
Sensors & Buses
ELEC-D0301 Protopaja

Aleksi Zubkovski
(Based on slides by Juha Biström & Mikko Simenius)

9.6.2021

Sensors

• Light, Colour
• LDR (photoresistor), Phtodiodes, complex

semiconductors

• Sound
• Microphone, Piezo

Sensors

• Temperature
• Thermistor, Thermocouple, PT100, LM35, DS18x20…

• Humidity, Moisture
• E.G. DHT11

• Pressure
• E.G. MPX5100AP

Sensors

• Gas Contents
• For example MQx for different gases
• MQ3 - for ethanol

• Force Sensors
• Force Sensing Resistor (Sensing Stretch)
• Load Cell

• Magnetic Field
• E.G. HMC5883

Calibration: Accurate vs Precise

Nothing can be done.
Sensor

Calibration
Data Averaging No action

 necessary

Sensor Characteristics: Stability & Drift

- A sensor is stable if it is able to
produce consistent measurements
for constant environment

- Drift = differentiation around the
constant

Important in process monitoring,
medical equipment, etc.

Sensor Characteristics: Linearity

Non-linearity

Sensor Characteristics: Linearity

E.G.Thermistor response curve:

Sensor Characteristics: Linearity

E.G.Thermistor response curve:

Chose sensors that are linear in range of use

Sensor Characteristics: Hysteresis

Real Temperature

Temp.
Measured

Te
m

pe
ra

tu
re

Time

Sensor Characteristics: Hysteresis

Real Temperature

Temp.
Measured

1. Temperature increases, but no
changes measured due to
hysteresis & resolution of the
sensor

Sensor Characteristics: Hysteresis

Real Temperature

Temp.
Measured

1. Temperature increases, but no changes
measured due to hysteresis & resolution
of the sensor

2. As the temperature continues increasing
the change is finally seen

Sensor Characteristics: Hysteresis

Real Temperature

Temp.
Measured

1. Temperature increases, but no changes
measured due to hysteresis & resolution of
the sensor

2. As the temperature continues increasing the
change is finally seen

3. Temperature starts dropping, but no change
seen (resolution & hysteresis)

Sensor Characteristics: Hysteresis

Real Temperature

Temp.
Measured

1. Temperature increases, but no changes measured
due to hysteresis & resolution of the sensor

2. As the temperature continues increasing the
change is finally seen

3. Temperature starts dropping, but no change seen
(resolution & hysteresis)

4. As temperature decreases enough the change is
now visible

Sensor Characteristics: Hysteresis

Real Temperature

Temp.
Measured

Due to hysteresis we get two
different measurements are
generated for the same
temperature!

Sensor Characteristics: Resolution
- Sensor resolution should be
suiting
- Low resolution increases
Hysteresis

Sensor Characteristics: Dead Space

- Some sensors often have Dead
Zones (usually near zero value)

Sensor Characteristics: Saturation

- Some sensors often have Dead
Zones (usually near zero value)

- Saturation

Sensor Characteristics: Data-sheet

- Some sensors often have Dead
Zones (usually near zero value)

- Saturation
- Characteristics are documented in

sensor data-sheet

Analog & Digital Sensor Outputs

• If analog sensor data is
processed by digital
hardware it must be
converted.

Analog & Digital Sensor Outputs

• If analog sensor data is
processed by digital hardware
it must be converted.

• Most sensors have A/D
converters built in (easier to
use)

Analog & Digital Sensor Outputs

• If analog sensor data is
processed by digital hardware
it must be converted.

• Most sensors have A/D
converters built in (easier to
use)

• High performance sensors
usually have only analog
inputs

A/D Converters
- Convert analog data to digital through quantisation

- Leads to some data loss
- MCU’s usually have builtin A/D’s

- E.g. in Arduino UNO whenever we use analog pins (analog_read (___)) MCU’s A/
D unit is used.

- External converters can be used too
- Noise considerations:

- Component noise
- Layout considerations
- ADC saturation: apmlify signal before feeding it to the ADC.

Signal ~ ADC IN

Signal Sampling
- Sampling frequency:

- How frequently samples are taken (Value Differentiation Accuracy)
E.g. Arduino UNO: almost 1kHz

- Bit depth (Resolution):
- How precise values can be measured. (Value Accuracy)
- E.g. Arduino UNO: 10 bit (= 1024)

- Nyquist Theorem:
Sampling Frequency must be higher than 2 x maximum frequency being
sampled.

- E.g Audio freq. range is 20 Hz — 20 kHz, Sampling frequency must be 40 kHz

Signal Sampling
- Aliasing

- With low sampling frequency aliasing may occur

- Low pas filter may prevent aliasing, Aliasing filter

Signal Sampling
- Aliasing

- With low sampling frequency aliasing may occur
- Low pas filter may prevent aliasing, Aliasing filter

- Quantization Error
- Quantization = Rounding/truncating signal to some resolution
- Error in red

- Needed to communicate to sensors
& other peripherals (& other devices)
- Implemented with hardware or
software drivers
- Operate according to protocols
- Arduino libraries (Do not bitbang SPI)

Buses

- Serial vs parallel

Buses

- Serial vs parallel
- Synchronous

 vs
 Asynchronous

Buses
Clock

PCB Scale
- SPI, I2C/DDC/
SMBus, I2S, 1-
Wire, …

Buses

Device Scale
- UART/serial, RS232,

RS422, RS485, CAN,
LIN, MIDI, USB, …

Bit-Banging

- If suitable hardware peripheral is not available or free, many interfaces can be
emulated with bitbanging.

- Interface behaviour is emulated by swinging GPIO pins to proper state at
proper timing, using MCU processing time to control pins

- Essentially interface needs to be considerably slower than MCU/CPU speed
- E.g. earlier versions of Arduino Software serial were able to run at max 19200

bps on 16MHz MCU (although now the library has been optimised for better
speed)

- Many exotic interfaces need to be bit-banged, in lack of proper hardware
peripherals, e.g. 1-Wire

Bit-Banging
SPI in C

SPI

- Serial Peripheral Interface Bus
- High speed (up to > 10 MB/s), full duplex capable

- Master initiated, simultaneous bidirectional data transfer capable
- MISO (master in slave out), MOSI (master out slave in), SCK

(serial clock), SS/CS (slave / chip select)
- Easy to use with Arduino libraries (SPI Library)

SPI

Advantages of using SPI
• The protocol is simple as there is no complicated slave addressing system like I2C.
• It is the fastest protocol compared to UART and I2C.
• No start and stop bits unlike UART which means data can be transmitted continuously without

interruption
• Separate MISO and MOSI lines which means data can be transmitted and received at the same time

Disadvantages of using SPI
• More Pin ports are occupied, the practical limit to a number of devices.
• There is no flow control specified, and no acknowledgement mechanism confirms whether data is

received unlike I2C
• Uses four lines – MOSI, MISO, NCLK, NSS
• No form of error check unlike in UART (using parity bit)
• Only 1 master

I2C

- Inter-Integrated Circuit, Display Data Channel, System Management Bus…
- Low speed: 400 / 100 kHz usually, but higher speed devices available (>1 MHz)
- Developed, Patented & Controlled by Philips Semiconductors

- Master initiated, half-duplex
- SDA (SerialData), SCL (SerialClock)
- Several devices can share same bus, (each has 7-bit unique address)
- Devices interface open-collector/open-drain (pull-up resistors)
- Available at VGA, DVI, HDMI-Connectors
- Used in PCI, DIMM etc. for identification & configuration

- Easy to use with Arduino (Wire Library)

I2C

Advantages of using I2C
• Has a low pin/signal count even with numerous devices on the bus
• Flexible, as it supports multi-master and multi slave communication.
• Simple as it only uses 2 bidirectional wires to establish communication among multiple

devices.
• Adaptable as it can adapt to the needs of various slave devices.
• Support multiple masters.

Disadvantages of using I2C
• Slower speed as it requires pull-up resistors rather than push-pull resistors used by SPI.

It also has an open-drain design = limited speed.
• Requires more space as the resistors consume valuable PCB real estate.
• May become complex as the number of devices increases.

UART

- Serial, Asynchronous, Bidirectional, half-/fullduplec
- Only GND, TX and RX, no separate clock signal
- Simple, Easy to use

- Protocol not defined, several standard electrical interfaces
- Usually used for specific peripherals, E.g. Bluetooth

transmitters, GPS, GSM
- Arduino library: (Serial, SoftwareSerial)

UART

Advantages of using UART
• Simple to operate, well documented as it is a widely used method with a lot of

resources online
• No clock needed
• Parity bit to allow for error checking

Disadvantages of using UART
• Size of the data frame is limited to only 9 bits
• Cannot use multiple master systems and slaves
• Baud rates of each UART must be within 10% of each other to prevent data loss.
• Low speed

Other

• 1-Wire: Low speed single
datawire bus by Dallas/Maxim
- Several devices can share
same data bus
- E.g. used in DS18x20 digital
interfave temperature
sensors
- Arduino library (OneWire)

• MIPI: Camera & Display Serial
interface, HD resolutions
- Requires driver to work
- Found on Raspberry Pi platforms

• USB: Hard, complicated protocol
- Always requires a driver, usually
it is easier to use a general Serial-
over-USP that emulates traditional
serial port (UART)
- Supplies power, max 500 mA

