Topics:

- Undecidability of some Turing machine properties
- The halting problem
- The non-emptiness problem

Aalto University School of Science

CS-C2160 Theory of Computation

Lecture 10: More on Undecidability
Pekka Orponen
Aalto University
Department of Computer Science
Spring 2021

Recap from previous lectures

Example: A Turing machine recognising the language $\left\{a^{k} b^{k} c^{k} \mid k \geq 0\right\}$

| Computation on the input $a a b b c c: ~$ |
| :--- | :--- |

A
Aalto University
School of Scienc
School of Science

- The "universal language" (over the binary alphabet $\{0,1\}$):

$$
U=\left\{c_{M} w \mid \text { Turing machine } M \text { accepts the string } w\right\} .
$$

- The corresponding decision problem is:

Given a Turing machine M and a string w.
Does M accept the string w ?

- Language U is semi-decidable. Turing machines that recognise ("semi-decide") U are called universal Turing machines.
- On the other hand, U is not decidable ...
- ... meaning that there is no Turing machinethat could always decide, given another Turing machine M and an input w, whether M accepts the input w.

A Aalto University School of Science

CS.C2160 Theory of Computation / Lecture 10
Aallo University / Dept. Computer Science

10.1 The halting problem

Theorem 10.1

The language

$$
H=\left\{c_{M} w \mid \text { Turing machine } M \text { halts on input } w\right\}
$$

is semi-decidable but not decidable.

Proof

Let us first verify that H is semi-decidable. It is easy to modify the universal Turing machine M_{U} presented in the proof of Theorem 9.8 to a Turing machine that, on input $c_{M} w$ simulates the computation of machine M on input w and accepts if and only if the simulated computation halts (in either reject or accept state).

Undecidability of Some Turing Machine Properties

$\Delta \begin{aligned} & \text { Aalto University } \\ & \text { School of Science }\end{aligned}$ School of Science

CS.C2160 Theory of Computation / Lecture 10 | Cs. Cc2160 Theory ot Computation / Lecture 10 |
| :---: |
| Aalto University / Dept. Computer Science |
| 6.54 |

We next show that H is not decidable. Suppose that it were and that $H=\mathcal{L}\left(M_{H}^{T}\right)$ for some total Turing machine M_{H}^{T}. Suppose that M_{H}^{T} is such that when it halts, it leaves its original input on the tape (possibly extended with blank symbols). Let M_{U} be the universal Turing machine designed in the proof of Theorem 9.8.
We could now design a total Turing machine recognising U by combining the machines M_{H}^{T} and M_{U} is follows:

> def $U(m, w)$:
> wcopy $=w$
> if not $M _H(m, w)$:
> reject
> return $M _U(m$, wcopy $)$

But according to Theorem 9.9 such a total Turing machine recognising U cannot exist. This contradiction means that our assumption must be wrong and H is not decidable.

A
Cs.c2160 Theory of Computation/ Lecture 10
Aallo University D Dept. Computer Science

Corollary 10.2

The language

$$
\tilde{H}=\left\{c_{M} w \mid M \text { does not halt on the input } w\right\}
$$

is not semi-decidable.
cs.c2160 Theory of Computation/ Lecture 10
Aatlo University / Dept. Computer science

We again establish the proof in two parts: semi-decidability and undecidability.

Lemma 10.4

The language NE is semi-decidable.

Proof

- We prove the claim by designing a Turing machine $M_{\text {NE }}$ that recognises the language.
- The designed machine $M_{N E}$ is nondeterministic.
- We use the following "sub-machines":
- M_{OK} tests whether the input is a valid Turing machine code.
- M_{G} nondeterministically writes an arbitrary binary string w at the end of the current tape contents.

10.2 The non-emptiness problem

- Consider the following non-emptiness problem for Turing machines

Given a Turing machine M.
 Does M accept any string?

- This problem corresponds to the formal language:

$$
\mathrm{NE}=\left\{c \in\{0,1\}^{*} \mid \mathcal{L}\left(M_{c}\right) \neq \emptyset\right\} .
$$

Theorem 10.3

The language NE is semi-decidable but not decidable.

A Aalto University
CS.C2160 Theory of Computation / Lecture 10

School of Science
Ho Universtity Dept. Computer Scienc

- We design M_{NE} by combining the machines M_{OK}, M_{G}, and the universal Turing machine M_{U} as follows:

The idea as a nondeterministic "Python" program:
def $\mathrm{NE}(\mathrm{m})$:
if not M_ok(m):
return False
w = choose_string_nondeterministically ()
return $\mathrm{M} \mathrm{U}(\mathrm{m}, \mathrm{w})$
Clearly

$$
\begin{aligned}
c \in \mathcal{L}\left(M_{\mathrm{NE}}\right) & \Leftrightarrow c \text { is a valid TM code and } \exists w \text { s.t. } c w \in U \\
& \Leftrightarrow c \text { is a valid TM code and } \exists w \text { s.t. } w \in \mathcal{L}\left(M_{c}\right) \\
& \Leftrightarrow \mathcal{L}\left(M_{c}\right) \neq \emptyset .
\end{aligned}
$$

A $\begin{aligned} & \text { Aalto University } \\ & \text { School of Science }\end{aligned}$

Lemma 10.5

The language NE is not decidable.

Proof

- Suppose that NE were decidable and let M_{NE}^{T} be a total Turing machine recognising it. By using M_{NE}^{T}, we design a total Turing machine M_{U}^{T} recognising the language U and thus obtain a contradiction.
- The design is based on coding input strings as "constant strings" in Turing machines.
- Let M be a Turing machine whose behaviour on an input $w=a_{1} a_{2} \ldots a_{k}$ we wish to study.
- Let M^{w} be the machine that always replaces its own "real" input with the string w and then behaves like M :
$\overline{\mathbf{A}}$

- Now let $M_{\text {ENCODE }}$ be a Turing machine that, given a string $c_{M} w$ consisting of the code c_{M} of a Turing machine M and a binary string w, writes the code $c_{M^{w}}$ of the above described machine M^{w} on the tape and halts:

As Python:
def encode (m,w):
if not isValidTM (m):
return False
return asTM("""
def $m w(x)$:
w = '"" "+w+"""

""")

- If the input is not of form $c w$ for a valid TM code c, the machine $M_{\text {ENCODE }}$ halts in the reject state.
- Thus the machine $M_{\text {ENCODE }}$ operates on the codes of Turing machines: the code of a machine M is extended with transitions and the numbering of the states is changed so that the result is the code of the machine M^{w}.

The behaviour of the machine M^{w} does thus not depend on its real input at all, but it either accepts or rejects all strings depending on how M behaves on w :

$$
\mathcal{L}\left(M^{w}\right)= \begin{cases}\{0,1\}^{*} & \text { if } w \in \mathcal{L}(M) \\ \emptyset & \text { if } w \notin \mathcal{L}(M)\end{cases}
$$

A Python program corresponding to M^{w} :
def mw(x):
\# w is a constant
$\mathrm{w}=010 \ldots 01$
return $\mathrm{m}(\mathrm{w})$

- By combining the machine $M_{\text {ENCODE }}$ and the hypothetical total machine M_{NE}^{T}, we could now build a total Turing machine M_{U}^{T} recognising U as follows:

def MTU(m,w):

$\mathrm{mw}=$ encode (m, w)
if $\mathrm{mw}==$ False:
return False
return MTNE(mw)

- The machine M_{U}^{T} is total as M_{NE}^{T} is, and $\mathcal{L}\left(M_{U}^{T}\right)=U$ because $c_{M} w \in \mathcal{L}\left(M_{U}^{T}\right) \Leftrightarrow c_{M^{w}} \in \mathcal{L}\left(M_{\mathrm{NE}}^{T}\right)=\mathrm{NE} \Leftrightarrow \mathcal{L}\left(M^{w}\right) \neq \emptyset \Leftrightarrow w \in \mathcal{L}(M)$
- But the language U is not decidable, and thus such a total Turing machine M_{U}^{T} recognising U cannot exist.
- From the contradiction we deduce that the language NE cannot be recognised by any total Turing machine M_{NE}^{T}, and is thus not decidable.

A $\begin{aligned} & \text { Aalto University } \\ & \text { School of Science }\end{aligned}$
Cs-C2160 Theory of Computation / Lecture 10
Aalto University / Dept. Computer Science

Other Undecidability Results

cs.C2160 Theory of Computation / Lecture 10
Aatlo University / Dept. Computer Science

10.4 Post's correspondence problem

Given a finite set of domino block types (we can have arbitrarily many blocks of each type), can we have a finite sequence of blocks so that the upper and lower rows contain the same string?

Theorem 10.8

Post's correspondence problem is undecidable.

Proof
 In Section 10.8.

Aalto University
School of Science

Aalto University
School of Science
Cs.C2160 Theory of Computation / Lecture 10
Aalto University / Dept. Computer Science

Undecidability in the Chomsky hierarchy

The decidability and undecidability of some problems related to grammars, when given grammars G and G^{\prime} of type i in Chomsky hierarchy and a string w. The abbreviations mean $D \sim$ "decidable", U ~"undecidable", $T \sim$ "always true".

	Type $i:$			
Problem: is...	3	2	1	0
$w \in \mathcal{L}(G) ?$	D	D	D	U
$\mathcal{L}(G)=\emptyset ?$	D	D	U	U
$\mathcal{L}(G)=\Sigma^{*} ?$	D	U	U	U
$\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right) ?$	D	U	U	U
$\mathcal{L}(G) \subseteq \mathcal{L}\left(G^{\prime}\right) ?$	D	U	U	U
$\mathcal{L}(G) \cap \mathcal{L}\left(G^{\prime}\right)=\emptyset ?$	D	U	U	U
$\mathcal{L}(G)$ regular?	T	U	U	U
$\mathcal{L}(G) \cap \mathcal{L}\left(G^{\prime}\right)$ of type $i ?$	T	U	T	T
$\mathcal{L}(G)$ of type $i ?$	T	U	T	U

- In this Section we discuss:
- How to use Turing machines to compute more complicated functions than just yes/no answers.
- How to use Turing-computable reductions between languages (\sim decision problems) to establish undecidability.

Example:

A Turing machine that computes the successor (modulo 2^{n}) of an n-bit binary number (in the most significant bit first presentation)

- By the Church-Turing thesis, all total functions that can be computed by computer programs are also Turing-machine computable.
- Reductions can be used to translate solution methods (\sim recognising/deciding automata) from one problem to another.

Lemma 10.8

If $A \leq_{m} B$ and B is a decidable language, then A is decidable as well.

Proot

Let M_{B} be a total Turing machine recognising language B, and M_{f} a total Turing machine that computes the reduction f from language A to language B.
We can combine machines M_{f} and M_{B} into a total Turing machine M_{A} recognising A as follows: On input string w,

- first compute the value $f(w)$ using M_{f}, and
- then run machine M_{B} on input string $f(w)$.

The combined machine M_{A} is clearly total and accepts input string w if and only if $f(w) \in B$, i.e. $w \in A$.

10.7 Reductions between languages

- A language $A \subseteq \Sigma^{\star}$ can be (computably) reduced to a language $B \subseteq \Gamma^{\star}$, denoted as

$$
A \leq_{m} B,
$$

if there is a computable function $f: \Sigma^{\star} \rightarrow \Gamma^{\star}$ such that

$$
x \in A \quad \Leftrightarrow \quad f(x) \in B, \quad \text { for all } x \in \Sigma^{\star} .
$$

Such a function is called a (computable many-one) reduction from A to B.

- Graphically:

- Graphically, the total Turing machine M_{A} recognising language A can be illustrated as below, where:
- M_{f} is the total Turing machine computing reduction f, and
- M_{B} is the total Turing machine recognising B.

Aalto University
School of Science

- The idea in Python:
def solveB(y):
"""Returns true iff y \in B."""
return result
def $f(z)$:
"""Returns a string z ' such that z \in $A<=>z^{\prime} \backslash i n B . " " "$
return result
def solveA(x):
"""Returns true iff x \in $A . " " "$
inputForB $=f(x)$
return solveB(inputForB)

CS.C2160 Theory of Computation / Lecture 10
Aallo University / Dept. Computer Science

- By using reductions, we can also prove that some languages are not decidable:

Corollary 10.9

If $A \leq_{m} B$ and A is not decidable, then B is not decidable.

Proof

Assume that $A \leq_{m} B$ and that A is not decidable.
Now if B were decidable, then (by Lemma 10.8) also A should be decidable, which would be a contradiction.

- Showing that a language B is undecidable:
- Choose a previously-known undecidable language A.
- Design a reduction from language A to language B.
- Conclude by Corollary 10.9 that B is undecidable as well.
- More concretely, the reduction f produces:
- The code $c_{M^{\prime}}$ for a machine M^{\prime} that equals M except that the reject state of M is replaced by a state in which the computation never terminates.
- The string w^{\prime} simply as $w^{\prime}=w$.

- Now:
- M accepts input $w \Rightarrow M^{\prime}$ halts on input w^{\prime}
- M rejects input $w \Rightarrow M^{\prime}$ does not halt on w^{\prime}
- M does not halt on input $w \Rightarrow M^{\prime}$ does not halt on w^{\prime}
- M accepts input w if and only if M^{\prime} halts on input w^{\prime}.

Aalto University
School of Science
Aalto University / Dept. Computer Science

- The reduction function f produces a (code for a) machine M^{\prime} similarly as in the previous example:
- M^{\prime} first overwrites its own input with the (constant) string w, and
- then operates as M would. ${ }^{a}$

- M accepts input string $w \Rightarrow M^{\prime}$ accepts all input strings
- M does not accept $w \Rightarrow M^{\prime}$ does not accept any input string
- I- M accepts input string $w \Leftrightarrow M^{\prime}$ accepts some input string.
$\overline{\mathbf{A}}$
${ }^{a}$ The machine M is modified so that it works on the symbol \triangleleft^{\prime} as it would on \triangleleft

Example: Proving undecidability of the non-emptiness problem by reduction

- We design a reduction mapping f from the undecidable universal language U to the "non-emptiness" language NE.
- Given an arbitrary input $c_{M} w$ to problem U, the reduction f produces a string $f\left(c_{M} w\right)=c_{M^{\prime}}$, with the property that:

$$
c_{M} w \in U \Leftrightarrow c_{M^{\prime}} \in \mathrm{NE} .
$$

In other words, the reduction will satisfy:
M accepts input string w if and only if M^{\prime} accepts some
input string

- If is if we can solve the problem "Does M^{\prime} accept some input string", we can also solve the problem "Does M accept input string w ".
- As the language U is undecidable and we can reduce it to language NE, language NE must also be undecidable (Cor 10.9)

A Aalto University
cs-C2160 Theory of Computation / Lecture 10 School of Science

Aalto University / Dept. Computer Science

10.8 Post's correspondence problem

- An undecidable problem with a simple definition
- A domino block is a pair (t, b) of strings, graphically $\frac{t}{b}$

Here t is the top row and b the bottom row of the domino

- Given a finite set P of dominos, a match is a finite sequence $D_{1} D_{2} \ldots D_{n}$ of dominos in P such that the top and bottom rows of the sequence contain the same string
- Note that the a domino may occur many times in a match!

Example:

For the domino set $\left\{\frac{b}{c a}, \frac{a}{a b}, \frac{c a}{a}, \frac{a b c}{c}\right\}$, there is a match $\frac{a}{a b} \frac{b}{c a} \frac{c a}{a} \frac{a}{a b} \frac{a b c}{c}$.

Example:

The domino set $\left\{\frac{a b}{a a}, \frac{b b a}{b b}\right\}$ is not in the language PCP as it has no matches.

Definition 10.2 MPCP

Given a domino set $P=\left\{\frac{t_{1}}{b_{1}}, \ldots, \frac{t_{n}}{b_{n}}\right\}$ and a start domino $\frac{t_{1}}{b_{1}} \in P$.
Does P has a match that starts with the start domino?

Lemma 10.11

$U \leq_{m}$ MPCP.
Proof

- A sketch, a bit more detailed version is presented in section 5.2 of Sipser's book
- Given an input $c_{M} w$, i.e., a Turing machine M and a string w, for which we wish to find out if $c_{m} w \in U$
- We design a domino set P and a start domino $\frac{t_{1}}{b_{1}} \in P$ such that M accepts the string w if and only if the set P has a match starting with the start domino school of Science

The idea: the computation (i.e., sequence of configurations) of M on w can be described as a sequence of strings of form $\alpha q \beta \triangleleft$, where

- α gives the symbols on the left of the tape head,
- q is the state of the machine, and
- β gives the symbols below and on the right of the the tape head
- Separate these strings with a special symbol \# and start with a special symbol
- In addition, extend the sequence with "configurations" in which the symbols next to the accept state q_{acc} can be removed one-by-one and require that finally the "configuration" consists only of the state $q_{\text {acc }}$
${ }^{4254}$

Example:

The computation of the Turing machine

on the input 10 seen as an above described sequence:
$\checkmark \# \triangleright q_{0} 10 \triangleleft \# \triangleright 1 q_{0} 0 \triangleleft \# \triangleright 10 q_{0} \triangleleft \# \triangleright 1 q_{1} 0 \triangleleft \# \triangleright q_{2} 11 \triangleleft \# q_{2} \triangleright 11 \triangleleft \# \triangleright q_{\mathrm{acc}} 11 \triangleleft$
$\# \triangleright q_{\text {acc }} 1 \triangleleft \# \triangleright q_{\text {acc }} \triangleleft \# \triangleright q_{\text {acc }} \# q_{\text {acc }} \# \#$

- In order to be able to copy symbols further away from the tape head to the successor configuration on the bottom row, we make dominos of form $\left[\frac{x}{x}\right.$ for all tape symbols and the special symbol \#

Example:

For the Turing machine above, we make the dominos
$\left[\frac{0}{0}\left[\frac{1}{1}\right] \frac{\Delta}{\triangleleft} \square \frac{\triangleright}{\square}\right.$

Aalto University
School of Science
Cs-C2160 Theory of Computation/Lecture 10
School of Science
Aalto University / Dept. Computer Science

- Similarly, for the transitions $\delta(q, a)=(r, b, L)$ moving the tape head left, we make the domino $\frac{c q a}{r c b}$ for every symbol c (excluding \triangleleft which would be redundant)

Example:

$$
\begin{aligned}
& \text { For the Turing machine above, we make the dominos }
\end{aligned}
$$

- We next build dominos that
- make the top row match the bottom row, and
- at the same time construct the successor configuration on the bottom row
- For each transition moving the tape head to the right,
$\delta(q, a)=(r, b, R)$, we make the domino $\frac{q a}{b r}$ and for the transition
$\delta(q, \triangleleft)=(r, b, R)$ the domino $\frac{q a}{b r \triangleleft}$

Example:

For the Turing machine above, we make the dominos
$\frac{q_{2} \triangleright}{\triangleright q_{\mathrm{acc}}} \frac{q_{1} \triangleright}{\triangleright q_{\mathrm{acc}}} \frac{q_{0} 1}{1 q_{0}} \frac{q_{0} 0}{0 q_{0}}$

A Aalto University
Cs-C2160 Theory of Computation / Lecture 10
School of Science

- The new "configurations" at the end of the string, in which the accept state is already reached and we must remove the other symbols, can be produced with the dominos of form $\frac{x q_{\mathrm{acc}}}{q_{\mathrm{acc}}}$ and $\frac{q_{\mathrm{acc}} x}{q_{\mathrm{acc}}}$, where x is a tape symbol

Example:

For the Turing machine above, we make the dominos
$\frac{0 q_{\mathrm{acc}}}{q_{\mathrm{acc}}} \frac{q_{\mathrm{acc}} 0}{q_{\mathrm{acc}}} \frac{1 q_{\mathrm{acc}}}{q_{\mathrm{acc}}} \frac{q_{\mathrm{acc}} 1}{q_{\mathrm{acc}}} \frac{q_{\mathrm{acc}} \triangleleft}{q_{\mathrm{acc}}} \frac{\triangleright q_{\mathrm{acc}}}{q_{\mathrm{acc}}}$

- Finally we ensure that the string ends in the "configuration" consisting only of the accept state by the domino $\frac{q_{\text {acc }} \# \#}{\#}$
- This is the only domino that can fix the inbalance in the number of \# symbols in the top and bottom rows caused by the start domino

Example:

The string on the top and bottom rows is:
$\checkmark \# \triangleright q_{0} 10 \triangleleft \# \triangleright 1 q_{0} 0 \triangleleft \# \triangleright 10 q_{0} \triangleleft \# \triangleright 1 q_{1} 0 \triangleleft \# \triangleright q_{2} 11 \triangleleft \# q_{2} \triangleright 11 \triangleleft \# \triangleright q_{\mathrm{acc}} 11 \triangleleft$
$\# \triangleright q_{\text {acc }} 1 \triangleleft \# \triangleright q_{\text {acc }} \triangleleft \# \triangleright q_{\text {acc }} \# q_{\text {acc }} \# \#$

- Given a domino set $\left.P=\left\{\frac{t_{1}}{b_{1}}, \frac{t_{2}}{b_{2}}, \ldots, \frac{t_{n}}{b_{n}}\right]\right\}$ and a start domino $\frac{t_{1}}{b_{1}}$, we make a domino set

$$
P^{\prime}=\left\{\frac{\star t_{1}}{\star b_{1} \star}, \frac{\star t_{2}}{b_{1} \star}, \ldots, \frac{\star t_{n}}{b_{n} \star}, \frac{\star \diamond}{\diamond}\right.
$$

where \diamond is a new symbol and $\frac{\star \diamond}{\diamond}$ enables the introduction of the last \star symbol in the top row

- Clearly $\frac{\star t_{1}}{\star b_{1} \star}$ is now the only domino that can start a match
- ... and for each original MPCP match (and only for them) is a new PCP match in which every second symbol is \star.
schooloo Science
Aalto University / Dept. Computer Scien
- More on algorithms and reductions in courses:
- CS-E3190 Principles of Algorithmic Techniques
- CS-E4530 Computational Complexity Theory

