ECON-C4200 - Econometrics II Lecture 6: Maximum likelihood approach to estimation

Otto Toivanen

- Think of a tossing a coin that is potentially weighted, i.e., does not give the outcomes with 50% probability.
- Your task is to find out what the weight is.
- How to do this? Well, toss the coin lots and lots of times, record the outcomes.
- What then? Calculate the **share** of tails and heads, i.e., the **average** of tails / heads, i.e., the **probability** of getting tails / heads.

- More formally, you can think of what you did as a **stochastic process** with two possible outcomes, coded 0 and 1.
- Such a process is called a Bernoulli process.

- More formally, you can think of what you did as a **stochastic process** with two possible outcomes, coded 0 and 1.
- Such a process is called a Bernoulli process.
- It yields a sequence of 0s and 1s...

- More formally, you can think of what you did as a **stochastic process** with two possible outcomes, coded 0 and 1.
- Such a process is called a Bernoulli process.
- It yields a sequence of 0s and 1s...
- How to estimate the probability of 1 occuring?

- How could we formalize this?
 - 1 Let's denote the probability of heads for any given coin toss with P. Then the probability of tails is 1 - P.
 - 2 Let us toss the coin N times, and index the coin tosses by i.
 - 3 Let us further denote the outcome of coin toss i by y_i which takes value y_i = 1 if heads, y_i = 0 if tails; i = 1, ..., N.
- Given N coin tosses, our data are the outcomes y_i, and the unknown parameter is P.
- How can we estimate *P*?

3. Constructing the likelihood function

• Let's start by applying the tool we know, i.e., Least Squares (LS):

$$\min_{P} \sum_{i} (y_i - P)^2 \tag{1}$$

We recall from Econometrics I that the answer the LS gives is

$$\hat{P}^{LS} = \frac{1}{N} \sum y_i$$

$$= \frac{1}{N} (\underbrace{1 + 1 + \dots + 1}_{n_H} + \underbrace{0 + 0 + \dots + 0}_{N - n_h})$$
(2)

$$=\frac{n_h}{N}=\bar{y}$$

• In other words, LS gives the answer we would have calculated without knowledge of econometrics.

Toivanen

• Let's take another approach and ask ourselves: With N coin tosses, what is the **likelihood** of getting n_H heads and $N - n_H = n_T$ tails, given P?

- Let's take another approach and ask ourselves: With N coin tosses, what is the **likelihood** of getting n_H heads and $N n_H = n_T$ tails, given P?
- Answer:

$$L = P^{n_H} (1 - P)^{N - n_H}$$
(3)

• Equation (3) is the **Likelihood function** (uskottavuusfunktio) for our data, and also our problem (of finding the best estimate of *P*).

3. Constructing the likelihood function

- What is the next step?
- Let's find the value for P that maximizes the likelihood of observing exactly n_H heads and $N n_H$ tails.
- How to do this? By maximizing the likelihood function with respect to the unknown parameter P, i.e., by (recall $y_i = 1$ if coin toss i gives heads, $y_i = 0$ if tails):

$$\max_{P} L = \prod_{i} P^{y_i} (1-P)^{1-y_i}$$
$$= \underbrace{P \times P \times \dots \times P}_{n_H} \times \underbrace{(1-P) \times (1-P) \dots \times (1-P)}_{N-n_H}$$
$$= P^{n_H} (1-P)^{N-n_H}$$

• This can obviously be done, but often the likelihood function is difficult to work with.

Toivanen

(4)

• Trick: let's use a monotonic transformation, i.e., let's take logs:

$$\max_{P} \ln L = \sum_{i} [y_{i} \ln P + (1 - y_{i}) \ln(1 - P)]$$

= $\sum_{n_{H}} \ln P + \sum_{N - n_{H}} \ln(1 - P)$
= $n_{H} \ln P + (N - n_{H}) \ln(1 - P)$ (5)

• Now do the differentiation and solve for *P*.

• The ML estimate of P, \hat{P}^{ML} , is:

$$\hat{P}^{ML} = \frac{n_H}{N} = \hat{P}^{LS} \tag{6}$$

• Note: the ML estimate is not always equal to the LS estimate.

- The idea underlying ML: construct the likelihood function.
- Ask: what parameter values are the likeliest to have lead to the data we observe?

- Thus far we did not have any explanatory variables, i.e., observable characteristics of the observation units.
- To extend our coin example, assume that instead of tossing a single coin *N* times, you toss *N* different coins once each.
- Assume further that you observe some characteristics of each coin *i*. Denote the characteristics with **X**.
- Let suppose you want to study how characteristics **X** affect the probability of getting heads.

- By now you know how to build a linear probability model for this setting.
- How could you introduce the explanatory variable into our ML setup?

- By building on what we studied in the previous lecture.
- Step #1: Assume that

$$y_i = 1 \Leftrightarrow \boldsymbol{X}_i \boldsymbol{\beta} + \epsilon_i \geq 0$$

$$y_i = 0 \Leftrightarrow \boldsymbol{X}_i \boldsymbol{\beta} + \epsilon_i < 0$$

Step #2: assume a distribution for *ε*. Let's denote the CDF of *ε* with *F*(.). Let's further assume it is symmetric.

Step #3: Now (due to the symmetry of F(.)) the probability of observing y_i = 1 is

$$1 - F(-\boldsymbol{X}_i\beta) = F(\boldsymbol{X}_i\beta)$$

- Notice that this is not that different from assuming the probability of observing y_i = 1 is P.
- Indeed, I can replace P with F(X_iβ) in the likelihood function we just worked with.
- The difference is that the unknown parameters are now β , not P.

• We can now write the likelihood and the log likelihood functions as:

$$L = Pr(Y_1 = y_1, ..., Y_N = y_N) = \prod_i F(X_i \beta)^{y_i} [1 - F(X_i \beta)]^{1-y_i}$$
(7)

$$\ln L = \sum_{i} \{ y_i \ln F(\boldsymbol{X}_i \boldsymbol{\beta}) + (1 - y_i) \ln [1 - F(\boldsymbol{X}_i \boldsymbol{\beta})] \}$$
(8)

• The marginal effect (wrt. to the k^{th} expl. variable X_k) is now given by:

$$\frac{\partial F(\boldsymbol{X}_{i}\boldsymbol{\beta})}{\partial X_{k}} = f(\boldsymbol{X}_{i}\boldsymbol{\beta})\beta_{k}$$
(9)

- Key question: What is F()?
- Obviously, F() is a cdf and hence [0, 1].
- F() need not be symmetric (around 0), but most of the time is.

- *F*() could come from:
- **1** Theory (= assumptions).
- 2 Data (non- / semi-parametric regression).
- **3** Past practice.

- Does the choice matter F() empirically?
- Experience shows that in most ("well-behaved") data sets and as long as *F*(.) symmetric, makes essentially no difference to marginal effects.
- Key for being "well-behaved"; mean of the dependent variable neither "very" large nor "very" small.

- If we assume that the error term has a normal distribution, then we are estimating a **probit** model.
- Another popular model is the **logit** model where error term has an extreme value distribution. This yields the following expression for the probability that $y_i = 1$:

$$Pr(Y = 1 | \boldsymbol{X} = \boldsymbol{x}) = \frac{\exp(\boldsymbol{x}\beta)}{\exp(0) + \exp(\boldsymbol{x}\beta)} = \frac{\exp(\boldsymbol{x}\beta)}{1 + \exp(\boldsymbol{x}\beta)}$$

• Note that the exp(0) in the denominator is the exponential of the utility from choosing the outside good, which has been normalized to be zero.

- One cannot estimate probit or logit with OLS.
- One needs either
 - 1 maximum likelihood (this is what the Stata probit / logit functions do).

2 nonlinear least squares (usually not used)

3 generalized method of moments (sometimes used).

- Let's estimate the VI decision of cinema's in Gil's data with OLS, probit and logit.
- Unlike OLS, where we can solve for the coefficients using matrix algebra, ML models require (numerical) optimization.

- 1 The derivative is going to depend on X.
- 2 Different ME for each possible value of X.
- **3** How to average?

- Many solutions:
- 1 Only at the mean of X (and other variables).
- 2 At some interesting value of X.
- 3 Some avg example: weighted avg.

Stata code

```
1 regr vi_ever capacity_1000, robust
2 probit vi_ever capacity_1000
3 margins
4 logit vi_ever capacity_1000
5 margins
```

. regr vi_ever capacity_1000, robust

Linear regress	ion			Number of	obs =	393
				F(1, 391)	-	108.07
				Prob > F	-	0.0000
				R-squared	-	0.1844
				Root MSE	=	.44887
vi_ever	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
capacity_1000 _cons	.1841115 .1281997	.0177105 .0355462	10.40 3.61	0.000	.1492917 .0583142	.2189313 .1980853

. probit vi_ev	er capacity_1	000					
Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log likeliho log likeliho log likeliho log likeliho log likeliho	d = -229.07 d = -228.75 d = -228.75	358 776 752				
Probit regress Log likelihood				Number of LR chi2(1 Prob > ch Pseudo R2) i2	= = =	0.0000
vi_ever	Coef.	Std. Err.	z	₽> z	[95%	Conf.	Interval]
capacity_1000 	.5689945 -1.108613	.0698458 .1320205					.7058897 8498576
	gins OIM Pr(vi ever),	predict()		Number of	obs	=	393
	D Margin	elta-method Std. Err.	z	₽> z	[95% (Conf.	Interval]
_cons	.4314227	.0225493	19.13	0.000	.38722	268	.4756185

	logit	vi_ever	capacity	1000
--	-------	---------	----------	------

Iteration	0:	log	likelihood	=	-269.08833
Iteration	1:	log	likelihood	=	-228.60832
Iteration	2:	log	likelihood	=	-228.44027
Iteration	3:	log	likelihood	=	-228.44013
Iteration	4:	log	likelihood	=	-228.44013

Logistic regression	Number of obs	=	393
	LR chi2(1)	=	81.30
	Prob > chi2	=	0.0000
Log likelihood = -228.44013	Pseudo R2	=	0.1511
Log likelihood = -228.44013	Pseudo R2	=	0.15

vi_ever	Coef.	Std. Err.	z	₽> z	[95% Conf.	Interval]
capacity_1000 cons	.9644566 -1.843564	.1268482	7.60 -8.03		.7158387 -2.293715	1.213075 -1.393413

. margins

Predictive n	nargins	Number of obs	=	393
Model VCE	: OIM			

Expression : Pr(vi ever), predict()

		Delta-method Std. Err.	z	₽> z	[95% Conf.	Interval]
_cons	.4351145	.0224736	19.36	0.000	.3910671	.4791619

Stata code

1 probit vi_ever capacity_1000
2 margins
3 margins , atmeans
4 logit vi_ever capacity_1000
5 margins
6 margins , atmeans

. margins

Predictive margins Number of obs = 393 Model VCE : OIM

Expression : Pr(vi ever), predict()

		Delta-method Std. Err.	z	₽> z	[95% Conf.	Interval]
_cons	.4314227	.0225493	19.13	0.000	.3872268	.4756185

. margins , atmeans

Adjusted predictions Number of obs = 393 Model VCE : OIM

Expression : Pr(vi_ever), predict()
at : capacit~1000 = 1.667005 (mean)

		Delta-method				
	Margin	Std. Err.	Z	P> z	[95% Conf.	Interval]
_cons	.4364026	.026794	16.29	0.000	.3838872	.4889179

. margins

Predictive margins Number of obs = 393 Model VCE : OIM

Expression : Pr(vi ever), predict()

		Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
_cons	.4351145	.0224736	19.36	0.000	.3910671	.4791619

. margins , atmeans

Adjusted predictions Number of obs = 393 Model VCE : OIM

Expression : Pr(vi_ever), predict()
at : capacit~1000 = 1.667005 (mean)

		Delta-method Std. Err.		P> z	[95% Conf.	Interval]
_cons	.4413192	.0280628	15.73	0.000	.3863171	.4963214

- One can use any cumulative density function (cdf).
- Most popular are probit and logit.
- Differences in ME between probit and logit small. If you only are interested in ME (and especially with large data), OLS works OK.
- Choice may depend on convenience / prior practice.

- Sometimes you are interested in the actual parameters, not only the ME.
- Example: estimating the demand for a good in order to understand substitution patterns.