

Sustainable design S3

Tools to guide product design and certify performance

Mikko Jalas 27.4.2021

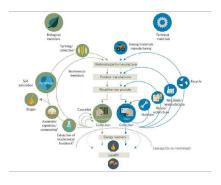
Agenda

9.15 - 9.30	Last session. Reflections on the readings. Workload? Diary?	
9.30 - 10.15	Further thoughts on eco-design, product-service- systems. Intro to marketing and certification	
10.15-10.30	Break	
10.30-10.50	Zoom breakout groups. What labels did you choose: place them on the Flinga grid	
10.50-11.30	Discussion	
11.30-11.45	Next session: How do products/services communicate sustainability	

Energy 'payback' time

EROI = energy generated over the life span / energy needed to produce and operate the equipment

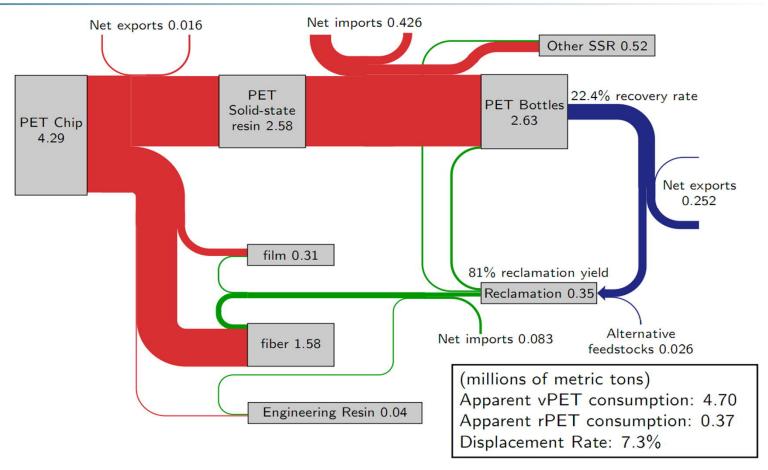
- EROI of around 11–12 for wind and around 7 (3-8) for solar PV. *
- Payback time: for wind less than 2 years, solar more (at the moment).

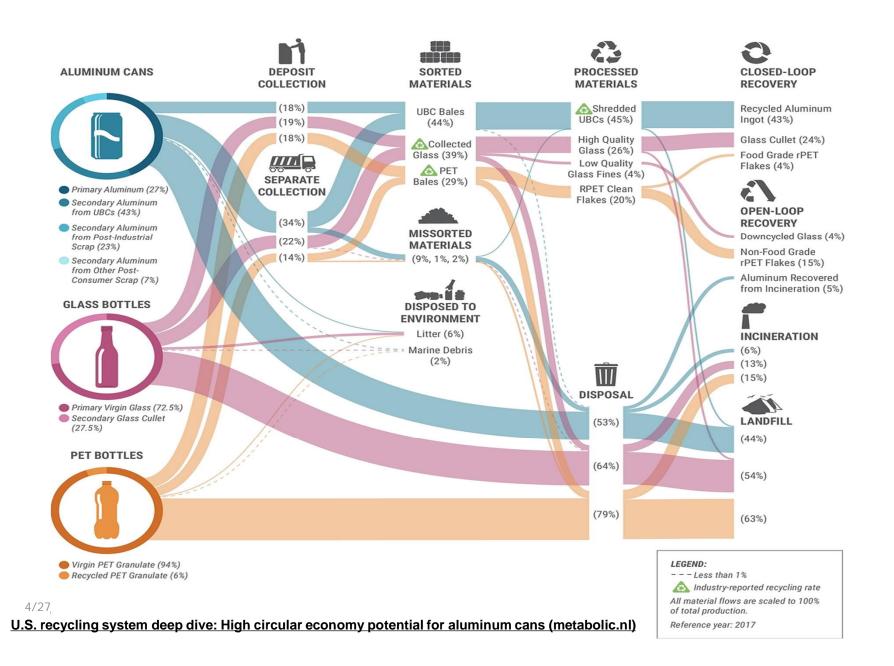


www.lumituuli.fi

^{*} Limpens, G., & Jeanmart, H. (2018). Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium. *Energy*, *152*, 960-973.

The broad context of design for sustainablity


Green vs blue
Waste from another process
Recycled material; in the loop vs down-cycled
Recyclable
Non-toxic



PET Material Flow – US (2006)

(PET beverage bottle recycling by B. Kuczenski and R. Geyer, University of California, Santa Barbara)

Plant factory

Aalto Magazine 4/2020


Umpinaista kasvihuonetta kutsutaan Plant Factoryksi tai vertikaalifarmiksi. Ala on niin uusi, että terminologia ei ole vielä vakiintunutta.

Tulevaisuudessa Vacuum Insulation System (VIS) -elementeistä rakennetut kasvihuoneet ovat sekä ruoan-, energian- että lämmöntuottajia.

- Kasvit kasvavat useissa kerroksissa päällekkäin: maankäyttö on jopa sata kertaa tehokkaampaa verrattuna ulkoviljelyyn. Vertikaaliviljely säästää viljelymaata eikä metsiä tarvitse kaataa ruoantuotantoa varten.
- Led-valot tuottavat ihanteellisen valokirjon yhteyttämiselle. Sen ansiosta kasveihin voidaan saada enemmän ravinteita, ja ne maistuvat paremmilta.

- Ilmatiivis kuori estää kosteuden haihtumisen. Tämä vähentää vedenkulutusta 99 prosenttia perinteiseen maatalouteen verrattuna.
- Kasvihuone toimii itsessään pitkäaikaisena hiilidioksidin varastona.
- Kasveista haihtunut vesi varastoidaan ja käytetään uudelleen.
- Tyhjiöpumppu voidaan kiinnittää VIS-elementteihin milloin tahansa.
- 7. Tyhjiökuivaamisella VIS-elementit saadaan kuiviksi ja terveiksi. Sen avulla seinien elinkaari on erittäin pitkä. Kosteutta pitää poistaa valmiista elementeistä tyhjiökuivaamalla arviolta kerran vuodessa.

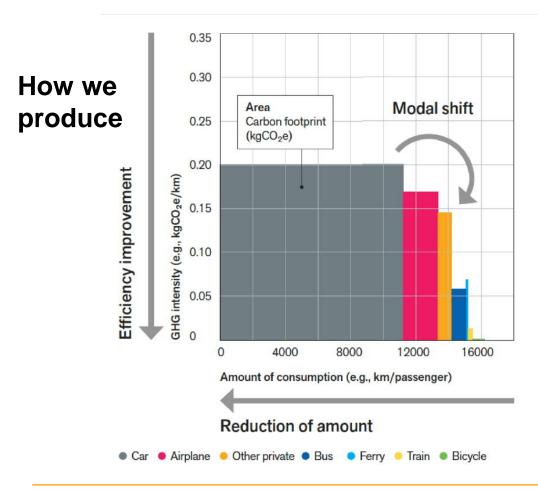
- 8. Kasvihuoneen katolla on aurinkopaneelit.
- Led-valot voidaan sammuttaa sähkön hintapiikin ajaksi. Tällöin sähkön keskimääräinen hinta viljelyalaa kohden jää alhaisemmaksi.
- 10. Laaja valikoima antureita, jotka lähettävät reaaliaikaista tietoa pilvipalveluun: lämpötila, kosteus, hiilidioksidipitoisuus, tuulen nopeus.
- 11. Tehokkuutta optimoidaan tekoälyn avulla.
- Ylimääräistä lämpöä voidaan siirtää kaukolämpöverkkoon.
- Tuotanto noin 2 megawattia
 1000 neliömetriä kohden.

A house is a machine for living in.

— Le Corbusier —

AZ QUOTES

Business concepts for product-servicesystems

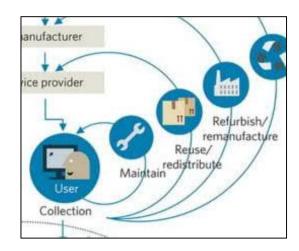

- Extended warranties
- Leasing (service & capital)
- Availability/capacity (pay per time)
- Service (pay per unit)
- (Energy) Performance contracting
- Mobility as Service (flexible set of means to produce contracted outcomes)

A&C (p .333): Manufacturing vs maintenance costs

What we produce

How much we produce

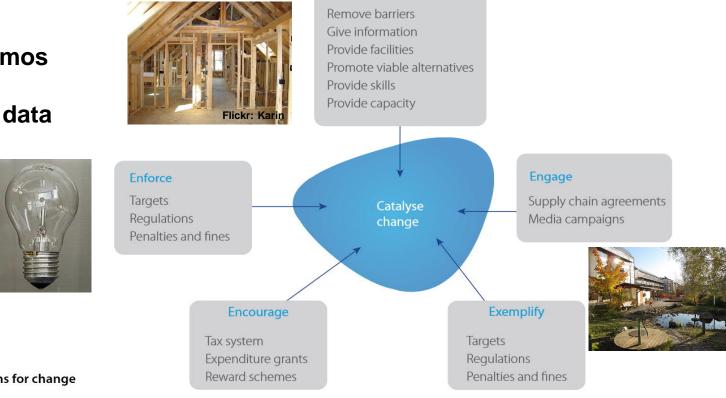
https://www.aalto.fi/en/department-of-design/15-degree-lifestyles



R-strategies for Circular economy (A&C Ch23)

- Does durability pay off?
- Optimised components may be both more expensive and prevent reuse ... but does standardization lead to increased materials demand?

Väinö Paasonen / Karhulan lasi 1953


https://www.ellenmacarthurfoundation.org/assets/downloads/news/EMF_Engineering-the-Circular-Economy_300913.pdf

Allwood et al ch 23

Barriers to materials efficiency

- Cheap materials, costly human labour
- Easy of standardization vs customized design
- Path dependency and previous investments
- Risk aversion and over-specification... but traceability is increasing
- Focus remains in product sales and not service

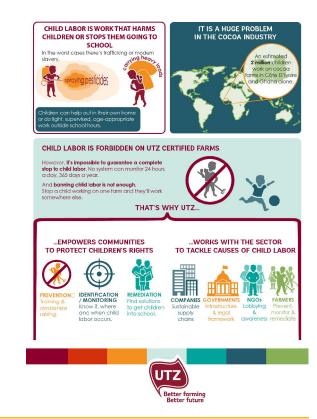
Regulation Examples & Demos New standards Public, audited data

Enable

Figure 24.2—Options for change

For the next time

Find three product/service labels or certificates preferably from different areas

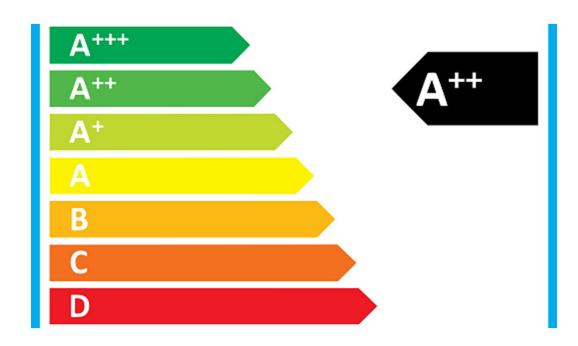

Document the main criteria or data

TÄMÄN TUOTTEEN HIILIJALAN-JÄLKI PER 100G TUOTETTA

Find out who has created the label or grants it

<1200

Type 1 labels


WHAT IS A TYPE I ENVIRONMENTAL LABELLING PROGRAMME?

A Type I label is a third-party assessment of a product based on a number of criteria involved in the environmental impact of a product or material throughout its life cycle. The objective of this type of environmental labelling programme is to contribute to a reduction in the environmental impacts associated with products, through the identification of products that meet the specific criteria of a Type I programme for overall environmental preferability.

https://www.iso.org/news/ref2273.html

EU Ecodesign directive

https://ec.europa.eu/growth/industry/sustainability/ecodesign_en

Refrigerators

Washing machines

Dishwashers

Electronic displays (including televisions)

Light sources and separate control gears

External power suppliers

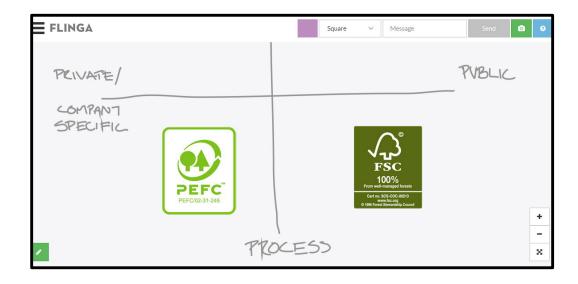
Electric motors

Refrigerators with a direct sales function

Power transformers

Welding equipment

Different scopes for impact assessment


Scope 1	Scope 2	Scope 3
Fuel combustion Company vehicles Fugitive emissions	Purchased electricity, heat and steam	Purchased goods and services Business travel Employee commuting Waste disposal Use of sold products Transportation and distribution (up- and downstream) Investments Leased assets and franchises

https://www.carbontrust.com/resources/briefing-what-are-scope-3-emissions

Labelling

- Enter the break-put room
- Insert one of your labels on the Flinga board. (Save the image and use the camera-icon)

Flinga - BA Design S3 _ labels and product standards/

Labelling - Flinga results

For next time

No compulsory readings

Search for an example of how products/services communicate sustainability beyond metrics/numbers/certification schemes.

- o E.g. Volvo Polestar https://www.polestar.com/us/precept/
- https://www.aalto.fi/en/creative-sustainability/the-test-site

How do 'we' explore and think about sustainability through design?