
CS-C2160 Theory of Computation

Lecture 9: Decidability and Undecidability

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

2/39

Topics:

Decidable and semi-decidable languages and problems

Background: countable and uncountable sets

Universal Turing machines and undecidable problems

Material:

In Finnish: Sections 6.1, 6.2, 1.7, 6.3 and 6.4 in the Finnish
lecture notes

In English: Sections 4.1–4.2 in the Sipser book and these slides



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

3/39

Recap
Example: A Turing machine for the language{akbkck | k ≥ 0}

q3

⊳/⊳, L

⊳/⊳, L

b/b, Ra/a, R

B/B,R
C/C,R

a/a, L
B/B, L
b/b, L
C/C, L

q0 q1 q2

q4

a/A,R

B/B,R

b/B,R

C/C,R

c/C, L

A/A,R

a/A,R

B/B,R

q5

Computation on input aabbcc:
(q0,aabbcc) ` (q1,Aabbcc) `
(q1,Aabbcc) ` (q2,AaBbcc) `
(q2,AaBbcc) ` (q3,AaBbCc) `
(q3,AaBbCc) ` (q3,AaBbCc) `
(q3,AaBbCc) ` (q4,AaBbCc) `
(q1,AABbCc) ` (q1,AABbCc) `
(q2,AABBCc) ` (q2,AABBCc) `
(q3,AABBCC) ` (q3,AABBCC) `
(q3,AABBCC) ` (q3,AABBCC) `
(q4,AABBCC) ` (q5,AABBCC) `
(q5,AABBCC) ` (q5,AABBCC) `
(q5,AABBCC/) `
(qacc,AABBCC/).



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

4/39

Decidable and Semi-Decidable Languages and
Problems



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

5/39

9.1 Turing-recognisable and Turing-decidable languages
The Church-Turing thesis: Any (strong enough) computing model
≡ Turing machines.
Computability theory: The study of what can be, and especially
what cannot be computed with Turing machines (≡ computer
programs).
Important distinction: Machines (programs) that always halt and
those that don’t.

Definition 9.1
A Turing machine

M = (Q,Σ,Γ,δ,q0,qacc,qrej)

is total if it halts on all input strings. A language A is

Turing-recognisable (historically also called recursively
enumerable) if it can be recognised with some Turing machine.

Turing-decidable (historically also called recursive) if it can be
recognised by some total Turing machine.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

6/39

An alternative point of view:
Recall the connection between languages and decision problems
(binary input-output relations): the language AΠ corresponding to
a decision problem Π consists of those inputs x for which the
answer is “yes” (binary output 1) in the decision problem Π.
The decision problem Π is

I decidable if its language AΠ is Turing-decidable, and
I semi-decidable if AΠ is Turing-recognisable.
I A problem that is not decidable is called undecidable.

(Note: An undecidable problem may still be semi-decidable.)

In other words, a decision problem is (i) decidable if it has an
algorithm that solves it correctly and always terminates, and (ii)
semi-decidable if it has an algorithm that solves it correctly but
may not terminate on some “no” instances.

In the following, we will use this terminology also for languages,
viz. decidable ≡ Turing-decidable, semi-decidable ≡
Turing-recognisable.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

7/39

Example:

The language
{anbncn | n≥ 0}

over the alphabet {a,b,c} corresponds to the decision problem:

Given a string x over the alphabet {a,b,c}. Is x of form
anbncn for some n≥ 0?



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

8/39

Example:

The language

{n#p#q | n,p,q ∈ {0,1}∗ are binary numbers and n = pq}

over the alphabet {0,1,#} corresponds to the decision problem:

Given a string x over the alphabet {0,1,#}. Is x of form
n#p#q, where n,p,q ∈ {0,1}∗, and n = pq holds if we in-
terpret n,p,q is binary numbers?

This can be expressed more informally as:

Given binary numbers n,p,q. Does it hold that n = pq?



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

9/39

Example:

The decision problem

Given a binary number n. Is n a prime?

is represented by the language

{n ∈ {0,1}∗ | n is a prime number written in binary}

over the alphabet {0,1}.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

10/39

Example:

The decision problem

Given a multivariate polynomial P.
Does P have integer roots?

can be expressed as the language

{P | P is a multivariate polynomial having an integer root}.

The alphabet for P could be for instance the standard ASCII alphabet,
in which e.g. the string x1^3*x2-7*x1 could represent the polynomial
x3

1x2−7x1.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

11/39

Example:

The language

{p | p is a UTF-8 encoded string

representing a Python program whose

execution terminates on all possible inputs}

over the “byte alphabet” {0x00,0x01, ...,0xff} corresponds to the deci-
sion problem:

Given a Python program p. Does the execution of p terminate
on all inputs?



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

12/39

9.2 Basic properties of decidable and semi-decidable
languages (∼ problems)

Lemma 9.1

Let A,B⊆ Σ∗ be decidable languages. Then Ā = Σ∗−A, A∪B, and
A∩B are decidable languages as well.

Proof

(i) Let MA be a total Turing machine with L(MA) = A. We obtain a
total Turing machine MĀ recognising Ā simply by swapping the
accept and reject states of MA:

MA



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

13/39

(ii) Let MA and MB be total Turing machines with L(MA) = A and
L(MB) = B. We obtain a total Turing machine M recognising the
language A∪B by sequential composition of MA and MB: if MA

accepts the input, then M also accepts; if MA rejects the input,
then execute MB on the input string.

MB

MA

(iii) A∩B = Ā∪ B̄.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

14/39

Lemma 9.2
Let A,B⊆ Σ∗ be semi-decidable languages. Then A∪B and A∩B are
semi-decidable languages, too.

Proof

A∩B as in Lemma 9.1 (ii), and A∪B with a construction similar to that
in Lemma 9.3 (left as an exercise).

Lemma 9.3

A language A⊆ Σ∗ is decidable if and only if both languages A and Ā
are semi-decidable.

Proof

By Lemma 9.1(i), if A is decidable, then Ā is also decidable and hence
both A and Ā are semi-decidable as well.

We next show that if A and Ā are both semi-decidable, then A is decid-
able.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

15/39

MA

MĀ

Let MA and MĀ be Turing machines
recognising the languages A and Ā,
respectively. Then for every x ∈ Σ∗, either
MA or MĀ halts and accepts x.
We build a 2-tape Turing machine M by
combining MA and MĀ “in parallel”: on
tape 1, M simulates machine MA, and on
tape 2 it simulates machine MĀ.

If the simulation on tape 1 halts in an accepting configuration, then M
accepts the input. If the tape 2 simulation accepts, then M rejects the
input.

Corollary 9.4
Let A⊆ Σ∗ be a semi-decidable language that is not decidable. Then
the language Ā is not semi-decidable.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

16/39

Background: Countable and Uncountable Sets



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

17/39

9.3 Countable and uncountable sets

Definition 9.2
A set X is countably infinite if there is a bijection f : N→ X.

A set is countable if it is finite or countably infinite.

A set that is not countable is called uncountable.

Intuitively, a set X is countable if its elements can be ordered and
indexed with natural numbers:

I X = {x0,x1,x2, . . . ,xn−1} if X is a finite set with n elements, and
I X = {x0,x1,x2, . . .} if X is countably infinite.

Every subset of a countable set is also countable (proof left as an
exercise). On the other hand, uncountable sets have both
countable and uncountable subsets. Thus uncountable sets are,
in some sense, “larger” than countable sets.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

18/39

Lemma 9.5
Let Σ be a finite alphabet. The set Σ∗ of all strings over Σ is countably
infinite.

Proof

We construct a bijection f : N→ Σ∗ as follows. Let Σ = {a1,a2, . . . ,an}.
We fix some arbitrary “alphabetical order” for the symbols in Σ, for in-
stance, a1 < a2 < · · ·< an.
The strings in Σ∗ can now be enumerated in shortlex order with respect
to the chosen alphabetical order:

We first enumerate strings of length 0 (i.e., ε), then those of
length 1 (i.e., a1,a2, . . . ,an), then those of length 2, and so on.

Inside each length group, the strings are enumerated in
lexicographic order with respect to the chosen alphabetical order.

https://en.wikipedia.org/wiki/Shortlex_order
https://en.wikipedia.org/wiki/Lexicographical_order


CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

19/39

The bijection f is thus

0 7→ ε

1 7→ a1

2 7→ a2
...

...

n 7→ an

n+1 7→ a1a1

n+2 7→ a1a2
...

...

2n 7→ a1an

2n+1 7→ a2a1
...

...

3n 7→ a2an
...

...

n2 +n 7→ anan

n2 +n+1 7→ a1a1a1

n2 +n+2 7→ a1a1a2
...

...



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

20/39

Note that in fact all programs written in any programming
language are just strings over the respective base alphabet
(ASCII in C, Unicode allowed in some other languages).

By Lemma 9.5, the set of such strings is countably infinite, and
therefore the set of all possible programs in any programming
language is countable as well.

We next prove that the family of all languages (∼ decision
problems) over any alphabet is uncountable.

Thus there are more decision problems than there are possible
computer programs!
⇒ It is impossible, in any programming language, to write a
decision program for every problem.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

21/39

Theorem 9.6
The family of all languages over any alphabet Σ is uncountable.

Proof (Cantor’s diagonal argument)

Denote the family P (Σ∗) of all languages over Σ by A . Suppose that
these languages could be enumerated in some order, say

A = {A0,A1,A2, . . .}.
Let the set of all strings over Σ, enumerated in shortlex order, be
Σ∗ = {x0,x1,x2, . . .}. Using these orders, define a language Ã as

Ã = {xi ∈ Σ
∗ | xi /∈ Ai}.

Since Ã belongs to the family A , and we assumed that the languages in
A can be enumerated, it must be the case that Ã = Ak for some k ∈N.
But now, according to the definition of Ã, we obtain the contradiction

xk ∈ Ã⇔ xk /∈ Ak = Ã.

Thus the assumption that A could be enumerated is wrong and A is
uncountable.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

22/39

Ã
↘ A0 A1 A2 A3 · · ·

x0

1

6 0 0 0 1 · · ·

x1 0
0

6 1 0 0 · · ·

x2 1 1
0

6 1 1 · · ·

x3 0 0 0
1

6 0 · · ·
...

...
...

...
...

. . .

Graphically, the idea of the proof can
be illustrated as follows:

We form the “incidence matrix” of
the languages A0,A1,A2, . . . and
the strings x0,x1,x2, . . ..

The cell at row i, column j has
value: 1 if xi ∈ Aj, 0 if xi /∈ Aj.

Now the language Ã differs from
every language Ak on the
“diagonal” of the matrix.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

23/39

Universal Turing Machines and Undecidable
Problems



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

24/39

What is a universal Turing machine?
In “interpreted” computer programming languages such as
Python or Java, programs are not compiled into machine code
but executed (simulated) by a systems program called an
interpreter (cf. Python interpreter, Java virtual machine).

Similarly a “universal Turing machine” can execute (simulate) any
other Turing machine, given its description as an input string.

In modern terminology, a universal Turing machine is thus an
interpreter for the “Turing machines” programming language,
written in the same language.

https://docs.python.org/3/tutorial/interpreter.html
https://en.wikipedia.org/wiki/Java_virtual_machine


CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

25/39

9.4 An encoding for Turing machines

Without loss of generality, we consider standard, deterministic
1-tape Turing machines whose input alphabet is Σ = {0,1}.
Each such machine

M = (Q,Σ,Γ,δ,q0,qacc,qrej)

can be encoded into a binary string.
The idea:

I fix some ordering for the states and the tape alphabet, and
I use unary coding for encoding the transitions.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

26/39

Number the states and the tape alphabet so that
I Q = {q0,q1, . . . ,qn} with qacc = qn−1 and qrej = qn
I Γ∪{.,/}= {a0,a1, . . . ,am} with a0 = 0, a1 = 1, a2 = ., and

a3 = /

Furthermore, let ∆0 = L and ∆1 = R.

The code for transition function entry δ(qi,aj) = (qr,as,∆t) is:

cij = 0i+110j+110r+110s+110t+1.

The code for the whole machine M is:

cM = 111c0011c0111. . .11c0m11c1011. . .11c1m11

. . .11cn−2,011. . .11cn−2,m111.

Note: From the code of a machine it is easy to algorithmically
deduce the number of states as well as the size of the tape
alphabet.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

27/39

Example:

Consider the following machine M (∼ machine succ from Lecture 8).

⊳/1, R

1/0, R

1/0, R

0/1, R ⊳/⊳, L
1/1, R

0/1, R ⊳/⊳, L

⊲/⊲,R

⊲/⊲,R

⊲/⊲,R
0/0, R

0/0, R
1/1, R

⊲/⊲,R

⊳/⊳, L

q1q0

q3q2

Q = {q0,q1,q2,q3}
Σ = {0,1}
Γ = {0,1}

Then cM = 111c0,011c0,111c0,211c0,311c1,011...11c3,3111, where

δ(q0,0) = (q1,1,R) : c0,0 = 010100100100

δ(q0,1) = (q2,0,R) : c0,1 = 0100100010100

δ(q0,.) = (qrej,.,R) : c0,2 = 0100010000001000100

δ(q0,/) = (qrej,/,L) : c0,3 = 01000010000001000010
...

...



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

28/39

9.5 A language that is not semi-decidable

Previously we showed how to associate each Turing machine M
to a binary string cM encoding it.

In reverse, we can associate each binary string c to a Turing
machine Mc.

Some binary strings do not encode any Turing machine in the
way described above — to such strings, we associate some trivial
Turing machine Mtriv that rejects all input strings.

That is, we define:

Mc =

{
the machine M for which cM = c if c is a valid encoding,
the machine Mtriv otherwise.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

29/39

As a result, we obtain:
I an enumeration of all Turing machines (with input alphabet {0,1}),

and also
I an enumeration of all semi-decidable languages over the alphabet
{0,1}.

The machines are:

Mε,M0,M1,M00,M01, . . .

(Indices in shortlex order.)

The semi-decidable languages are:

L(Mε),L(M0),L(M1),L(M00),L(M01), . . .

Each language can appear multiple times in this list, as different
machines may recognise the same language.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

30/39

Lemma 9.7
The “diagonal language”

D = {c ∈ {0,1}∗ | c /∈ L(Mc)}

is not semi-decidable.

Proof (Cantor-style diagonal argument)

Suppose that D is semi-decidable; then D = L(M) for some Turing
machine M. Let d be the binary encoding of M, i.e. D = L(Md). Now

d ∈ D ⇔ d /∈ L(Md) = D.

From the contradiction, we deduce that the assumption must be wrong
and thus D is not semi-decidable.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

31/39

The decision problem corresponding to the language D is: “Given
a binary string c, is it the case that the Turing machine associated
to c does not accept the string c?” More natural examples of
undecidable languages will be seen later.

A graphical view of language D: if the characteristic functions of
the languages L(Mε), L(M0), L(M1), . . . are represented as an
infinite array, then the language D is the one that is obtained by
“flipping” the language obtained from the diagonal:

D
↘ L(Mε) L(M0) L(M1) L(M00) · · ·
ε 6 01 0 0 0 · · ·
0 0 6 10 1 0 · · ·
1 0 0 6 10 1 · · ·
00 0 0 0 6 01 · · ·
...

...
...

...
...

. . .



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

32/39

9.6 A universal language and universal Turing machines

Let us define a universal language U 1 (over the binary alphabet
{0,1}) as

U = {cMw | Turing machine M accepts string w}.

The corresponding decision problem is:

Given a Turing machine M and a string w.
Does M accept the string w?

If A is a semi-decidable language and M is a Turing machine
recognising A, then

A = {w ∈ {0,1}∗ | cMw ∈ U}.

The language U itself is semi-decidable, too. The machines
recognising U are called universal Turing machines.

1Language ATM in Sipser’s book.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

33/39

Theorem 9.8
The language U is semi-decidable.

Proof
It is easiest to describe a Turing machine MU recognising U in the 3-
tape machine model. This can then be transformed into a standard
1-tape machine as explained in Lecture 8.

In the beginning, the input is placed on tape 1 as usual. After this, the
machine works as follows:

1. First, MU checks whether the input is of form cw, where c is a
valid code for a Turing machine. If the input is not of that form,
MU rejects it (and thus works as expected for Mtriv). Otherwise, it
copies the binary input sub-string w = a1a2 . . .ak ∈ {0,1}∗ to
tape 2 in the unary form

00010a1+110a2+11 . . .10ak+110000.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

34/39

1.

i+1

j+1

j+1i+1

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·· · ·

· · ·

00

1001

010010011

3.

2.

2. Now it is known that the input is of form cw, where c = cM for
some machine M and MU has to check whether M accepts w.

To do this, MU keeps the description c of M on tape 1, uses tape
2 to simulate the tape of M (in unary coding), and stores the
current simulated state of M on tape 3 in the unary form qi ∼ 0i+1

(in the beginning, MU thus writes the code 0 for the state q0 on
tape 3).



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

35/39

1.

i+1

j+1

j+1i+1

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·· · ·

· · ·

00

1001

010010011

3.

2.

3. After the initial preparations, MU works in phases and simulates
the action of one transition of M in each phase.

In the beginning of each phase, MU searches the place on the
description of M on tape 1 that corresponds to the current
simulated state qi (tape 3) and symbol aj under the simulated
tape head (tape 2).
Let that place on the tape 1 be 0i+110j+110r+110s+110t+1.
Now MU replaces the sub-string 0i+1 on tape 3 with 0r+1 and the
sub-string 0j+1 on tape 2 with 0s+1, and moves the tape head on
tape 2 one simulated symbol left if t = 0 and right if t = 1.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

36/39

1.

i+1

j+1

j+1i+1

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·· · ·

· · ·

00

1001

010010011

3.

2.

If the description on tape 1 does not contain a place
corresponding to the simulated state qi, the simulated machine M
has reached the accept or the reject state.

Thus i = k+1 or i = k+2, where qk is the last state having
transitions encoded in the description of M, and machine MU

enters the state qacc or qrej, correspondingly.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

37/39

Theorem 9.9
The language U is not decidable.

Proof
Suppose that U would be decidable. Then there is a total Turing ma-
chine MT

U recognising U. We can now build a total Turing machine MD

that recognises the diagonal language D of Lemma 9.7 as follows.

Let MOK be a total Turing machine that checks whether a string is a valid
code for a Turing machine. Similarly, let MDUP be a total Turing machine
that transforms a string c into the string cc. We build the machine MD

by combining the machines MT
U , MOK and MDUP:

MDUPMOK

ccc
MT

U



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

38/39

MDUPMOK

ccc
MT

U

Now clearly MD is total whenever the machine MT
U is, and MD recog-

nises D:

c ∈ L(MD) ⇔ c /∈ L(MOK)∨ cc /∈ L(MT
U)

⇔ c /∈ L(Mc)

⇔ c ∈ D.

But by Theorem 9.7, the language D is not decidable. We have thus
obtained a contradiction, and our assumption that U is decidable must
be wrong.



CS-C2160 Theory of Computation / Lecture 9

Aalto University / Dept. Computer Science

39/39

Corollary 9.10
The language

Ũ = {cMw | w /∈ L(M)}

is not semi-decidable.

Proof

The language Ũ is effectively the same as the complement Ū of the
universal language U. More precisely, Ū = Ũ ∪ERR, where ERR is
the (obviously) decidable language

ERR = {x ∈ {0,1}∗ | x does not start with

a valid code for a Turing machine}.

If the language Ũ were semi-decidable, then so would the language Ū.
But as the language U is semi-decidable, it would follow (by Lemma
9.3) that U is decidable. This contradicts Theorem 9.7 and therefore
we must conclude that Ũ is not semi-decidable.


	Decidable and Semi-Decidable Languages and Problems
	Turing-recognisable and Turing-decidable languages
	Basic properties of decidable and semi-decidable languages

	Background: Countable and Uncountable Sets
	Universal Turing Machines and Undecidable Problems
	An encoding for Turing machines
	A language that is not semi-decidable
	A universal language and universal Turing machines


