A

Aalto University
School of Science

CS-C2160 Theory of Computation

Lecture 8: Turing Machines

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

Topics:
@ Turing machines

@ Extensions of Turing machines

» Multitrack machines
» Multitape machines
» Nondeterministic machines

@ Excursion: The halting problem, first encounter
Material:
@ In Finnish: Sections 4.1—4.2 and 6.1 in the Finnish lecture notes

@ In English: Sections 3.1-3.3 in the Sipser book, multitrack
machines on these slides

Aalto University CS-C2160 Theory of Computation / Lecture 8
A School of Science Aalto University / Dept. Computer Science
2/53

Turing Machines

Aalto University
School of Science

(CS-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science

8.1 Turing machines

Alan Turing 1935-36

@ A Turing machine is like a finite

tape: >[rulr]1]x]e[]. automaton and has a tape ...
tape head: @ but it can move both left and right
on the tape
@ and it can also write on the tape,
control unit: not just read it.
5 @ In addition, the tape is unbounded

to the right.

Any mechanically (= physically) solvable computational problem can
also be solved with a Turing machine.

School of Science Aalto University / Dept. Computer Science
4/53

A Aalto University ©S-C2160 Theory of Computation / Lecture 8

Other models of computation that are equivalent to Turing machines:
@ Recursive function systems by Gédel and Kleene (1936)
@ Church’s A-calculus (1936)
@ String rewriting systems by Post (1936) and Markov (1951)

@ All current programming languages (when the amount of and
access to the memory are not limited)

From the modern point of view:
@ Turing machines = (assembly-language) computer programs

€S-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science Aalto University / Dept. Computer Science
5

53

Definition 8.1

A Turing machine? is a tuple

M= (Q,Z, I, Sa QOaQaccaQrej)7

where

Q is the finite set of states,

Y. is the finite input alphabet,

I' D X is the finite tape alphabet (we assume >, < ¢ I),

8 (Q — {4ace: grei}) X (CU{>, <)) = 0 x (TU{>,}) x {L,R} is
the transition function,

qo € Q is the start state (qo # gacc @and qo # qrej),

@ gacc € Q is the accept state, and

® gy € Q is the reject state (qrej # Gacc)-

4Sipser’s book uses a slightly different (but effectively equivalent) formalisation of
= Turing machines that (i) does not contain the start- and end-of-tape symbols > and <
Abut (i) has a special “blank” symbol for the yet-unused positions on the tape.

The interpretation for a value

S(qaa) = (qlvva)

of the transition function is that when in state ¢ and reading symbol a
on the tape, the machine:

@ moves to state ¢/,
@ writes symbol b at the same position on the tape, and

@ moves the tape head one position in direction A (L ~ “left”, R ~
“right”).

(CS-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science Aalto University / Dept. Computer Science
7

53

The set of symbols the machine is allowed to write and the move
directions are restricted in some cases:

@ The transition function is not defined for the states gacc and gre;.
When in either of these states, the machine halts immediately.
@ For all transitions 8(¢,a) = (¢, b,A) it is required that:
> ifa=n>,thenb=>and A=R
That is, the start-of-tape symbol is never overwritten and the
machine cannot move left beyond that symbol (i.e., off the tape).

» b=npis allowedonly ifa =1
In other words, new start-of-tape symbols cannot be written.

» b=<isallowedonlyifa=<andA=L
The machine does not explicitly write new end-of-tape symbols;
they are introduced automatically when the machine moves past
(and overwrites) the current end-of-tape symbol.

€S-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science Aalto University / Dept. Computer Science
8/

53

@ A configuration of the machine is a tuple
(q,u,a,v) € O xI'" x (TU{e}) x T,

where possibly a = € if also eitheru =€ orv =¢.

@ Interpretation: the machine is in state g and the contents of the
tape are (i) from the beginning to the left of the tape head u, (ii) at
the tape head position a and (iii) from the right of the tape head to
the end of the tape v.

@ When at the very start/end of the tape,a =€ andu =¢/v ==¢€. In
the “start” case u = €, the machine is thought to read the symbol
> and in the “end” case v = € the symbol <.

@ The start configuration on input x = aya; . .. a, is the tuple

(go0,€,a1,az .. .ay).

@ A configuration (g,u,a,v) is more compactly denoted as (g, uav)
and the start configuration on input x as (go, x)

€§-C2160 Theory of Computation / Lecture 8
Aalto Universil ty / Dept. Computer Science
9/53

Aalto University
School of Science

@ A configuration (g,w) leads in one step to (or yields)
configuration (¢’,w’), denoted as

(g:w) E(d',w'),

as determined by the following rules:
> if 8(q,a) = (¢',b,R), then (q,uacv)
)

» it 8(q,a) = (¢',b,L), then (q,ucav) - (¢',uchv);
» if 8(q,>) = (¢/,>,R), then (g,€cv) Alj[(¢ cv);

» if 8(q,<) = (¢',b,R), then (g, ug) A|_4 (¢, ube);

» if 8(q,<) = (¢',b,L), then (q,uce) = (¢, uch);

> if 8(gq,<) = (¢/,<,L), then (g, uce) 11'71 (¢, uc).

where ¢,¢' € Q, u,v €T, a,b e'and c e TU{e}.

@ Configurations of form (gacc, w) and (grej, w) do not yield any
other configuration. In these configurations the machine halts.

A

€S-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
10153

Aalto University
School of Science

@ A configuration (¢, w) leads to a configuration (¢',w’), denoted as
I_* / /
(q.0) 1" (@),

if there is a finite sequence of configurations (qo,wo), (g1, w1),
.oy (gnywn), n > 0, such that

(4:9) = (@o.w0) b= (qrawi) b= - (ga,wa) = (g w).
@ A Turing machine M accepts a string x € X* if
for some w € T'";

(CIO7£)A|TI (Qaccaw)

otherwise M rejects x.
@ The language recognised by the machine M is

L(M)={xeX"|(qo,x) 11'_4* (qace, w) for some w € T}

(CS-C2160 Theory of Computation / Lecture 8
Aalto Universil ty / Dept. Computer Science
11/53

Aalto University
School of Science

The (regular) language {a** | k > 0} can be recognised with the Turing
machine

M= ({5107‘]17‘]acc>%ej}7{a}a{a}vaa‘ZOa‘Iacm‘Irej),

State diagram representation:

where
aja,R
8(q0,a) = (q1,a,R), %
5(611,0) = (q07a7R)7 ala, R
</, L <a/q, L
6(61074) == (qaCC7<7L)7
6(q17<]) = (CIrej7<17L)- O @

A

€S-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
12/53

Aalto University
School of Science

ala, R

The notations used in the state diagram representation: H

a/a,R
State ¢ /<, L a/4,L

Start state O @

The computation of machine M on input aaa:
Accept state (gacc)

R 0 ® 6

- -

(90,aaa) - (q1,aaa) + (qo,aaa)
Reject state (qrej) A'jl (Q1 7aaa§) A'; (Qrej;aac_z)-

Transition 8(g, a) = (¢/,b, A) The machine halts in state g and thus aaa ¢ L(M).

(Note: As this machine moves its tape head only to the right and accepts/re-
jects at the end of the string, it is effectively a finite automaton.)

v

A BaltoUnivrsity oo A Schoolof Sence oo
ook Yo, The computation of the machine on
A Turing machine recognising the (non-context-free) language ’ ' input aabbcc:
kpk k| 1> 01
{a'bc | k=2 0: (qo,aabbec) & (q1,Aabbcec)
. _ (q1,Aabbcc) = (q2,AaBbcc)
e T e () - AaBhCO -
[\ /AR ”/B"R again one interpretes that all the (43,4aBbCc) F (43, AaBbCc) -
& B B e (g3,AaBbCc) & (qa,AaBbCc) F
missing transitions” implici
o TS PRl (q1,AABbCC) - (q1,AABbCC) -
J . (g2,AABBCc) & (q2,AABBCc) -
MAR() (43,AABBCC) - (q3,AABBCC) -
" el e (¢3,AABBCC) \- (q3,AABBCC)
e i (q4,AABBCC) - (¢5,AABBCC) I-
o a/a,L (qs,AABBQC) F (qs, AABBCQ) =
C/C.R (gs,AABBCC¢) +- (qacc,AABBCC).

School of Science Aalto Universi ty / Dept. Computer Science School of Science Aalto University / Dept. Computer Science
15/53 16/53

A Aalto University €S-C2160 Theory of Computation / Lecture 8 A Aalto University €S-C2160 Theory of Computation / Lecture 8

bR The computation of the machine on
input aabcbc:

(qo,aabcbe) & (q1,Aabcebe)
(q1,Aabcbe) F (g2,AaBcbce) =
(g3,AaBCbc) & (q3,AaBCbc)
(93,AaBCbc) = (q4,AaBCbc) =
(91,AABCbc) - (q1,AABCbc) -
(‘IrehAABCQC)-

©5-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
17/53

Aalto University
School of Science

The definition of “language recognised by a machine” does not require
that the machine halts on strings that do not belong to the language.

A Turing machine that enters an infinite loop on some inputs:
a/b,R
Ops O
b/a,L

The computation on input abc:

(q1,abc) = (q2,bbe) &= (q1,bac) & (q2,aac) =
(q1,abc) F (q2,bbc) = (g1, bac) F (q2,aac) - . ..

©S-C2160 Theory of Computation / Lecture 8
Aalto Universit ity / Dept. Computer Science
18/53

Aalto University
School of Science

A Turing machine that has an infinite computation using an unbounded
amount of tape on some inputs:

The computation on input a:

(q1,a) & (q2,b€) & (g3,bag) = (q1,baa) = (q2,bba) &= (g3,bbbe) +
(q1,bbba) & (qa,bbaa) & (g3,bbabe) t- (q1,bbaba) - . ..

Aalto University €S-C2160 Theory of Computation / Lecture 8
A School of Science Aalto University / Dept. Computer Science
19/53

Extensions of Turing Machines

Aalto University €S-C2160 Theory of Computation / Lecture 8
A School of Science Aalto University / Dept. Computer Science

20/53

@ Could we obtain even stronger models of computation if we
extended the definition of Turing machines with new features?

@ We could, for instance, allow multiple read/write tapes or
non-determinism (like we did earlier with finite automata).

@ In the following we study some such extensions and ...

@ show that all the languages that one can recognise with such
extended machines, can also be recognised with standard Turing
machines.

@ Witness the Church-Turing Thesis: Any mechanically solvable
computational problem can be solved with a (standard) Turing
machine.

@ The extensions are also useful in designing machines for more
complex purposes. (Cf. the uses of NFA as a design tool for DFA.)

€§-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
21/53

Aalto University
School of Science

8.2 Multitrack machines

@ The tape of the Turing AL A|N| 4| #]| #| #
machine now consists of k M|A|T|H|I|S|O|N
parallel “tracks” that are all T|U R|I|N|G|#|#

read and written in one

computation step. tape head: |
@ The transition function of such a machine is of form

S(Q’(ala-‘-aak)) = (qlv(bla---abk)’A)7

where ay,...,a; are the symbols read on tracks 1, ... ,k,
by, ... by the symbols written over them, and A € {L,R} is the
move direction as before.

@ In the beginning of a computation, the input string is placed on
the first track and the other tracks contain special “blank symbols”
in the same positions.

©S-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science Aalto University / Dept. Computer Science
22/53

@ Formally, a k-track Turing machine is a tuple

M= (Qa27F767q07qa007qrej)a

where the other components are as in the standard model but the
transition function is:

O (0 —{qacc Grej}) X (FkU{D,q}) —0x (FkU{D,q}) x {L,R}.

@ The “leads to” relation 11'71 start configuration etc. are defined
similarly as in the standard model.

A

(CS-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
23/53

Aalto University
School of Science

A 2-track Turing machine rewind that rewinds the tape head to the
beginning of the tape:

(z,y)/(z,y), L

>/>, R

(The notation (x,y)/(x,y),L is here a shorthand meant to cover all the
transitions that can be obtained by replacing the variables x and y with
some tape alphabet symbols.)

€S-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science e
24/53

Aalto University / Dept. Computer Scienc

A 2-track Turing machine succ that computes the successor of a num-
ber given on track 1 to track 2 (the numbers are written in binary, least
significant bit first):

Aalto University €S-C2160 Theory of Computation / Lecture 8
School of Science Aalto University / Dept. Computer Science
25/53

The computation of the machine on input number 319 = 011, (provided
in Isb first representation on track 1):
(1,2)/(1,1),R 1 1 0 #
0,2)/(0,0), R
(0,2)/(0,0) (qo7 4 o4 4 #) -
1 1 0 #
(612, 0 # # # > -
1 1 0 #
(qz, 00 # #) =
1 1 0 #
s F
(1,2)/(1,0),R (611 0 0 1 #)
1 1 0 # e
q47 O O 1 # =
Aalto University ©S-C2160 Theory of Computation / Lecture 8
A School of Science Aalto University / Dept. Computer SC;n;:

The sequential composition of the 2-track Turing machines succ and
rewind:

succ rewind

X O

which means the following:

-1

Lemma 8.1
If a language L can be recognised with a k-track Turing machine, then
it can be recognised with a standard Turing machine as well.

| A

Proof

Let M = (Q,%,T, 8,90, qacc, qrej) b€ @ k-track Turing machine recognis-
ing the language L. An equivalent standard Turing machine M can be
constructed as follows:

M= (Q,E, fa Sa Z\]quaCCaQrej),

where O = QU {40,41,42}, ' = £UT* and for all g € Q we have

d(q, [])Z(q’,[;l],A),

when 8(q,(ay,...,ax)) = (¢, (by,...

br),A).

€S-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science
28/53

Aalto University / Dept. Computer Science

In the beginning of its computation, the machine M must “lift” the input
string to the (simulating) first track, meaning that it replaces the input
aiay...a, with

For this, the transition function of M includes, in addition to the transi-
tions copied from M, a small “preprocessor” sub-machine

T

of| ¥ /

p .
jii ' 8
@ /<, L @ >/>, R @

R L

x
#
#

x
#
#

€S-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science Aalto Universil ty / Dept. Computer Science
29/53

8.3 Multitape machines

O Y PR I) I A
i —

2. [IM[a]r[n]1[s]o]n] [

[rlul] of~fe] [T -

=

0

@ We now allow a Turing machine to have k independent tapes,
each with its own tape head.

@ The machine reads and writes all the tapes in each step.

@ In the beginning of the computation, the input is on the first tape,
the other tapes are empty, and all the tape heads point to the
beginning of their tapes.

©S-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science Aalto University / Dept. Computer Science
30/53

@ The transitions of such a machine are of form

S(Q,al,...,ak) = (q,a(blaAl)a'-'a(blwAk)):

where
> ai,...,a; are the symbols read from the tapes 1,... k,
> by,...,by are the symbols written on the tapes 1, ...k, and
> Ap,...,A¢ € {L,R,S} are the move directions of the tape heads
(S means “stay”, i.e., the tape head is not moved).

@ Formally, a k-tape Turing machine is a tuple

M= (Q727F767QO7Qa007Qrej)a

where all the other components are as in the standard model, but
the transition function is of form:

8: (0 —{qace,qrej}) ¥ (FU{>,<1})]‘ — Ox ((TU{p,<}) x {L,R,S}) .

@ The “leads to” relations and other concepts are defined similarly
as in the standard model.

(CS-C2160 Theory of Computation / Lecture 8
Aalto Universil ty / Dept. Computer Science

Aalto University
School of Science
31/53

A 3-tape Turing machine Rew?2 that moves the tape head of the second
tape to the beginning (other tape heads stay in their original places):

x,2,¥/(x,S),(z,L),(y,S) when z = >

ow) XEY/(65),R).(1.5) :

Here x, y, and z are again parameters for abbreviations and, for in-
stance, the transition “x,z,y/(x,S), (z,L), (y,S) when z # " represents
all the possible transitions that can be obtained by replacing x, y and z
with any tape alphabet symbols (excluding the case z =).

CS-C2160 Theory of Computation / Lecture 8

Aalto University
School of Science Aalto University / Dept. Computer Science
3

2/53

A 3-tape machine 4Succ?2 that computes the successor of the number
given on tape 2. Numbers are in base 4, in “least significant digit first”
order and terminated by a semicolon. The machine shall be started in
a situation where the tape head of the second tape is in the beginning.

x,0,y/(x,5),(1,5),(y.S)
x,1,y/(x,5).(2,5).(y.S)
X,2,y/(x,5),(3,5).(y.S)

%,3,y/(x,S),(0.R),(y.S)
R

X,:,¥/(x,5),(1,R),(y,S)

x,2,y/(x,5),(;,5),(y,S)

E.g., computing the successor 1004 of 334 (i.e., 151¢):

The sequential composition of machines 4Succ2 and Rew2. It
computes the successor of the number given on tape 2 (in base
4, “least significant digit first” order and ;-terminated) and rewinds
the second tape head to the beginning after the computation.

x,0,y/(x,5),(1,5),(y.S)
x,1,y/(x,5),(2,5).(y.S)

X,2,y/(x,5).(3,5).(y.5) x,2,y/(x,5),(z,L).(y,S) when z = >

x,3,y/(x,SO,R).(Y,S)

X,5,¥/(x,5),(1,R),(y,S) x,2,y/(x,5),(;,S).(y,S)

abba abba abba abba The machine shall be started in a situation where the tape head of the
s, 33; F o |s, 03; F |s, 00 F [t 00le F second tape is in the beginning.
1115 1115 1115 1115
abba
acc, 001;
1113
A Sehool of Seience T ——— A Aalto University . “;Zf.t,‘Elti‘,’:K:"S:’:"ZL“;';’S.LTZZEL‘S’ZS
Lemma 8.2

If a language L can be recognised with a k-tape Turing machine, then
it can be recognised with a standard Turing machine as well.

Proof

Let

M= (Q727F757407Qacm%ej>

1| a Al N #| #| ##
2 i be a k-tape Turing machine recognising
j MalT R j oLX -the language L. We can simulate it with a
s | Tlu LI N|c|# # 2k-track Turing machine M as follows. The
6. odd tracks 1,3,5,...,2k— 1 of M

correspond to the tapes 1,2,...,k of M
and for each odd track, the following even
track contains exactly one 1 symbol that
indicates the tape head position on the
tape of the odd track.

Aalto University €S-C2160 Theory of Computation / Lecture 8
School of Science Aalto University / Dept. Computer Science
35/53

@ In the beginning, the input string is placed on the first track as usual,
and in its first move M writes the 1 symbols to the first positions of the
even tracks.

@ After this, M operates by “sweeping” across the tape forwards and
backwards.

@ On each forward sweep from the beginning to the end, M collects
information about which symbols are at the positions indicated by the 1
symbols, i.e., at the tape head positions of the simulated machine M.

@ Based on this information, M then performs a backward sweep to the
beginning and makes the changes on its multitrack tape (writes tape
symbols, moves tape head markers 1) that correspond to the changes
made by a single transition of the simulated machine M.

The multitrack machine M can then be simulated with a standard Turing ma-
chine, as presented in Lemma 8.1.

Aalto University €S-C2160 Theory of Computation / Lecture 8
School of Science Aalto University / Dept. Computer Science
36/53

8.4 Nondeterministic machines

@ Formally, a nondeterministic Turing machine is a tuple

M= (Qazarasaqmqacc’qrej)a

where the other components are as in the standard model but the
transition function is of form:

8:(0—{qacc, qrej}) X (TU{>,q}) = P(Q x (TU{>,<}) x {L,R}).
@ The interpretation of a value
S(q,a) = {(Q1,b1,A1),) (Qk,bk;Ak)}

of the transition function is that, when in state g and reading tape
symbol a, the machine can act according to some triple (g;,b;, A;)
in the list.

©5-C2160 Theory of Computation / Lecture 8
Aalto Universif ity / Dept. Computer Science

Aalto University
School of Science °
37/53

@ For nondeterministic machines, the configurations, “leads to”
relations etc. are defined as for the standard deterministic
machines, except that the condition 8(q,a) = (¢/,b,A) is
replaced with the nondeterminic version (¢',b,A) € 8(g,a).

@ Because of this, the “leads to” relation ; is no longer

single-valued, meaning that a configuration (¢, w) can now have
many possible successor configurations (¢’,w’) (i.e., those for
which (g, w) Aljl (¢',w") holds).

@ The language recognised by the machine M is now

LM) = {x € 2" [(90,%) " (qace, w) for some w € I}

@ That s, a string x belongs to the language recognised by a
nondeterministic machine M if some finite sequence of
configurations leads from the start configuration to an accepting
configuration.

A

©S-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
38/53

Aalto University
School of Science

A non-negative integer n is a composite number if it has integer factors
p,q > 2 s.t. pg = n. A non-negative integer that is not composite is
either unit (1) or a prime number.

Assume that we already have a deterministic Turing machine
check_mult that recognises the language

L(check_mult) = {ni#tp#q | n,p,q are binary numbers and n = pq}.

In addition, let go_start be a deterministic Turing machine that moves
the tape head to the beginning of the tape.

(CS-C2160 Theory of Computation / Lecture 8
Aalto Universil ty / Dept. Computer Scienc

Aalto University
School of Science e
39/53

Furthermore, let gen_int be the following nondeterministic machine. It
writes an arbitrary binary number (in the most-significant-bit-first order)
that is greater than 1 at the end of the tape:

%?:g </0,R
@ Y#R_ N\ /LR e
NI N D

</1,R

€S-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
40153

Aalto University
School of Science

Some computations of machine gen_int on input string ’0’:

q1,0

|
q170§

|
q270#§

|
q3,0#1e

qa,0#10e ¢3,0#10e q4,0#11e g3,0#11e
P

ga,0#100e ¢3,04100e q4,0#101e g3,0#101¢e
N N

A

Aalto University €S-C2160 Theory of Computation / Lecture 8

School of Science Aalto Universil ty / Dept. Computer Science
41/53

A nondetermistic Turing machine that recognises the language

L(test_composite) = {n | nis a binary compound number}

can now be constructe

d by combining the above mentioned machines:

Q

O o=

gen_int

Q @ L#MQ @ ity Q @

gen_int go_start check mult

The resulting machine accepts an input binary string » if and only if
there exist binary numbers p,g > 2 for which n = pq holds — that is, if
and only if n is a composite number.

Aalto University
School of Science

€S-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
4253

Note. A common diagram notation for an “if-then-else” combination of
Turing machines:

RO

op

RO

A

Aalto University €S-C2160 Theory of Computation / Lecture 8

School of Science Aalto University / Dept. Computer Science
43/53

Theorem 8.3

If a language L can be

machine, then it can be recognised with a standard deterministic
Turing machine as well.

recognised with a nondeterministic Turing

Proof (idea)

@ Let

be a nondeterministic Turing machine recognising the language L.

@ One can simulate M with a 3-tape deterministic machine M that
systematically explores all the computations of M until it finds a
computation that ends in an accepting configuration — if such a

computation exists.

@ The 3-tape machine M can then be transformed into a standard
deterministic machine as presented in Lemmas 8.1 and 8.2.

M= (Q7Za F, 87 405 Yacc Qrej)

Aalto University
School of Science

€S-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science
4453

I full il: . .
n more (but not full) detai @ Let r be the size of the biggest

@ On tape 1, M stores the input string. alternative-moves set in the

0 [[alv]alc] [[] .. @ Ontape2, M simulates the work N Celolal] [[[transition funchcin ot M.
—# tape of machine M. L @ Then machine M has special tape
2| Lilslwloln[e] [[1 o e beginning of each simulated 2| Lilelwlolr[k] [[[~ symbolsDi,....D,andt
s ; . enumerates all possible sequences
& [o]ps [D.[Da [[Du]Ds] | T computatlon, b @appllEs e el &) [ou]ps [Do] D2 [0 [Di]Ds] | T of these on tape 3 in lexicographic
string from tape 1 to tape 2 and 7 7
erases any spurious symbols that (‘shortlex”) order: & Dy, D, ..., Dr,
@ were left on tape 2 from the DiDy, DiDs, - DiDr, Doy
simulation of the previous @ For each such generated sequence,
5 computation. 5 M simulates one (possibly

incomplete) computation of machine
M, in which the nondeterministic
moves are made according to the
sequence currently listed on tape 3.

@ On tape 3, M stores the “index” of
the current computation of M to be
simulated.

Aalto University €S-C2160 Theory of Computation / Lecture 8 Aalto University ©S-C2160 Theory of Computation / Lecture 8
A School of Science Aalto University / Dept. Computer nce A School of Science Aalto University / Dept. Computer Science
5: 6/5:

v [fefefufe T LT [
I —

@ Forinstance, if tape 3 contains the

sequence D1 D3D;, then the 2. [i[n[wlolr[k] [] [--
simulated computation takes the first
choice in the first move, the third in & (oo [pa] [0y [Di]D] |]
i, [ifofefufef [T] T the second, and the second in the
third.
2. Li][n]wlolr[x] [[[~ @
@ If this computation did not end up in
& [oi]py [D2 [[[Du[Ds] [T an accepting configuration, the next 5
sequence D1 D3Dj is generated on
@ Laeﬁfo?r:::_ anew simulation is Clearly this systematic simulation of computations of M leads M to ac-
. . cept the input string if and only if M has an accepting computation. If
5 O WD SEIENED ol (1568 (8 e vlle M has no accepting computations on an input string, then machine M

because it contains a too large

a
choice number at some point, the 1o (et el

simulated computation is simply aWith a bit more bookkeeping, the machine M could also reject the input string (and

cancelled and the next sequence is halt) if for some n, all the computations of M of length n or less halt in a rejecting

generated. configuration. Even in this case, M would obviously not halt if M had some nonhalting
computations.

— 4 mmm
Aalto University €S-C2160 Theory of Computation / Lecture 8 Aalto University GS-C2160 Theory of Computation / Lecture 8
School of Science Aalto University / Dept. Computer Science School of Science Aalto University / Dept. Computer Science

A7/53 48/53

* Excursion: The Halting Problem, First Encounter

A

€§-C2160 Theory of Computation / Lecture 8
Aalto Universil ty / Dept. Computer Science
49/53

Aalto University
School of Science

8.5 The halting problem

@ As will be seen in Lecture 9, there are infinitely many more
languages than Turing machines (or C/Python/Scala... programs).

@ As languages correspond to decision problems, this means that
not all decision problems can be solved.

@ What about concrete examples of such undecidable problems?

@ The best-known example is so-called Turing’s halting problem
(Alan Turing, 1936).

@ In terms of C programs, we can formulate this result as follows:

There is no C function halt (p, x) that, given the source code string p
of some C function and an input string x for p, outputs 1 if the
execution of p on input x eventually terminates, and 0 if the execution
of p on x never terminates. Here it is assumed that the programs can
access an unlimited amount of memory.

Aalto University CS-C2160 Theory of Computation / Lecture 8
A School of Science Aalto University / Dept. Computer Science
50/53

Proof

Suppose, contrary to the claim, that such a function halt existed. By
using this hypothetical function, we construct another function confuse
as shown in the program code box below.

Let c denote the presented source code string of confuse, and study
what happens if we run confuse on its own source code:

void confuse(char =q){

int halt(char *p, char *x){ confuse (c) halts

. /+ Body of function ’halt’ =/ =4
J _ halt (c,c) == 1
if (halt(q,q) == 1) while (1);
} =

confuse (c) does not halt!

As we obtained a contradiction, we must deduce that the hypothetical
halting testing function halt cannot exist.

v

In fact, as will be seen in the next lecture, there are lots of such
undecidable problems.

A

(CS-C2160 Theory of Computation / Lecture 8
Aalto University / Dept. Computer Science

Aalto University
School of Science
51/53

The same in Python

The file haltingTester.py containing the hypothetical halting testing
function doesHalt:

(C) 2013 H. Ackerfrau
def doesHalt(sourceName, inputName):
"""Returns true if the program in file ’sourceName’ halts
when it is run on the input file ’inputName’, false otherwise."""
open(sourceName, "r")
open(inputName, "r")

fs
fi

return result

if _name__ == '_ main__:
source = sys.argv[1]
input sys.argv[2]
halts doesHalt (source, input)
print (source+" halts on "+input+":

"+halts)

Aalto University €S-C2160 Theory of Computation / Lecture 8
School of Science Aalto University / Dept. Computer Science
52/53

The file confuse.py:

(C) 2013 H. Ackerfrau
def doesHalt(sourceName,
"""Returns true
when it

fs =
fi

inputName) :

if the program in file ’sourceName’ halts

is run on the input file ’inputName’, false otherwise."""
open(sourceName, "r")

open(inputName, "r")

return result

if _name__ == '_ main__:
sourceAndInput = sys.argv[1]
halts =

doesHalt(sourceAndInput,
if halts:

while True:
pass
print ("1’ 1l now halt :—)")

sourceAndInput)

Does the execution of the command

python confuse.py confuse.py
terminate?

Aalto University
School of Science

€S-C2160 Theory of Computation / Lecture 8

Aalto University / Dept. Computer Science

53/53

