

CS-C2160 Theory of Computation

Turing Machines

Lecture 8: Turing Machines

Pekka Orponen Aalto University **Department of Computer Science**

Spring 2021

Topics:

- Turing machines
- Extensions of Turing machines
 - Multitrack machines
 - Multitape machines
 - Nondeterministic machines
- Excursion: The halting problem, first encounter

Material:

- In Finnish: Sections 4.1–4.2 and 6.1 in the Finnish lecture notes
- In English: Sections 3.1–3.3 in the Sipser book, multitrack machines on these slides

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 2/53

8.1 Turing machines

Alan Turing 1935-36

 $\triangleright \ T \ U \ R \ I \ N \ G \ \triangleleft \ \cdots$ tape: tape head: $q_1 \not q_2$ control unit: q_0 δ

- A Turing machine is like a finite automaton and has a tape ...
- but it can move both left and right on the tape
- and it can also write on the tape, not just read it.
- In addition, the tape is unbounded to the right.

The Church-Turing Thesis (\sim 1936)

Any mechanically (= physically) solvable computational problem can also be solved with a Turing machine.

3/53

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 4/53

Other models of computation that are equivalent to Turing machines:

- Recursive function systems by Gödel and Kleene (1936)
- Church's λ-calculus (1936)
- String rewriting systems by Post (1936) and Markov (1951)
- All current programming languages (when the amount of and access to the memory are not limited)

From the modern point of view:

• Turing machines \equiv (assembly-language) computer programs

Definition 8.1

A *Turing machine^a* is a tuple

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}),$$

where

- Q is the finite set of *states*,
- Σ is the finite *input alphabet*,
- $\Gamma \supseteq \Sigma$ is the finite *tape alphabet* (we assume $\triangleright, \triangleleft \notin \Gamma$),
- $\delta: (Q \{q_{acc}, q_{rej}\}) \times (\Gamma \cup \{\triangleright, \triangleleft\}) \rightarrow Q \times (\Gamma \cup \{\triangleright, \triangleleft\}) \times \{L, R\}$ is the *transition function*,
- $q_0 \in Q$ is the *start state* ($q_0 \neq q_{\sf acc}$ and $q_0 \neq q_{\sf rej}$),
- $q_{acc} \in Q$ is the *accept state*, and
- $q_{\mathsf{rej}} \in Q$ is the *reject state* ($q_{\mathsf{rej}} \neq q_{\mathsf{acc}}$).

^aSipser's book uses a slightly different (but effectively equivalent) formalisation of Turing machines that (i) does not contain the start- and end-of-tape symbols \triangleright and \triangleleft but (ii) has a special "blank" symbol for the yet-unused positions on the tape.

Aalto University School of Science CS-C2160 Theory of Computation / Lecture & Aalto University / Dept. Computer Science

The interpretation for a value

$$\delta(q,a) = (q',b,\Delta)$$

of the transition function is that when in state q and reading symbol a on the tape, the machine:

- moves to state q',
- writes symbol b at the same position on the tape, and
- moves the tape head one position in direction Δ ($L\sim$ "left", $R\sim$ "right").

The set of symbols the machine is allowed to write and the move directions are restricted in some cases:

- The transition function is not defined for the states q_{acc} and q_{rej}.
 When in either of these states, the machine *halts* immediately.
- For all transitions $\delta(q,a)=(q',b,\Delta)$ it is required that:

if a = ▷, then b = ▷ and ∆ = R
 That is, the start-of-tape symbol is never overwritten and the machine cannot move left beyond that symbol (i.e., off the tape).

- b = ▷ is allowed only if a = ▷
 In other words, new start-of-tape symbols cannot be written.
- ► $b = \triangleleft$ is allowed only if $a = \triangleleft$ and $\Delta = L$ The machine does not explicitly write new end-of-tape symbols; they are introduced automatically when the machine moves past (and overwrites) the current end-of-tape symbol.

• A configuration of the machine is a tuple

 $(q, u, a, v) \in Q \times \Gamma^* \times (\Gamma \cup \{ \varepsilon \}) \times \Gamma^*,$

where possibly $a = \varepsilon$ if also either $u = \varepsilon$ or $v = \varepsilon$.

- Interpretation: the machine is in state *q* and the contents of the tape are (i) from the beginning to the left of the tape head *u*, (ii) at the tape head position *a* and (iii) from the right of the tape head to the end of the tape *v*.
- When at the very start/end of the tape, a = ε and u = ε/v = ε. In the "start" case u = ε, the machine is thought to read the symbol ▷ and in the "end" case v = ε the symbol ⊲.
- The start configuration on input $x = a_1 a_2 \dots a_n$ is the tuple

 $(q_0, \varepsilon, a_1, a_2 \dots a_n).$

• A configuration (q, u, a, v) is more compactly denoted as $(q, u\underline{a}v)$ and the start configuration on input *x* as (q_0, \underline{x})

Aalto University School of Science

• A configuration (q, w) leads to a configuration (q', w'), denoted as

$$(q,w) \mathop{\vdash^*}_M (q',w'),$$

if there is a finite sequence of configurations (q_0, w_0) , (q_1, w_1) , ..., (q_n, w_n) , $n \ge 0$, such that

$$(q,w) = (q_0,w_0) \underset{M}{\vdash} (q_1,w_1) \underset{M}{\vdash} \cdots \underset{M}{\vdash} (q_n,w_n) = (q',w').$$

• A Turing machine M accepts a string $x \in \Sigma^*$ if

 $(q_0, \underline{x}) \stackrel{\vdash^*}{\underset{M}{\mapsto}} (q_{\mathsf{acc}}, w) \qquad ext{ for some } w \in \Gamma^*;$

otherwise M rejects x.

• The language *recognised* by the machine *M* is

$$\mathcal{L}(M) = \{ x \in \Sigma^{\star} \mid (q_0, \underline{x}) \vdash_{M}^{*} (q_{\texttt{acc}}, w) \text{ for some } w \in \Gamma^{*} \}.$$

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 8

Aalto University / Dept. Computer Science

• A configuration (q, w) *leads in one step* to (or *yields*) configuration (q', w'), denoted as

$$(q,w) \mathop{\vdash}_{M} (q',w'),$$

as determined by the following rules:

- if $\delta(q,a) = (q',b,R)$, then $(q,u\underline{a}cv) \vdash_{M} (q',ub\underline{c}v)$;
- if $\delta(q,a) = (q',b,L)$, then $(q,uc\underline{a}v) \stackrel{\sim}{\underset{M}{\vdash}} (q',u\underline{c}bv)$;
- if $\delta(q, \triangleright) = (q', \triangleright, R)$, then $(q, \underline{\varepsilon}cv) \vdash_{M} (q', \underline{c}v)$;
- if $\delta(q, \triangleleft) = (q', b, R)$, then $(q, u\underline{\varepsilon}) \vdash_{M} (q', ub\underline{\varepsilon})$;
- if $\delta(q, \triangleleft) = (q', b, L)$, then $(q, uc\underline{\epsilon}) \stackrel{in}{\vdash}_{M} (q', u\underline{c}b)$;
- if $\delta(q, \triangleleft) = (q', \triangleleft, L)$, then $(q, uc\underline{\varepsilon}) \stackrel{m}{\vdash} (q', u\underline{c})$.

where $q,q' \in Q$, $u, v \in \Gamma^*$, $a, b \in \Gamma$ and $c \in \Gamma \cup \{\epsilon\}$.

• Configurations of form (q_{acc}, w) and (q_{rej}, w) do not yield any other configuration. In these configurations the machine *halts*.

Aalto University School of Science

```
CS-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
10/53
```

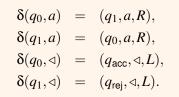
Example:

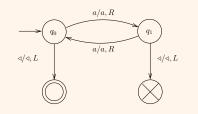
The (regular) language $\{a^{2k} \ | \ k \geq 0\}$ can be recognised with the Turing machine

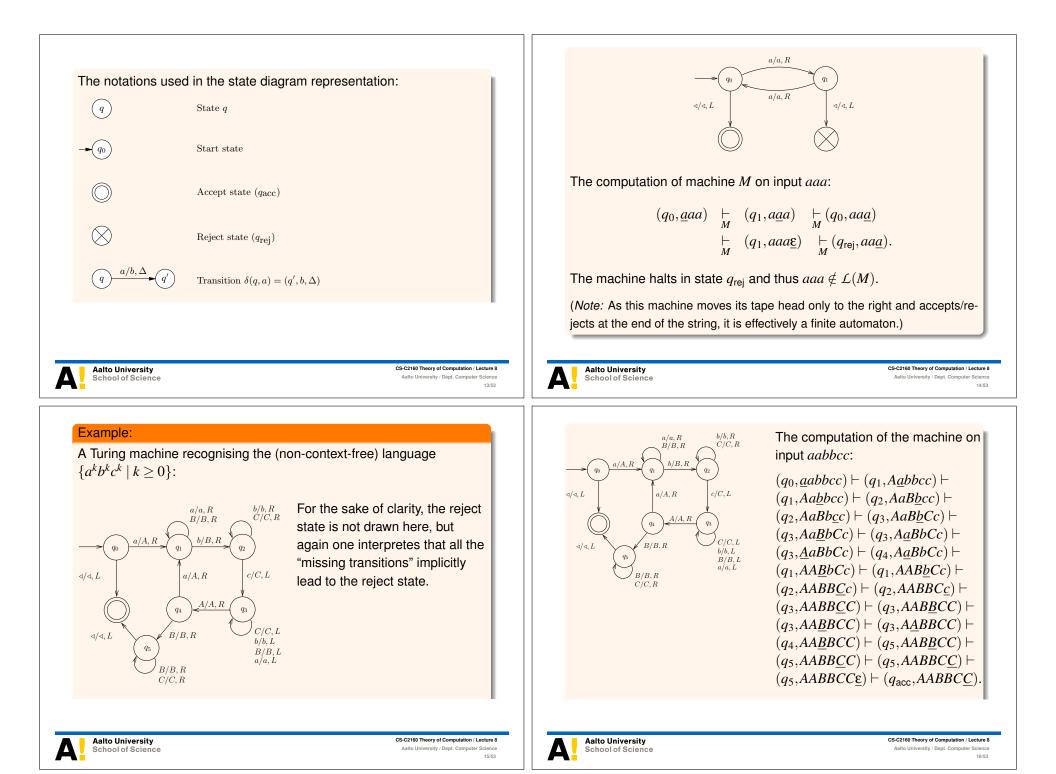
$$M = (\{q_0, q_1, q_{\rm acc}, q_{\rm rej}\}, \{a\}, \{a\}, \delta, q_0, q_{\rm acc}, q_{\rm rej}),$$

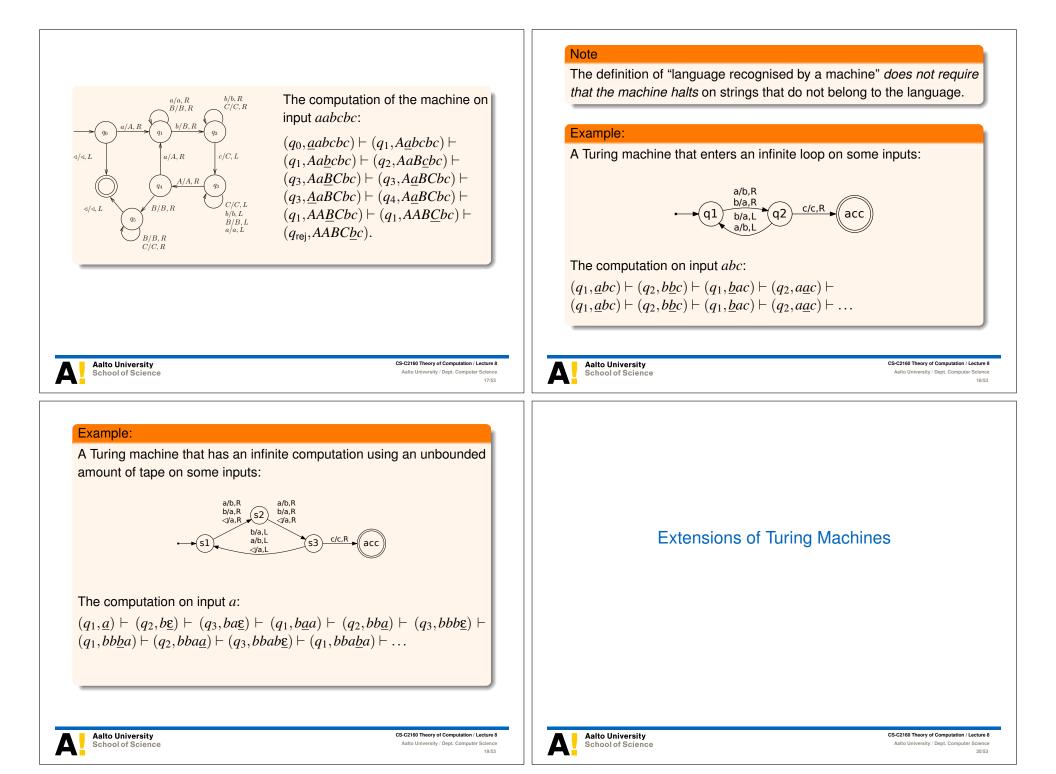
where

State diagram representation:





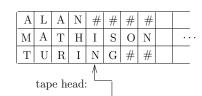




- Could we obtain even stronger models of computation if we extended the definition of Turing machines with new features?
- We could, for instance, allow multiple read/write tapes or non-determinism (like we did earlier with finite automata).
- In the following we study some such extensions and ...
- show that all the languages that one can recognise with such extended machines, can also be recognised with standard Turing machines.
- Witness the Church-Turing Thesis: Any mechanically solvable computational problem can be solved with a (standard) Turing machine.
- The extensions are also useful in designing machines for more complex purposes. (Cf. the uses of NFA as a design tool for DFA.)

8.2 Multitrack machines

 The tape of the Turing machine now consists of kparallel "tracks" that are all read and written in one computation step.



The transition function of such a machine is of form

$$\delta(q,(a_1,\ldots,a_k))=(q',(b_1,\ldots,b_k),\Delta),$$

where a_1, \ldots, a_k are the symbols read on tracks $1, \ldots, k$, b_1, \ldots, b_k the symbols written over them, and $\Delta \in \{L, R\}$ is the move direction as before.

 In the beginning of a computation, the input string is placed on the first track and the other tracks contain special "blank symbols" # in the same positions.

Aalto University School of Science

Aalto University / Dept. Computer Science

• Formally, a *k*-track Turing machine is a tuple

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}}),$$

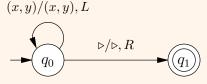
where the other components are as in the standard model but the transition function is:

$$\delta : (Q - \{q_{\mathsf{acc}}, q_{\mathsf{rej}}\}) \times (\Gamma^k \cup \{\triangleright, \triangleleft\}) \to Q \times (\Gamma^k \cup \{\triangleright, \triangleleft\}) \times \{L, R\}.$$

• The "leads to" relation \vdash_{M} , start configuration etc. are defined similarly as in the standard model.

Example:

A 2-track Turing machine rewind that rewinds the tape head to the beginning of the tape:



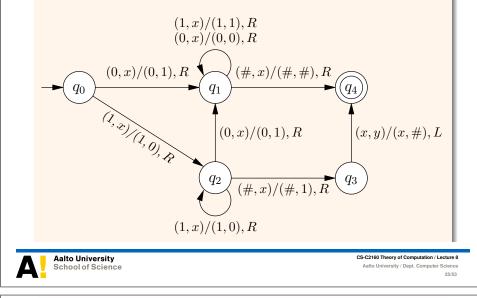
(The notation (x, y)/(x, y), L is here a shorthand meant to cover all the transitions that can be obtained by replacing the variables x and y with some tape alphabet symbols.)

CS-C2160 Theory of Computation / Lecture 8

21/53

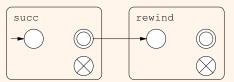
Example:

A 2-track Turing machine succ that computes the successor of a number given on track 1 to track 2 (the numbers are written in binary, least significant bit first):

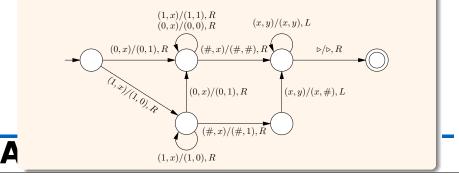


Example:

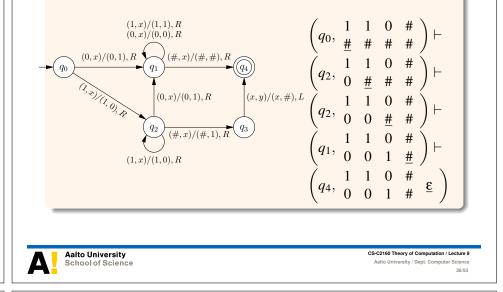
The sequential composition of the 2-track Turing machines succ and rewind:



which means the following:



The computation of the machine on input number $3_{10} = 011_2$ (provided in lsb first representation on track 1):



Lemma 8.1

If a language L can be recognised with a k-track Turing machine, then it can be recognised with a standard Turing machine as well.

Proof

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$ be a *k*-track Turing machine recognising the language *L*. An equivalent standard Turing machine \widehat{M} can be constructed as follows:

$$\widehat{M} = (\widehat{Q}, \Sigma, \widehat{\Gamma}, \widehat{\delta}, \widehat{q}_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}),$$

where
$$\widehat{Q}=Q\cup\{\widehat{q}_0,\widehat{q}_1,\widehat{q}_2\},\,\widehat{\Gamma}=\Sigma\cup\Gamma^k$$
 and for all $q\in Q$ we have

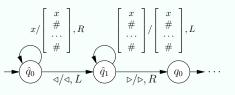
$$\begin{split} \hat{\delta}(q, \begin{bmatrix} a_1\\ \vdots\\ a_k \end{bmatrix}) &= (q', \begin{bmatrix} b_1\\ \vdots\\ b_k \end{bmatrix}, \Delta), \\ \text{when} \quad \delta(q, (a_1, \dots, a_k)) &= (q', (b_1, \dots, b_k), \Delta) \end{split}$$

Aalto University School of Science

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 28/53 In the beginning of its computation, the machine \widehat{M} must "lift" the input string to the (simulating) first track, meaning that it replaces the input $a_1a_2\ldots a_n$ with

$$\begin{bmatrix} a_1 \\ \# \\ \vdots \\ \# \\ \vdots \\ \# \end{bmatrix} \begin{bmatrix} a_2 \\ \# \\ \vdots \\ \# \end{bmatrix} \cdots \begin{bmatrix} a_n \\ \# \\ \vdots \\ \vdots \\ \# \end{bmatrix}.$$

For this, the transition function of \widehat{M} includes, in addition to the transitions copied from M, a small "preprocessor" sub-machine



Aalto University School of Science CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science

29/53

The transitions of such a machine are of form

$$\delta(q,a_1,\ldots,a_k)=(q',(b_1,\Delta_1),\ldots,(b_k,\Delta_k))$$

where

- \triangleright a_1, \ldots, a_k are the symbols read from the tapes $1, \ldots, k$,
- b_1, \ldots, b_k are the symbols written on the tapes $1, \ldots, k$, and
- $\Delta_1, \ldots, \Delta_k \in \{L, R, S\}$ are the move directions of the tape heads (S means "stay", i.e., the tape head is not moved).
- Formally, a *k*-tape Turing machine is a tuple

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rei}}),$

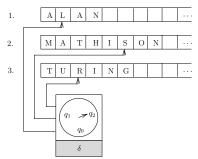
where all the other components are as in the standard model, but the transition function is of form:

 $\delta: (Q - \{q_{\mathsf{acc}}, q_{\mathsf{rei}}\}) \times (\Gamma \cup \{\triangleright, \triangleleft\})^k \to Q \times ((\Gamma \cup \{\triangleright, \triangleleft\}) \times \{\mathsf{L}, \mathsf{R}, \mathsf{S}\})^k.$

 The "leads to" relations and other concepts are defined similarly as in the standard model.

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 31/53

8.3 Multitape machines



- We now allow a Turing machine to have k independent tapes, each with its own tape head.
- The machine reads and writes all the tapes in each step.
- In the beginning of the computation, the input is on the first tape, the other tapes are empty, and all the tape heads point to the beginning of their tapes.

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 30/53

Example:

A 3-tape Turing machine Rew2 that moves the tape head of the second tape to the beginning (other tape heads stay in their original places):

$$x,z,y/(x,S),(z,L),(y,S) \text{ when } z \neq \triangleright$$

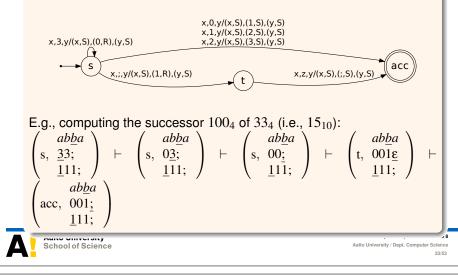
$$(x,z),(x,S),(z,L),(y,S) = (z,z)$$

$$(x,z),(y,S),(z,L),(y,S) = (z,z)$$

Here x, y, and z are again parameters for abbreviations and, for instance, the transition "x, z, y/(x, S), (z, L), (y, S) when $z \neq \triangleright$ " represents all the possible transitions that can be obtained by replacing x, y and zwith any tape alphabet symbols (excluding the case $z = \triangleright$).

Example:

A 3-tape machine 4Succ2 that computes the successor of the number given on tape 2. Numbers are in base 4, in "least significant digit first" order and terminated by a semicolon. The machine shall be started in a situation where the tape head of the second tape is in the beginning.



Lemma 8.2

If a language L can be recognised with a k-tape Turing machine. then it can be recognised with a standard Turing machine as well.

Let

Proof

A L Α Ν 2. 3. MA Τl HII S 0 Ν 4. 5. т U R Ι Ν G # 6

$M = (O, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$

be a *k*-tape Turing machine recognising the language L. We can simulate it with a 2k-track Turing machine \widehat{M} as follows. The odd tracks $1, 3, 5, \ldots, 2k-1$ of \widehat{M} correspond to the tapes $1, 2, \ldots, k$ of Mand for each odd track, the following even track contains exactly one \uparrow symbol that indicates the tape head position on the tape of the odd track.

CS-C2160 Theory of Computation / Lecture 8

Aalto University / Dept. Computer Science

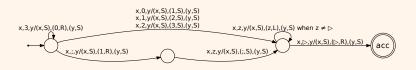
35/53

Aalto University

School of Science

Example:

The sequential composition of machines 4Succ2 and Rew2. lt computes the successor of the number given on tape 2 (in base 4, "least significant digit first" order and ;-terminated) and rewinds the second tape head to the beginning after the computation.



The machine shall be started in a situation where the tape head of the second tape is in the beginning.

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 34/53

- In the beginning, the input string is placed on the first track as usual. and in its first move \widehat{M} writes the \uparrow symbols to the first positions of the even tracks.
- After this, \widehat{M} operates by "sweeping" across the tape forwards and backwards.
- On each forward sweep from the beginning to the end, \hat{M} collects information about which symbols are at the positions indicated by the \uparrow symbols, i.e., at the tape head positions of the simulated machine M.
- Based on this information, \widehat{M} then performs a backward sweep to the beginning and makes the changes on its multitrack tape (writes tape symbols, moves tape head markers \uparrow) that correspond to the changes made by a single transition of the simulated machine M.

The multitrack machine \widehat{M} can then be simulated with a standard Turing machine, as presented in Lemma 8.1.

8.4 Nondeterministic machines

• Formally, a nondeterministic Turing machine is a tuple

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}}),$

where the other components are as in the standard model but the transition function is of form:

 $\delta \colon (Q - \{q_{\mathsf{acc}}, q_{\mathsf{rej}}\}) \times (\Gamma \cup \{\triangleright, \triangleleft\}) \to \mathcal{P}(Q \times (\Gamma \cup \{\triangleright, \triangleleft\}) \times \{L, R\}).$

• The interpretation of a value

$$\delta(q,a) = \{(q_1,b_1,\Delta_1),\ldots,(q_k,b_k,\Delta_k)\}$$

of the transition function is that, when in state q and reading tape symbol a, the machine can act according to *some* triple (q_i, b_i, Δ_i) in the list.

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science

Example: Recognising composite numbers with nondeterministic Turing machines

A non-negative integer *n* is a *composite* number if it has integer factors $p,q \ge 2$ s.t. pq = n. A non-negative integer that is not composite is either *unit* (1) or a *prime* number.

Assume that we already have a deterministic Turing machine check_mult that recognises the language

 $\mathcal{L}(\text{check_mult}) = \{n \# p \# q \mid n, p, q \text{ are binary numbers and } n = pq\}.$

In addition, let go_start be a deterministic Turing machine that moves the tape head to the beginning of the tape.

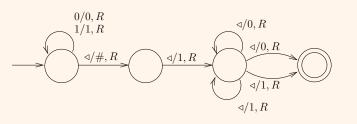
- For nondeterministic machines, the configurations, "leads to" relations etc. are defined as for the standard deterministic machines, except that the condition $\delta(q,a) = (q',b,\Delta)$ is replaced with the nondeterminic version $(q',b,\Delta) \in \delta(q,a)$.
- Because of this, the "leads to" relation ⊢ is no longer single-valued, meaning that a configuration (q, w) can now have many possible successor configurations (q', w') (i.e., those for which (q, w) ⊢ (q', w') holds).
- The language recognised by the machine M is now

 $\mathcal{L}(M) = \{ x \in \Sigma^{\star} \mid (q_0, \underline{x}) \underset{M}{\vdash^*} (q_{\mathsf{acc}}, w) \text{ for some } w \in \Gamma^* \}.$

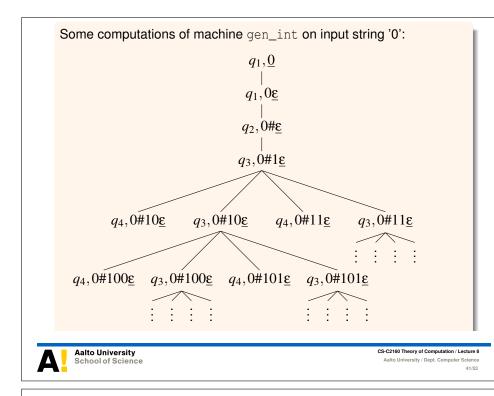
• That is, a string *x* belongs to the language recognised by a nondeterministic machine *M* if *some* finite sequence of configurations leads from the start configuration to an accepting configuration.

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 38/53

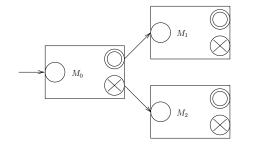
Furthermore, let gen_int be the following nondeterministic machine. It writes an *arbitrary* binary number (in the most-significant-bit-first order) that is greater than 1 at the end of the tape:



CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 40/53



Note. A common diagram notation for an "if-then-else" combination of Turing machines:

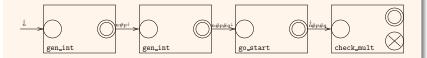


Aalto University

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 43/53 A nondetermistic Turing machine that recognises the language

 $\mathcal{L}(\texttt{test_composite}) = \{n \mid n \text{ is a binary compound number}\}$

can now be constructed by combining the above mentioned machines:



The resulting machine accepts an input binary string n if and only if there exist binary numbers $p, q \ge 2$ for which n = pq holds — that is, if and only if n is a composite number.

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 42/53

Theorem 8.3

If a language L can be recognised with a nondeterministic Turing machine, then it can be recognised with a standard deterministic Turing machine as well.

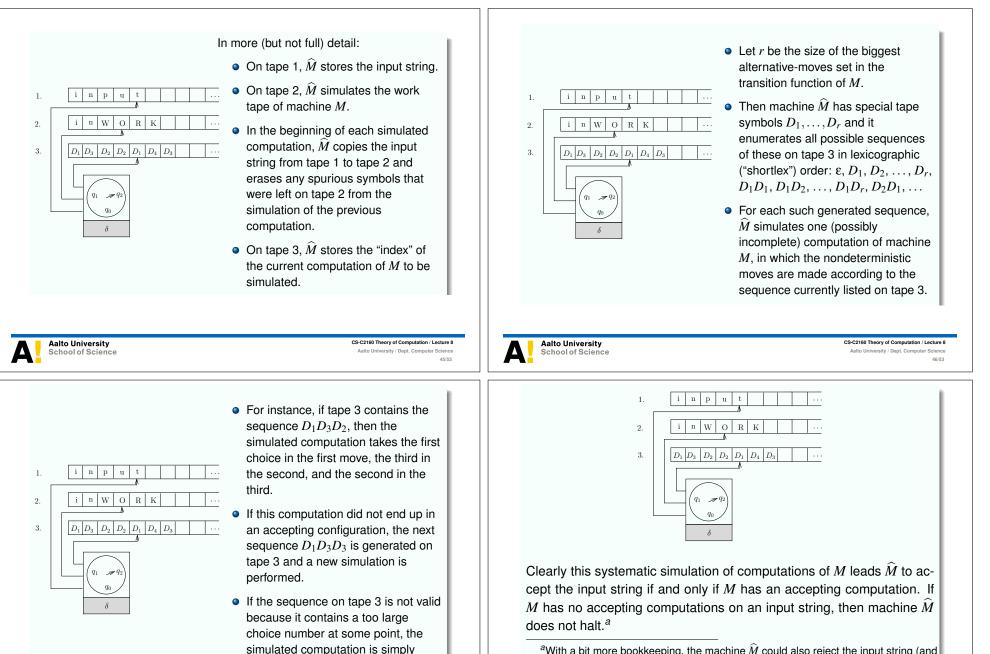
Proof (idea)

Let

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}})$

be a nondeterministic Turing machine recognising the language *L*.

- One can simulate M with a 3-tape deterministic machine \widehat{M} that systematically explores all the computations of M until it finds a computation that ends in an accepting configuration if such a computation exists.
- The 3-tape machine \widehat{M} can then be transformed into a standard deterministic machine as presented in Lemmas 8.1 and 8.2.



Aalto University

School of Science

generated.

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 47/53

cancelled and the next sequence is

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 48/53

^aWith a bit more bookkeeping, the machine \widehat{M} could also reject the input string (and halt) if for some *n*, all the computations of *M* of length *n* or less halt in a rejecting configuration. Even in this case, \widehat{M} would obviously not halt if *M* had some nonhalting computations.

* Excursion: The Halting Problem, First Encounter Claim CS-C2160 Theory of Computation / Lecture 8 **Aalto University** Aalto University School of Science Aalto University / Dept. Computer Science School of Science 49/53 Proof Suppose, contrary to the claim, that such a function halt existed. By using this hypothetical function, we construct another function confuse as shown in the program code box below. Let c denote the presented source code string of confuse, and study what happens if we run confuse on its own source code: void confuse(char *q){ confuse(c) halts int halt(char *p, char *x){ ... /* Body of function 'halt' */ \Leftrightarrow halt(c,c) == 1

 \Leftrightarrow confuse(c) does not halt!

As we obtained a contradiction, we must deduce that the hypothetical halting testing function halt cannot exist.

In fact, as will be seen in the next lecture, there are lots of such undecidable problems.

if (halt(q,q) == 1) while (1);

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 51/53

8.5 The halting problem

- As will be seen in Lecture 9, there are infinitely many more languages than Turing machines (or C/Python/Scala... programs).
- As languages correspond to decision problems, this means that not all decision problems can be solved.
- What about concrete examples of such undecidable problems?
- The best-known example is so-called *Turing's halting problem* (Alan Turing, 1936).
- In terms of C programs, we can formulate this result as follows:

There is no C function halt (p, x) that, given the source code string p of some C function and an input string x for p, outputs 1 if the execution of p on input x eventually terminates, and 0 if the execution of p on x never terminates. Here it is assumed that the programs can access an unlimited amount of memory.

> CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 50/53

The same in Python

The file haltingTester.py containing the hypothetical halting testing function doesHalt:

```
# (C) 2013 H. Ackerfrau
def doesHalt(sourceName, inputName):
  """Returns true if the program in file 'sourceName' halts
     when it is run on the input file 'inputName', false otherwise."""
  fs = open(sourceName, "r")
  fi = open(inputName, "r")
 return result
if __name__ == '__main__':
   source = sys.argv[1]
   input = sys.argv[2]
   halts = doesHalt(source, input)
   print(source+" halts on "+input+": "+halts)
```

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 52/53

```
The file confuse.py:
# (C) 2013 H. Ackerfrau
def doesHalt(sourceName, inputName):
  """Returns true if the program in file 'sourceName' halts
     when it is run on the input file 'inputName', false otherwise."""
  fs = open(sourceName, "r")
  fi = open(inputName, "r")
  . . .
  return result
if __name__ == '__main__':
   sourceAndInput = sys.argv[1]
   halts = doesHalt(sourceAndInput, sourceAndInput)
   if halts:
     while True:
       pass
   print("l'll now halt :-)")
Does the execution of the command
                python confuse.py confuse.py
```

terminate?

CS-C2160 Theory of Computation / Lecture 8 Aalto University / Dept. Computer Science 53/53