ECON-C4200 - Econometrics II
 Lecture 5: Limited dependent variable models

Otto Toivanen

Learning outcomes

- At the end of lectures 5 \& 6, you

1 understand what a Limited Dependent Variable (LDV) is
2 what a Discrete choice model is
3 what one can and cannot identify with a discrete choice model
4 what a Linear Probability Model (LPM) is
5 how to estimate a LPM
6 how to interpret the parameters of a LPM
7 how to make a discrete choice model consistent with probability theory

8 what a likelihood function is
9 what Probit and Logit models are and how to estimate them
10 what marginal effects are and how to calculate them

What is a LDV?

- It is a variable that can take on only restricted values.
(1) The share of income spent on item j is between zero and one
(2) The number of products one buys is a non-negative integer.
(3) A firm either invests in R\&D or it does not

Discrete choice

- Choice is discrete if the set of alternatives is limited (= you can count the alternative choices).
- Discrete choice is an example of LDV models; the class of LDV models is much wider, but we concentrate on discrete choice.
- How do we model decisions in economics?
- Utility maximization.
- How to do this when choices discrete (cannot differentiate...)?

Discrete choice

- Example: buying a product.
- Denote utility from buying U.
- Allow U to vary with characteristics of the individual: $U=U(X)$.
- Price same for everybody: p.
- Note: we are discussing the simplest discrete choice models where there are two options. The models generalize to (much) more complicated settings.

Discrete choice

- Utility from buying (assuming "quasilinear" preferences - preferences are linear in the numeraire good):

$$
\begin{equation*}
U(X)-p \tag{1}
\end{equation*}
$$

- What is the utility from not buying?
- Hard to know, may very across individuals.
- Let's normalize to $0 \rightarrow$ we identify differences in utility (we have an example of this later).

Discrete choice

- How does utility change if individual j buys the product?

$$
\begin{equation*}
\left[U\left(X_{j}\right)-p\right]-0=U\left(X_{j}\right)-p \tag{2}
\end{equation*}
$$

- When does j
buy? If and only if

$$
\begin{equation*}
U\left(X_{j}\right)-p>0 \tag{3}
\end{equation*}
$$

Discrete choice

- Denote "buy" $\rightarrow Y=1$
- Denote "don't buy" $\rightarrow Y=0$

$$
\begin{equation*}
Y=1 \Leftrightarrow U\left(X_{j}\right)-p>0 \tag{4}
\end{equation*}
$$

Discrete choice

- How to relate this to an econometric model?
- Let's introduce an error term.

$$
\begin{array}{r}
U\left(X_{j}\right)=\beta_{0}+\beta_{1} X_{j}+\epsilon_{j} \\
Y=1 \Leftrightarrow \beta_{0}+\beta_{1} X_{j}+\epsilon_{j}-p>0 \tag{6}
\end{array}
$$

Notice that in our model where p same for everybody, it "goes into" the constant term.

Discrete choice

- Interpretation:
$\mathbb{E}\left[Y_{j} \mid X_{j}\right]=\beta_{0}+\beta_{1} X_{j}=$ expected utility for consumer j from buying the good.
$\mathbb{E}\left[Y_{j} \mid X_{j}\right]=\beta_{0}+\beta_{1} X_{j}=$ probability of individual j buying the good.

Choice of vertical integration

- Yes / no $\rightarrow 0 / 1$ (or the other way round).
- Example Gil, R. (2015). Does vertical integration decrease prices? evidence from the paramount antitrust case of 1948. American Economic Journal: Economic Policy, 7(2), 162-91
- Question: Should movie studios own cinemas?
- Variable: VI_Ever $=1$ in Gil's paper if cinema i vertically integrated, 0 otherwise.
- Let's take a cross-section of the $1^{\text {st }}$ year of each theatre.
- We concentrate on the $1^{\text {st }}$ year as then the courts did not (yet) restrict VI.

How to choose VI?

- Let's assume

$$
\begin{gather*}
\pi_{i}^{V I}=\alpha_{0}+\alpha_{1} \operatorname{size}_{i}+\epsilon_{i}^{V I} \tag{7}\\
\pi_{i}^{n o V I}=\gamma_{0}+\gamma_{1} \operatorname{size}_{i}+\epsilon_{i}^{\text {noVI }} \tag{8}
\end{gather*}
$$

- A theatre is VI iff it is profitable, i.e.,

$$
\pi_{i}^{V I}-\pi_{i}^{n o V I} \geq 0
$$

How to choose VI?

$$
\begin{align*}
\alpha_{0}+\alpha_{1} \operatorname{size}_{i}+\epsilon_{i}^{V I}-\left(\gamma_{0}+\gamma_{1} \operatorname{size}_{i}+\epsilon_{i}^{n o V I}\right) & \geq 0 \tag{9}\\
\left(\alpha_{0}-\gamma_{0}\right)+\left(\alpha_{1}-\gamma_{1}\right) \times \operatorname{size}_{i}+\left(\epsilon_{i}^{V I}-\epsilon_{i}^{\text {noVI }}\right) & \geq 0 \tag{10}\\
\beta_{0}+\beta_{1} \operatorname{size}_{i}+\epsilon_{i} & \geq 0 \tag{11}
\end{align*}
$$

- NOTE: we can measure the difference in profits (utility), not the level.

Descriptive statistics

Stata code

```
tabstat vi_ever capacity_1000, stat(mean sd min max n)
scatter vi_ever capacity_1000 if capacity_1000< 6, ///
    xtitle("Capacity, }000\mathrm{ seats") ///
    ytitle("Vertical integration = 1") / //
    note("x-axis censored at 6 000 seats") ///
    graphregion(color(white)) bgcolor(white)
    graphexport "scatter_gil.pdf", replace
```


Descriptive statistics

. tabstat vi_ever capacity_1000, stat(mean sd p10 p25 p50 p75 p90 min max n)

stats	vi_ever	cap~1000
mean	.4351145	1.735972
sd	.496404	1.638655
p10	0	.485
p25	0	.8
p50	0	1.4
p75	1	2.2
p90	1	3.172
min	0	.115
max	1	23
N	393	393

Descriptive statistics

. pwcorr vi_ever capacity_1000, sig

	vi_ever cap~1000	
vi_ever	1.0000	
capacit~1000	0.4206	1.0000
	0.0000	

Descriptive statistics

x-axis censored at 6000 seats
3

How to estimate an LDV model I

- Linear regression \rightarrow Linear Probability Model (LPM).
- Works...
- What is the interpretation of the regression function?

How to estimate an LDV model I

. regr vi_ever capacity_1000, robust
Linear regression

Number of obs	$=$	393
$\mathrm{~F}(1,391)$	$=$	3.27
Prob $>\mathrm{F}$	$=$	0.0715
R-squared	$=$	0.0701
Root MSE	$=$.4793

vi_ever	Coef.	Robust					
	Std. Err.	t	P>\|t		[95\% Conf. Interval]		
capacity_1000	.0802159	.0443814	1.81	0.071	-.0070401	.1674718	
_cons	.295862	.075513	3.92	0.000	.1473997	.4443243	

Descriptive statistics

Stata code

```
twoway scatter vi_ever capacity_1000 if capacity_1000<6 || ///
    Ifit vi_ever capacity_1000 if capacity_1000<6, ///
    xtitle("Capacity, 000 seats") ///
    ytitle("Vertical integration = 1") / //
    note("x-axis censored at 6 000 seats") ///
    graphregion(color(white)) bgcolor(white)
    graphexport "scatter_gil_2.pdf", replace
```


How to estimate an LDV model I

x -axis censored at 6000 seats

What features does LPM have?

(1) Good: Coefficients are marginal effects $=\partial Y / \partial X$ (derivatives).
(2 "Bad: Predicted probabilities" may be <0 and/or >1.
(3) To take into account: Error terms are heteroscedastic by design $(\rightarrow$ use robust se).

- Does all this matter? Depends what you want to do.
- In (very) large data sets, LPM is just fine if your interest is in the marginal effects only.

Taking the probability seriously

- If the dependent variable is $0 / 1$, then the model produces a probability.
- Probabilities are by definition in the support $[0,1]$.
- What functional form would yield a mapping ("match") from X to Y that could be interpreted as a probability?
- Answer: any function that yields a prediction between 0 and 1 .

Taking the probability seriously

- What would be such a function? Answer: Cumulative density functions.
- Think of the normal distribution, denoted $\phi(z)$.
- But keep in mind that any cdf would work.
- We are going to discuss some popular choices in the next lecture.

Stata simulation data

Stata code

```
set obs 100000
gen z = invnorm(runiform())
** NOTE: alternative
gen z = rnormal() */
kdensity z, ///
    graphregion(color(white)) bgcolor(white)
distplot z, yline(0.5) xline(0) /// // distplot from ssc
    graphregion(color(white)) bgcolor(white)
```


Stata simulation data

Kernel density estimate

Stata simulation data

Taking the probability seriously

- If Y was continuous and between zero and one, we would write
$\operatorname{Pr}(Y=y \mid X=x)=\phi\left(\beta_{0}+\beta_{1} x\right)$.
- But Y is discrete and also,
- where's the error term?
- Write $Y=1 \Leftrightarrow \beta_{0}+\beta_{1} X+\epsilon \geq 0$.
- It then follows that $Y=0 \Leftrightarrow \beta_{0}+\beta_{1} X+\epsilon<0$.
- Notice how we have now divided all possible RHS values into those that deliver $Y=0$ and those that deliver $Y=1$.

Taking the probability seriously

- Find the lowest value of $\epsilon_{i}=\bar{\epsilon}_{i}$ for which $\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \geq 0$ holds.

$$
\begin{aligned}
& \bar{\epsilon}_{i}=-\left(\beta_{0}+\beta_{1} X_{i}\right) \\
& \operatorname{Pr}(Y=1 \mid X=x)=\int_{\beta_{0}+\beta_{1} X}^{\infty} \phi(\epsilon) d \epsilon \\
& =1-\Phi\left(-\beta_{0}-\beta_{1} X_{i}\right)=\Phi\left(\beta_{0}+\beta_{1} X_{i}\right)
\end{aligned}
$$

- Notice that we have now produced a probability that varies from theatre/individual to theatre/individual, depending on the value of X_{i}.
- Also notice that nothing in our derivation rested on us assuming ϵ is normally distributed.

Back to VI...

- We observe $1, \ldots, N$ theaters that either are or are not VI .
- Being VI means $Y=1$ and $\beta_{0}+\beta_{1} x+\epsilon>0$.
- $\operatorname{Pr}(Y=1 \mid X=x)=\Phi\left(\beta_{0}+\beta_{1} x\right)$.
- $\operatorname{Pr}(Y=0 \mid X=x)=1-\Phi\left(\beta_{0}+\beta_{1} x\right)$.

