Calphad modeling - introduction

Daniel Lindberg

Learning outcomes

- Familiarize yourself with Calphad method
- Understand the common tangent method
- Recognize phase diagrams of different order

Introduction

- Calphad method (Calculations of Phase Diagrams)
 - "The "Calphad method" means the use of all available experimental and theoretical data to assess the parameters of the Gibbs energy models selected for each phase" (Lukas, Fries, Sundman:Computational Thermodynamics: The Calphad Method)
 - A technique to evaluate and optimize thermodynamic data and phase equilibrium data and develop consistent thermodynamic databases for multicomponent, multiphase equilibrium calculations including non-ideal solution phases
 - Unary→Binary→Ternary→Higher order systems

Procedure for the Calphad method

Experimental input Thermodynamic data

Experimental input Phase equilibrium data

Phase diagrams and thermodynamic properties

The common tangent method is demonstrated for the following binary cases:

- 1. Solid solution in whole composition range K_2SO_4 - K_2CO_3
- 2. Solid solution azeotropic system KCI-NaCI
- 3. Solid solution miscibility gap KCI-NaCI

Calculated phase diagram K₂SO₄-K₂CO₃

Demo 1.

Calculated phase diagram for KCl-NaCl

Demo 2.

KCl-NaCl: Total Gibbs Energy at 750°C Reference State: KCl(l) and NaCl(l)

Calculated phase diagram for KCl-NaCl

Demo 3.

KCl-NaCl solid solution: Total Gibbs Energy at 300°C Reference State: KCl(ss) and NaCl(ss)

Other input

- Crystallographic data for sublattice configurations and site distribution in solid solutions
- Ab-initio (first-principles) data for phase stabilities
- Other estimations for thermodynamic data of phases

Choice of solution models

Ideal solution

$$G_m = \sum_i x_i G_i^o + RT \sum_i x_i \ln x_i$$

Regular solution model

$$G_m = \sum_i x_i G_i^o + RT \sum_i x_i \ln x_i + \sum_i \sum_{j>i} x_i x_j \Omega_{ij}$$

Choice of solution models

- Models that consider the physical properties of the solution phase are often more suitable than purely mathematical models
 - Easier to fit realistic model parameters
 - Easier to expand when new components are added to the database
- Ionic models for ionic phases
- Sublattice models for phases with clearly defined sublattices
- Associate or quasichemical models for solutions with shortrange ordering

Calphad method

- An evaluated thermodynamic database takes into account all experimental data:
 - Phase equilibrium
 - Calorimetric data
 - Activity data (EMF)
 - Crystal structure, crystallographic data
- A good thermodynamic model/database for solids and liquid should:
 - predict the phase equilibrium of binary and higher order systems within the uncertainties of experimental investigations of these systems
 - give good predictions of the phase equilibrium for conditions where no experimental data exist

Uncertainties when comparing experiments and calculations

Experimental melting/solidification data are not always related to equilibrium melting

- Supercooling of liquids (T_{experiment} < T_{equilibrium})
- Equilibration of solid solutions
 - Melting related to local heterogenities
- Volatilization and chemical reactions

Estimating thermodynamic properties

Daniel Lindberg

Thermochimica Acta 314 (1998) 1-21

Estimation of thermodynamic data for metallurgical applications

P.J. Spencer*

thermochimica

acta

Fig. 3. Enthalpy of fusion vs. enthalpy at the melting point for alkali metal halides.

$$\Delta S_{\rm fus} = S(298 \text{ K}) + A[0.023a(\log T_{\rm m} - 2.4742) + 10^{-3}b(T_{\rm m} - 298) + 0.005c(1.1261 - 10^5/T_{\rm m}^2)]$$
(9)

Unary data

Thermodynamic quantities of compounds

Binary data

CaCl₂-CaSO₄-KCl-K₂SO₄

Gibbs energies of solutions

Demo 1.

K₂SO₄-K₂CO₃: Total Gibbs Energy at 960°C Reference State: K₂SO₄(l) and K₂CO₃(l)

Ternary data

CaCl₂-CaCO₃-CaSO₄

CaSO₄ - CaCl₂ - CaCO₃

Reciprocal data

K⁺, Ca²⁺//Cl⁻,SO₄²⁻

34

K⁺, Ca²⁺//Cl⁻,SO₄²⁻

35

 $CaSO_4 - (KCI)_2$

 $K_2SO_4 - CaCl_2$

Demonstration

- Thermodynamic evaluation of the binary Na₂CO₃-K₂CO₃ system
- Based on
 - Phase diagram data (solidus & liquidus)
 - Enthalpy of mixing of Na₂CO₃(I) and K₂CO₃(I)

Crystal structure of Na₂CO₃ and K₂CO₃

$Na_2CO_3 - K_2CO_3$

Na₂CO₃ - K₂CO₃

Na₂CO₃ - K₂CO₃

Procedure for the Calphad method

Summary

- Calphad method
- Procedure
- Experimental input
- Choice of solution phase
- Demonstration