
CS-C2160 Theory of Computation

Lecture 10: More on Undecidability

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

CS-C2160 Theory of Computation / Lecture 10

Aalto University / Dept. Computer Science

2/54

Topics:
Undecidability of some Turing machine properties

I The halting problem
I The non-emptiness problem

Other undecidability results
I Undecidability in logic and algebra
I Post’s correspondence problem
I The Chomsky hierarchy

Computable functions and reductions
I Computable functions
I Reductions between languages

* Excursion: Post’s correspondence problem

Material:

In Finnish: Sections 6.5, 6.7 (beginning) and 6.9–6.10
(reductions) in the Finnish lecture notes

In English: Sections 5.1–5.3 in the Sipser book
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Recap from previous lectures
Example: A Turing machine recognising the language {akbkck | k ≥ 0}

q3

⊳/⊳, L

⊳/⊳, L

b/b, Ra/a, R

B/B,R
C/C,R

a/a, L
B/B, L
b/b, L
C/C, L

q0 q1 q2

q4

a/A,R

B/B,R

b/B,R

C/C,R

c/C, L

A/A,R

a/A,R

B/B,R

q5

Computation on the input aabbcc:
(q0,aabbcc) ` (q1,Aabbcc) `
(q1,Aabbcc) ` (q2,AaBbcc) `
(q2,AaBbcc) ` (q3,AaBbCc) `
(q3,AaBbCc) ` (q3,AaBbCc) `
(q3,AaBbCc) ` (q4,AaBbCc) `
(q1,AABbCc) ` (q1,AABbCc) `
(q2,AABBCc) ` (q2,AABBCc) `
(q3,AABBCC) ` (q3,AABBCC) `
(q3,AABBCC) ` (q3,AABBCC) `
(q4,AABBCC) ` (q5,AABBCC) `
(q5,AABBCC) ` (q5,AABBCC) `
(q5,AABBCC/) `
(qacc,AABBCC/).
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The Church-Turing thesis: Any (strong enough) computing model
≡ Turing machines.
Computability theory: The study of what can be, and especially
what cannot be computed with Turing machines (≡ computer
programs).
Important distinction: Machines (programs) that always halt and
those that don’t.

Definition 9.1
A Turing machine

M = (Q,Σ,Γ,δ,q0,qacc,qrej)

is total if it halts on all input strings. A language A is

semi-decidable (historically: recursively enumerable) if it can be
recognised with some Turing machine.

decidable (historically: recursive) if it can be recognised by some
total Turing machine.
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The “universal language” (over the binary alphabet {0,1}):

U = {cMw | Turing machine M accepts the string w}.

The corresponding decision problem is:

Given a Turing machine M and a string w.
Does M accept the string w?

Language U is semi-decidable. Turing machines that recognise
(“semi-decide”) U are called universal Turing machines.

On the other hand, U is not decidable ...

... meaning that there is no Turing machinethat could always
decide, given another Turing machine M and an input w, whether
M accepts the input w.
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Undecidability of Some Turing Machine Properties
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10.1 The halting problem

Theorem 10.1
The language

H = {cMw | Turing machine M halts on input w}

is semi-decidable but not decidable.

Proof
Let us first verify that H is semi-decidable. It is easy to modify the uni-
versal Turing machine MU presented in the proof of Theorem 9.8 to
a Turing machine that, on input cMw simulates the computation of ma-
chine M on input w and accepts if and only if the simulated computation
halts (in either reject or accept state).
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We next show that H is not decidable. Suppose that it were and that
H = L(MT

H) for some total Turing machine MT
H . Suppose that MT

H is
such that when it halts, it leaves its original input on the tape (possibly
extended with blank symbols). Let MU be the universal Turing machine
designed in the proof of Theorem 9.8.
We could now design a total Turing machine recognising U by combin-
ing the machines MT

H and MU is follows:

cMw MUMT
H

def U(m,w) :
wcopy = w
i f not M_H(m,w) :

r e j e c t
r e t u r n M_U(m, wcopy )

But according to Theorem 9.9 such a total Turing machine recognising
U cannot exist. This contradiction means that our assumption must be
wrong and H is not decidable.
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Corollary 10.2
The language

H̃ = {cMw |M does not halt on the input w}

is not semi-decidable.
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10.2 The non-emptiness problem

Consider the following non-emptiness problem for Turing
machines:

Given a Turing machine M.
Does M accept any string?

This problem corresponds to the formal language:

NE = {c ∈ {0,1}∗ | L(Mc) 6= /0}.

Theorem 10.3
The language NE is semi-decidable but not decidable.
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We again establish the proof in two parts: semi-decidability and
undecidability.

Lemma 10.4
The language NE is semi-decidable.

Proof
We prove the claim by designing a Turing machine MNE that
recognises the language.

The designed machine MNE is nondeterministic.
We use the following “sub-machines”:

I MOK tests whether the input is a valid Turing machine code.
I MG nondeterministically writes an arbitrary binary string w at the

end of the current tape contents.
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We design MNE by combining the machines MOK, MG, and the
universal Turing machine MU as follows:

c
MUMGMOK

cw

The idea as a nondeterministic “Python” program:
def NE(m) :

i f not M_ok(m) :
r e t u r n False

w = choose_s t r i ng_nonde te rm in i s t i ca l l y ( )
r e t u r n M_U(m,w)

Clearly

c ∈ L(MNE) ⇔ c is a valid TM code and ∃w s.t. cw ∈ U

⇔ c is a valid TM code and ∃w s.t. w ∈ L(Mc)

⇔ L(Mc) 6= /0.
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Lemma 10.5
The language NE is not decidable.

Proof

Suppose that NE were decidable and let MT
NE be a total Turing

machine recognising it. By using MT
NE, we design a total Turing

machine MT
U recognising the language U and thus obtain a

contradiction.

The design is based on coding input strings as “constant strings”
in Turing machines.

Let M be a Turing machine whose behaviour on an input
w = a1a2 . . .ak we wish to study.

Let Mw be the machine that always replaces its own “real” input
with the string w and then behaves like M:

· · ·a/a1,R a/a2,R a/ak,R a/⊳,L

a/a,L

⊲/⊲,R

M
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· · ·a/a1,R a/a2,R a/ak,R a/⊳,L

a/a,L

⊲/⊲,R

M

The behaviour of the machine Mw does
thus not depend on its real input at all, but it
either accepts or rejects all strings
depending on how M behaves on w:

L(Mw) =

{
{0,1}∗ if w ∈ L(M)
/0 if w /∈ L(M)

A Python program
corresponding to Mw:
def mw( x ) :

# w i s a constant
w = ’ 010 . . . 01 ’
r e t u r n m(w)
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Now let MENCODE be a Turing machine that, given a string cMw
consisting of the code cM of a Turing machine M and a binary
string w, writes the code cMw of the above described machine Mw

on the tape and halts:

MENCODE

cMw

cMw

As Python:
def encode (m,w) :

i f not isVal idTM (m) :
r e t u r n False

r e t u r n asTM( " " "
def mw( x ) :
w = ’ " " " +w+ " " " ’
r e t u r n " " " +m+ " " " (w)
" " " )

If the input is not of form cw for a valid TM code c, the machine
MENCODE halts in the reject state.

Thus the machine MENCODE operates on the codes of Turing
machines: the code of a machine M is extended with transitions
and the numbering of the states is changed so that the result is
the code of the machine Mw.
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By combining the machine MENCODE and the hypothetical total
machine MT

NE, we could now build a total Turing machine MT
U

recognising U as follows:

cMw

cMw MENCODE MT
NE

def MTU(m,w) :
mw = encode (m,w)
i f mw == False :

r e t u r n False
r e t u r n MTNE(mw)

The machine MT
U is total as MT

NE is, and L(MT
U) = U because

cMw∈L(MT
U)⇔ cMw ∈L(MT

NE)=NE⇔L(Mw) 6= /0⇔w∈L(M).

But the language U is not decidable, and thus such a total Turing
machine MT

U recognising U cannot exist.

From the contradiction we deduce that the language NE cannot
be recognised by any total Turing machine MT

NE, and is thus not
decidable.
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Other Undecidability Results
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10.3 Undecidability in logic and algebra

Theorem 10.6 (Undecidability of FO logic; Church/Turing 1936)
There is no algorithm that, given a formula φ in first-order logic,
decides whether the formula is valid (i.e. true in all possible
interpretations).

Theorem 10.7 (“Hilbert’s tenth problem”;
Matijasevitsh/Davis/Robinson/Putnam 1953–70)
There is no algorithm that, given a multivariate polynomial
P(x1, . . . ,xn) with integer coefficients, decides whether the polynomial
has integer-valued zero points (i.e. tuples (m1, . . . ,mn) ∈ Zn for which
P(m1, . . . ,mn) = 0). The problem is undecidable already when n = 15
or deg(P) = 4.
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10.4 Post’s correspondence problem
Given a finite set of domino block types (we can have arbitrarily many
blocks of each type), can we have a finite sequence of blocks so that
the upper and lower rows contain the same string?

ab

aa

ab

aa

a

baa bb

bba

ab

aa bb

bba

blocks=

blocks=

bb

bba a

baabb

bba

...
...

false

...

return res

...

true
def solve(blocks):

Theorem 10.8
Post’s correspondence problem is undecidable.

Proof
In Section 10.8.
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10.5 The Chomsky hierarchy

finite
languages

· U

· Ū

· {akbkck | k ≥ 0}

· {ak | k ≥ 0}

0

1

2

3

· {akbk | k ≥ 0}

A classification of grammars,
languages generated by grammars
and recogniser automata classes:a

Type-0: unrestricted grammars /
semi-decidable languages / Turing
machines
Type-1: context-sensitive grammars /
context-sensitive languages / linear
bounded automata
Type-2: context-free grammars /
context-free languages / pushdown
automata
Type-3: right and left linear grammars
/ regular languages / finite automata

aType 0 and Type 1 grammars at Lecture 11.
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Undecidability in the Chomsky hierarchy
The decidability and undecidability of some problems related to
grammars, when given grammars G and G′ of type i in Chomsky
hierarchy and a string w. The abbreviations mean D ∼ “decidable”, U
∼ “undecidable”, T ∼ “always true”.

Type i:
Problem: is... 3 2 1 0
w ∈ L(G)? D D D U
L(G) = /0? D D U U
L(G) = Σ∗? D U U U
L(G) = L(G′)? D U U U
L(G)⊆ L(G′)? D U U U
L(G)∩L(G′) = /0? D U U U
L(G) regular? T U U U
L(G)∩L(G′) of type i? T U T T
L(G) of type i? T U T U
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Computable Functions and Reductions
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In this Section we discuss:

How to use Turing machines to compute more complicated
functions than just yes/no answers.

How to use Turing-computable reductions between languages
(∼ decision problems) to establish undecidability.
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10.6 Computable functions
We define the partial function

fM : Σ∗→ Γ∗

computed by a Turing machine M = (Q,Σ,Γ,δ,q0,qacc,qrej) as:

fM(x)=

{
u, if (q0,x)

M̀
∗ (q,uav) where q ∈ {qacc,qrej},av ∈ Γ∗;

undefined, if M does not halt on input x.

A partial function f : Σ∗→ A is:

partially computable (historically: partially recursive) if it can be
computed by some Turing machine, and

computable (historically: recursive) if it can be computed by some
total Turing machine.

Note: We could equivalently define that a partially computable
function f is computable if its value f (x) is defined for all x.



CS-C2160 Theory of Computation / Lecture 10

Aalto University / Dept. Computer Science

25/54

Example:

A Turing machine that computes the successor (modulo 2n) of an n-bit
binary number (in the most significant bit first presentation)

q_0

1/1,R
0/0,R

q_1◁/◁,L acc

1/0,L

q_2

▷/▷,R
0/1,R

1/1,R
0/0,R

q_3◁/◁,L x/x,R

By the Church-Turing thesis, all total functions that can be
computed by computer programs are also Turing-machine
computable.
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10.7 Reductions between languages

A language A⊆ Σ? can be (computably) reduced to a language
B⊆ Γ?, denoted as

A≤m B,

if there is a computable function f : Σ?→ Γ? such that

x ∈ A ⇔ f (x) ∈ B, for all x ∈ Σ?.

Such a function is called a (computable many-one) reduction
from A to B.

Graphically: Σ∗ Γ∗

A

B
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Reductions can be used to translate solution methods
(∼recognising/deciding automata) from one problem to another.

Lemma 10.8
If A≤m B and B is a decidable language, then A is decidable as well.

Proof
Let MB be a total Turing machine recognising language B, and Mf a
total Turing machine that computes the reduction f from language A to
language B.

We can combine machines Mf and MB into a total Turing machine MA

recognising A as follows: On input string w,

first compute the value f (w) using Mf , and

then run machine MB on input string f (w).

The combined machine MA is clearly total and accepts input string w if
and only if f (w) ∈ B , i.e. w ∈ A.
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Graphically, the total Turing machine MA recognising language A
can be illustrated as below, where:

I Mf is the total Turing machine computing reduction f , and
I MB is the total Turing machine recognising B.

f(x)x

MA

Mf MB
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The idea in Python:

def solveB ( y ) :
" " " Returns t rue i f f y \ i n B . " " "
. . .
r e t u r n r e s u l t

def f ( z ) :
" " " Returns a s t r i n g z ’ such t h a t z \ i n A <=> z ’ \ i n B . " " "
. . .
r e t u r n r e s u l t

def solveA ( x ) :
" " " Returns t rue i f f x \ i n A . " " "
inputForB = f ( x )
r e t u r n solveB ( inputForB )
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Example:

Consider the decision problem DFA-EQ:

Given a pair of deterministic finite automata (M1,M2) over an
alphabet Σ. Do M1 and M2 recognise the same language?

This problem is decidable, since we can minimise the automata and
check whether the results are the same (up to a renaming of the states).

Consider then the decision problem REX-COMP:

Given two regular expressions r1 and r2 over an alpha-
bet Σ. Is r1 equivalent to the complement of r2, i.e., is
L(r1) = Σ∗ \ L(r2)?

Also this is decidable, since we can reduce it to problem DFA-EQ:

Given a pair (r1,r2) of regular expressions.
The reduction produces a pair (M1,M2) of DFA, where:

I M1 is a DFA for the language L(r1), and
I M2 is the “state-complement” of a DFA for the language L(r2).

CS-C2160 Theory of Computation / Lecture 10

Aalto University / Dept. Computer Science

31/54

By using reductions, we can also prove that some languages are
not decidable:

Corollary 10.9
If A≤m B and A is not decidable, then B is not decidable.

Proof

Assume that A≤m B and that A is not decidable.

Now if B were decidable, then (by Lemma 10.8) also A should be de-
cidable, which would be a contradiction.

Showing that a language B is undecidable:
I Choose a previously-known undecidable language A.
I Design a reduction from language A to language B.
I Conclude by Corollary 10.9 that B is undecidable as well.
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Example: Proving undecidability of the halting problem by reduction

We design a reduction mapping f from the undecidable universal
language U to the “halting language” H.

Given an arbitrary input cMw to problem U, the reduction f
produces a string f (cMw) = cM′w′ with the property that:

cMw ∈ U⇔ cM′w′ ∈ H.

In other words, the reduction will satisfy:

M accepts input w if and only if M′ halts on input w′

+ If we can solve the problem “Does M′ halt on input w′”, we can
also solve the problem “Does M accept input w”.

+ As the language U is undecidable and we can reduce it to
language H, language H must also be undecidable (Cor 10.9)
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More concretely, the
reduction f produces:

I The code cM′ for a
machine M′ that equals
M except that the reject
state of M is replaced by
a state in which the
computation never
terminates.

I The string w′ simply as
w′ = w.

x/a,R

w1w2...wn

M

f

M

M ′

w1w2...wn

Now:
I M accepts input w⇒ M′ halts on input w′
I M rejects input w⇒ M′ does not halt on w′
I M does not halt on input w⇒ M′ does not halt on w′

+ M accepts input w if and only if M′ halts on input w′.
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Example: Proving undecidability of the non-emptiness problem by re-
duction

We design a reduction mapping f from the undecidable universal
language U to the “non-emptiness” language NE.

Given an arbitrary input cMw to problem U, the reduction f
produces a string f (cMw) = cM′ , with the property that:

cMw ∈ U⇔ cM′ ∈ NE.

In other words, the reduction will satisfy:

M accepts input string w if and only if M′ accepts some
input string

+ If we can solve the problem “Does M′ accept some input string”,
we can also solve the problem “Does M accept input string w”.

+ As the language U is undecidable and we can reduce it to
language NE, language NE must also be undecidable (Cor 10.9)
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The reduction function f produces a (code for a) machine M′
similarly as in the previous example:

I M′ first overwrites its own input with the (constant) string w, and
I then operates as M would.a

· · ·x/w1, R x/w2, R x/wn, R ⊳/⊳, L ⊲/⊲, R

MM ′

f

x/x,L if x 6= ⊲x/⊳′, R if x 6= ⊳

w1w2...wn

M

+ M accepts input string w⇒ M′ accepts all input strings

+ M does not accept w⇒ M′ does not accept any input string

+ M accepts input string w⇔ M′ accepts some input string.

aThe machine M is modified so that it works on the symbol /′ as it would on /
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* Excursion: Post’s Correspondence Problem
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10.8 Post’s correspondence problem
An undecidable problem with a simple definition

A domino block is a pair (t,b) of strings, graphically

�
�

�
�

t
b

Here t is the top row and b the bottom row of the domino
Given a finite set P of dominos, a match is a finite sequence
D1D2...Dn of dominos in P such that the top and bottom rows of
the sequence contain the same string
Note that the a domino may occur many times in a match!

Example:

For the domino set

{�
�

�
�

b
ca

,

�
�

�
�

a
ab

,

�
�

�
�

ca
a

,

�



�
	

abc
c

}
, there is a match�

�
�
�

a
ab

�
�

�
�

b
ca

�
�

�
�

ca
a

�
�

�
�

a
ab

�



�
	

abc
c

.
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Definition 10.1 (Post’s Correspondence Problem)

Given a finite set P =

{�
�

�
�

t1
b1

, ...,

�
�

�
�

tn
bn

}
of dominos. Does P have a

match?
As a language: PCP = {P | P is a domino set that has a match}.

Example:

The domino set

{�
�

�
�

b
ca

,

�
�

�
�

a
ab

,

�
�

�
�

ca
a

,

�



�
	

abc
c

}
is in the language PCP as it

has a match

�
�

�
�

a
ab

�
�

�
�

b
ca

�
�

�
�

ca
a

�
�

�
�

a
ab

�



�
	

abc
c

.
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Example:

The domino set

{�
�

�
�

ab
aa

,

�



�
	

bba
bb

}
is not in the language PCP as it has no

matches.
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Theorem 10.8
PCP is undecidable.

We prove this in two parts:

1. We reduce the undecidable language U to the “modified Post’s
correspondence problem” MPCP (defined in a while)

+ MPCP is undecidable

2. We reduce the undecidable language MPCP to the language
PCP.

+ PCP is undecidable, too.



CS-C2160 Theory of Computation / Lecture 10

Aalto University / Dept. Computer Science

41/54

Definition 10.2 MPCP

Given a domino set P = {
�
�

�
�

t1
b1

, ...,

�
�

�
�

tn
bn
} and a start domino

�
�

�
�

t1
b1
∈ P.

Does P has a match that starts with the start domino?

Lemma 10.11
U ≤m MPCP.

Proof
A sketch, a bit more detailed version is presented in section 5.2 of
Sipser’s book

Given an input cMw, i.e., a Turing machine M and a string w, for
which we wish to find out if cmw ∈ U

We design a domino set P and a start domino

�
�

�
�

t1
b1
∈ P such that

M accepts the string w if and only if the set P has a match
starting with the start domino
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The idea: the computation (i.e., sequence of configurations) of M
on w can be described as a sequence of strings of form αqβ/,
where

I α gives the symbols on the left of the tape head,
I q is the state of the machine, and
I β gives the symbols below and on the right of the the tape head

Separate these strings with a special symbol # and start with a
special symbol I
In addition, extend the sequence with “configurations” in which
the symbols next to the accept state qacc can be removed
one-by-one and require that finally the “configuration” consists
only of the state qacc.

CS-C2160 Theory of Computation / Lecture 10

Aalto University / Dept. Computer Science

43/54

Example:

The computation of the Turing machine

q_0

1/1,R
0/0,R

q_1◁/◁,L acc

q_2

▷/▷,R
1/1,L
0/0,L

▷/▷,R

0/1,L

1/0,L

on the input 10 seen as an above described sequence:
I#.q010/#.1q00/#.10q0/#.1q10/#.q211/#q2.11/#.qacc11/
#.qacc1/#.qacc/#.qacc#qacc##
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We design a domino set whose matches are strings of the above
described form

The start domino contains the start configuration of M on w on
the bottom row

Example:

For the Turing machine above and the input 10, we make the start

domino

�
�

�


I#
I#.q0 10/#
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In order to be able to copy symbols further away from the tape
head to the successor configuration on the bottom row, we make

dominos of form

�
�

�
�

x
x

for all tape symbols and the special symbol #

Example:

For the Turing machine above, we make the dominos�
�

�
�

0
0

�
�

�
�

1
1

�
�

�
�

/

/

�
�

�
�

.

.

�
�

�
�

#
#
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We next build dominos that
I make the top row match the bottom row, and
I at the same time construct the successor configuration on the

bottom row

For each transition moving the tape head to the right,

δ(q,a) = (r,b,R), we make the domino

�
�

�
�

qa
br

and for the transition

δ(q,/) = (r,b,R) the domino

�



�
	

qa
br/

Example:

For the Turing machine above, we make the dominos�
�

�


q2 .

.qacc

�
�

�


q1 .

.qacc

�



�
	

q0 1
1q0

�



�
	

q0 0
0q0
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Similarly, for the transitions δ(q,a) = (r,b,L) moving the tape

head left, we make the domino

�



�
	

cqa
r cb

for every symbol c

(excluding / which would be redundant)

Example:

For the Turing machine above, we make the dominos�



�
	

0q2 1
q2 01

�



�
	

1q2 1
q2 11

�



�
	

.q2 1
q2 .1

�



�
	

0q2 0
q2 00

�



�
	

1q2 0
q2 10

�



�
	

.q2 0
q2 .0

�



�
	

0q0 /

q1 0/

�



�
	

1q0 /

q1 1/

�



�
	

.q0 /

q1 ./�



�
	

0q1 0
q2 01

�



�
	

1q1 0
q2 11

�



�
	

.q1 0
q2 .1

�



�
	

0q1 1
q1 00

�



�
	

1q1 1
q1 10

�



�
	

.q1 1
q1 .0
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The new “configurations” at the end of the string, in which the
accept state is already reached and we must remove the other

symbols, can be produced with the dominos of form

�



�
	

xqacc

qacc
and�



�
	

qacc x
qacc

, where x is a tape symbol

Example:

For the Turing machine above, we make the dominos�
�

�


0qacc

qacc

�
�

�


qacc 0
qacc

�
�

�


1qacc

qacc

�
�

�


qacc 1
qacc

�
�

�


qacc /

qacc

�
�

�


.qacc

qacc
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Finally we ensure that the string ends in the “configuration”

consisting only of the accept state by the domino

�
�

�


qacc ##
#

This is the only domino that can fix the inbalance in the number of
# symbols in the top and bottom rows caused by the start domino

CS-C2160 Theory of Computation / Lecture 10

Aalto University / Dept. Computer Science

50/54

Example:

For the Turing machine above and the input 10 we thus produced the
following dominos:�
�

�


I#
I#.q0 10/#

�
�

�


q2 .

.qacc

�
�

�


q1 .

.qacc

�



�
	

q0 1
1q0

�



�
	

q0 0
0q0

�



�
	

0q2 1
q2 01

�



�
	

1q2 1
q2 11

�



�
	

.q2 1
q2 .1�



�
	

0q2 0
q2 00

�



�
	

1q2 0
q2 10

�



�
	

.q2 0
q2 .0

�



�
	

0q0 /

q1 0/

�



�
	

1q0 /

q1 1/

�



�
	

.q0 /

q1 ./

�



�
	

0q1 0
q2 01

�



�
	

1q1 0
q2 11

�



�
	

.q1 0
q2 .1�



�
	

0q1 1
q1 00

�



�
	

1q1 1
q1 10

�



�
	

.q1 1
q1 .0

�
�

�
�

0
0

�
�

�
�

1
1

�
�

�
�

/

/

�
�

�
�

.

.

�
�

�
�

#
#

�
�

�


0qacc

qacc

�
�

�


qacc 0
qacc

�
�

�


1qacc

qacc

�
�

�


qacc 1
qacc�

�
�


qacc /

qacc

�
�

�


.qacc

qacc

�
�

�


qacc ##
#
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Example:

A match:�
�

�


I#
I#.q0 10/#

�
�

�
�

.

.

�



�
	

q0 1
1q0

�
�

�
�

0
0

�
�

�
�

/

/

�
�

�
�

#
#

�
�

�
�

.

.

�
�

�
�

1
1

�



�
	

q0 0
0q0

�
�

�
�

/

/

�
�

�
�

#
#

�
�

�
�

.

.

�
�

�
�

1
1

�



�
	

0q0 /

q1 0/�
�

�
�

#
#

�
�

�
�

.

.

�



�
	

1q1 0
q2 11

�
�

�
�

/

/

�
�

�
�

#
#

�



�
	

.q2 1
q2 .1

�
�

�
�

1
1

�
�

�
�

/

/

�
�

�
�

#
#

�
�

�


q2 .

.qacc

�
�

�
�

1
1

�
�

�
�

1
1

�
�

�
�

/

/

�
�

�
�

#
#

�
�

�
�

.

.

�
�

�


qacc 1
qacc�

�
�
�

1
1

�
�

�
�

/

/

�
�

�
�

#
#

�
�

�
�

.

.

�
�

�


qacc 1
qacc

�
�

�
�

/

/

�
�

�
�

#
#

�
�

�
�

.

.

�
�

�


qacc /

qacc

�
�

�
�

#
#

�
�

�


.qacc

qacc

�
�

�
�

#
#

�
�

�


qacc ##
#

The string on the top and bottom rows is:
I#.q010/#.1q00/#.10q0/#.1q10/#.q211/#q2.11/#.qacc11/
#.qacc1/#.qacc/#.qacc#qacc##
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We now only have to show how to get rid of the start domino
requirement in MPCP, i.e., prove the following:

Lemma 10.12
MPCP≤m PCP.

Proof

Let u = u1...un be a non-empty string (that is, n≥ 1).

Define the following notation:

?u = ?u1 ?u2... ?un

u? = u1 ?u2... ?un ?

?u? = ?u1 ?u2... ?un ?

where ? is a new, unused symbol
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Given a domino set P =

{�
�

�
�

t1
b1

,

�
�

�
�

t2
b2

, ...,

�
�

�
�

tn
bn

}
and a start domino�

�
�
�

t1
b1

, we make a domino set

P′ =

{�



�
	

?t1
?b1?

,

�
�

�
�

?t2
b1?

...,

�
�

�
�

?tn
bn?

,

�
�

�
�

?�
�

}

where � is a new symbol and

�
�

�
�

?�
� enables the introduction of the

last ? symbol in the top row

Clearly

�



�
	

?t1
?b1?

is now the only domino that can start a match

... and for each original MPCP match (and only for them) is a new
PCP match in which every second symbol is ?.
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More on algorithms and reductions in courses:
I CS-E3190 Principles of Algorithmic Techniques
I CS-E4530 Computational Complexity Theory


