct another function confuse
as shown in the program code box below.
Let c denote the presented source code string of confuse, and study
what happens if we run confuse on its own source code:

vo id confuse ( char *q ) {
i n t h a l t ( char *p , char *x ) {
. . . / * Body of f u n c t i o n ’ h a l t ’ * /
}
i f ( h a l t ( q , q ) == 1) wh i le ( 1 ) ;

}

confuse(c) halts
⇔

halt(c,c) == 1
⇔

confuse(c) does not halt!

As we obtained a contradiction, we must deduce that the hypothetical
halting testing function halt cannot exist.

In fact, as will be seen in the next lecture, there are lots of such
undecidable problems.
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The same in Python

The file haltingTester.py containing the hypothetical halting testing
function doesHalt:
# (C) 2013 H. Acker f rau
def doesHalt ( sourceName , inputName ) :

" " " Returns t rue i f the program i n f i l e ’ sourceName ’ h a l t s
when i t i s run on the inpu t f i l e ’ inputName ’ , f a l s e otherwise . " " "

f s = open ( sourceName , " r " )
f i = open ( inputName , " r " )
. . .
r e t u r n r e s u l t

i f __name__ == ’ __main__ ’ :
source = sys . argv [ 1 ]
i npu t = sys . argv [ 2 ]
h a l t s = doesHalt ( source , i npu t )
p r i n t ( source+" h a l t s on "+ i npu t + " : "+ h a l t s )
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The file confuse.py:
# (C) 2013 H. Acker f rau
def doesHalt ( sourceName , inputName ) :

" " " Returns t rue i f the program i n f i l e ’ sourceName ’ h a l t s
when i t i s run on the inpu t f i l e ’ inputName ’ , f a l s e otherwise . " " "

f s = open ( sourceName , " r " )
f i = open ( inputName , " r " )
. . .
r e t u r n r e s u l t

i f __name__ == ’ __main__ ’ :
sourceAndInput = sys . argv [ 1 ]
h a l t s = doesHalt ( sourceAndInput , sourceAndInput )
i f h a l t s :

wh i le True :
pass

p r i n t ( " I ’ l l now h a l t :−) " )

Does the execution of the command

python confuse.py confuse.py

terminate?


