

CS-C2160 Theory of Computation

Lecture 11: Rice's Theorem, General Grammars

Pekka Orponen Aalto University Department of Computer Science

Spring 2021

Recap

- *Church–Turing thesis:* Intuitive notion of algorithms = Turing machines.
- Formal language \equiv Yes/No decision problem.
- A language is semi-decidable (also called recursively enumerable) if it can be recognised by some Turing machine.
- A language is decidable (also called recursive) if it can be recognised by some machine that halts on all inputs.
- A language is undecidable if it is not decidable.
- An undecidable language may still be semi-decidable.

- The "acceptance" decision problem for Turing machines is Given a Turing machine M and a string w. Does M accept w?
- The formal language representing this is the universal language

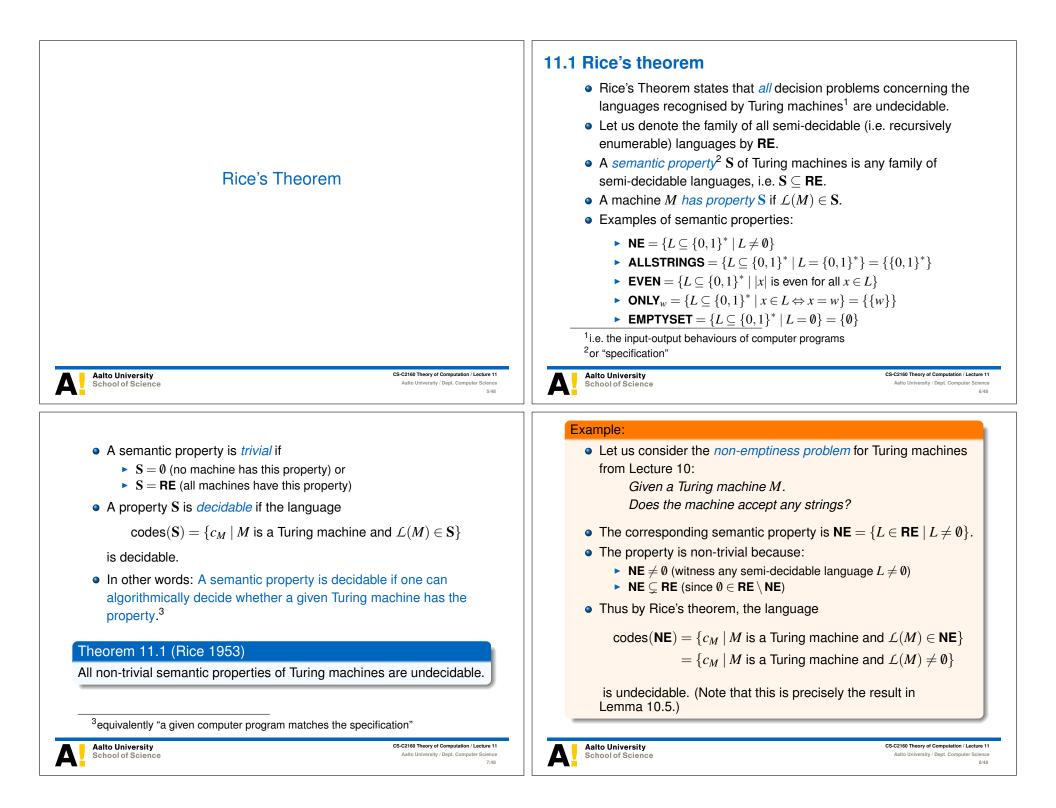
 $U = \{c_M w \mid M \text{ is a TM and } M \text{ accepts } w\}.$

• The language U is semi-decidable but not decidable.

Topics:

- Rice's Theorem
- Unrestricted grammars
- ... and their relationship to Turing machines
- Context-sensitive grammars
- * A glimpse beyond: Computational complexity

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 2/48



Theorem 11.1

All non-trivial semantic properties of Turing machines are undecidable.

Proof

- A simple generalisation of the proof of Lemma 10.5.
- Let S be any non-trivial semantic property.
- We can assume that $\emptyset \notin S$; in other words, machines that recognise the empty language do not have the property.^a
- As S is non-trivial, there is a Turing machine $M_{\rm S}$ that has the property **S**, i.e. one for which $\mathcal{L}(M_{\mathbf{S}}) \neq \emptyset$ and $\mathcal{L}(M_{\mathbf{S}}) \in \mathbf{S}$ hold.

^{*a*} If $\emptyset \in S$, we can first show that the property $\overline{S} = RE \setminus S$ is undecidable and then conclude that also S is undecidable because if we could decide codes(S), we could also decide codes($\overline{\mathbf{S}}$) as $c_M \in \operatorname{codes}(\overline{\mathbf{S}})$ iff $c_M \notin \operatorname{codes}(\mathbf{S})$.

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

9/48

11/48

General Grammars

- We now prove that codes(S) is undecidable by reducing the undecidable language U to it.
- Let (M, w) be any instance of the Turing machine acceptance problem, encoded as the string $c_M w$.
- From input c_{MW} construct (the code for) a Turing machine M^{W} that on any input string x works as follows:
 - First run machine M on string w, and then
 - if M accepts w, run Ms on x
 - if *M* rejects *w* (or doesn't halt), reject *x* (or don't halt)
- Now M^w recognises the language

$$\mathcal{L}(M^w) = \begin{cases} \mathcal{L}(M_{\mathbf{S}}) & \text{if } w \in \mathcal{L}(M) \\ \emptyset & \text{if } w \notin \mathcal{L}(M) \end{cases}$$

- Thus M accepts w if and only if M^w has the property S. That is, $c_M w \in U$ if and only if $c_{M^w} \in codes(S)$.
- Therefore, codes(S) is an undecidable language.

Aalto University School of Science

11.2 Unrestricted grammars

- A generalisation of context-free grammars.
- The left-hand sides of rules can now include multiple symbols.
- As will be shown, can generate all semi-decidable languages.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Definition 11.1

An unrestricted grammar is a quadruple^a

 $G = (V, \Sigma, P, S),$

where

- V is a finite set of variables;
- Σ is a finite set, disjoint from *V*, of *terminals*;
- P ⊆ (V ∪ Σ)⁺ × (V ∪ Σ)^{*} is a finite set of *rules* (also called productions), where (V ∪ Σ)⁺ = (V ∪ Σ)^{*} \ {ε};
- $S \in V$ is the *start variable*.

A rule $(\omega, \omega') \in P$ is usually written as $\omega \to \omega'$.

^aNote the minor streamlining of the structure of the definition from Lecture 5.

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

Example:

An unrestricted grammar for the non-context-free language $\{a^k b^k c^k \mid k \ge 0\}$:

S	\rightarrow	$LT \mid \varepsilon$	LA	\rightarrow	а
Т	\rightarrow	ABCT ABC	aA	\rightarrow	aa
BA	\rightarrow	AB	аB	\rightarrow	ab
CB	\rightarrow	BC	bB	\rightarrow	bb
CA	\rightarrow	AC	bC	\rightarrow	bc
			cC	\rightarrow	сс

A derivation of string *aabbcc* in the grammar:

<u>S</u>	\Rightarrow	$L\underline{T} \Rightarrow LABC\underline{T}$	\Rightarrow	LAB <u>CA</u> BC	\Rightarrow	LA <u>BA</u> CBC
	\Rightarrow	LAAB <u>CB</u> C	\Rightarrow	<u>LA</u> ABBCC	\Rightarrow	<u>aA</u> BBCC
	\Rightarrow	a <u>aB</u> BCC	\Rightarrow	aa <u>bB</u> CC	\Rightarrow	aab <u>bC</u> C
	\Rightarrow	aabb <u>cC</u>	\Rightarrow	aabbcc		

• A string $\gamma \in (V \cup \Sigma)^*$ *yields* a string $\gamma' \in (V \cup \Sigma)^*$ in the grammar *G*, denoted by

 $\gamma \Rightarrow \gamma'$

if

- the grammar contains a rule $\omega
 ightarrow \omega'$ such that
- $\gamma = \alpha \omega \beta$ and $\gamma' = \alpha \omega' \beta$ for some $\alpha, \beta \in (V \cup \Sigma)^*$.
- A string γ∈ (V∪Σ)* *derives* a string γ'∈ (V∪Σ)* in the grammar G, denoted by

$$\gamma \underset{G}{\Rightarrow}^* \gamma'$$

if there is a sequence of strings $\gamma_0, \gamma_1, \ldots, \gamma_n$ for some $n \ge 0$ such that

$$\gamma = \gamma_0, \qquad \gamma_0 \underset{G}{\Rightarrow} \gamma_1 \underset{G}{\Rightarrow} \ldots \underset{G}{\Rightarrow} \gamma_n, \qquad \gamma_n = \gamma'.$$

• If the grammar *G* is clear from the context, we can simply write $\gamma \Rightarrow \gamma'$ and $\gamma \Rightarrow^* \gamma'$ instead of $\gamma \Rightarrow \gamma'$ and $\gamma \Rightarrow^* \gamma'$, respectively.

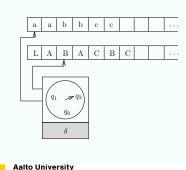
Aalto University School of Science CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 14/48

Theorem 11.2

If a language L can be generated with an unrestricted grammar, then it can be recognised with a Turing machine.

Proof

Let $G = (V, \Sigma, P, S)$ be an unrestricted grammar generating language L. We can design a two-tape nondeterministic Turing machine M_G recognising L as follows:



School of Science

- On tape 1 the machine stores a copy of the input string.
- Tape 2 holds the current string that the machine tries to rewrite to match the one on tape 1.
- In the beginning, the machine writes the start variable *S* on tape 2.

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 16/48 The computation of machine M_G is composed of stages. In each stage, the machine:

- 1. Moves the read/write-head of tape 2 *nondeterministically* to *some* position on the tape.
- 2. Chooses *nondeterministically* a rule in *G* that it tries to apply at the selected position. (The rules of *G* are encoded in the transitions of M_{G} .)
- 3. If the left-hand side of the chosen rule matches the symbols on the tape, M_G rewrites these symbols with the ones in the right-hand side of the rule. Otherwise M_G rejects.
- 4. At the end of the stage, M_G compares the strings on tapes 1 and 2. If they are the same, the machine acceps and halts. Otherwise, the machine executes the next stage (loops back to step 1).

Theorem 11.3

If a language L can be recognised with a Turing machine, then it can be generated with an unrestricted grammar.

Proof

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ be a (deterministic one-tape) Turing machine recognising language *L*. We can design an unrestricted grammar G_M generating *L* based on the following idea.

- The variables of G_M include (among others) symbols for all the states $q \in Q$ of M.
- A configuration $(q, u\underline{a}v)$ of *M* will be represented as a string [uqav].
- Based on the transitions of M, G_M will have rules that ensure

```
[uqav] \underset{G_M}{\Rightarrow} [u'q'a'v'] if and only if (q, u\underline{a}v) \underset{M}{\vdash} (q', u'\underline{a'}v').
```

• Thus *M* accepts the input *x* if and only if for some $u, v \in \Sigma^*$:

$$[u_0 x] \underset{G_M}{\Rightarrow^*} [uq_{\mathsf{acc}}]$$

Aalto University School of Science

The rules in G_M comprise three types:

- 1. Rules with which one can derive from the start variable *S* any string of form $x[q_0x]$, where $x \in \Sigma^*$ and '[', ' q_0 ' and ']' are variables in G_M .
- 2. Rules that allow one to derive from the string $[q_0x]$ a string $[uq_{acc}v]$ if and only if *M* accepts *x*.
- 3. Rules that enable one to rewrite any string of form $[uq_{acc}v]$ to the empty string.

Deriving a string $x \in \mathcal{L}(M)$ can then be done as follows:

$$S \stackrel{(1)}{\Rightarrow^{*}} x[q_0 x] \stackrel{(2)}{\Rightarrow^{*}} x[uq_{acc} v] \stackrel{(3)}{\Rightarrow^{*}} x$$

Let us thus define the grammar $G = (V, \Sigma, P, S)$, where

9

$$Y = (\Gamma \setminus \Sigma) \cup Q \cup \{S, T, [,], E_L, E_R\} \cup \{X_a \mid a \in \Sigma\}$$

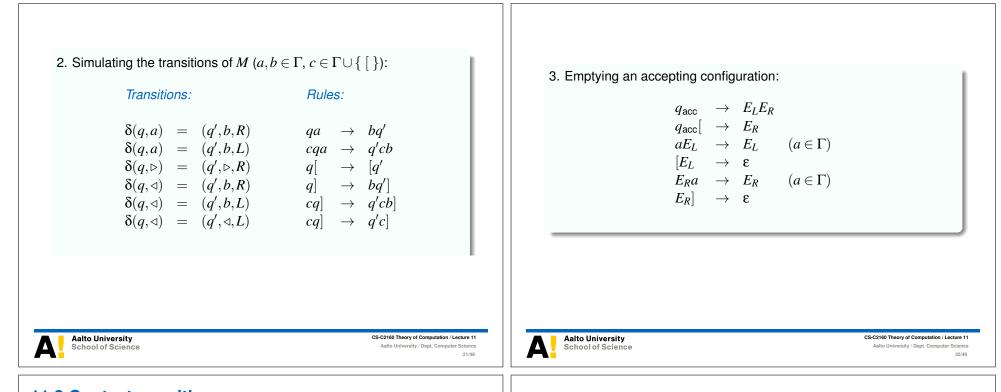
and the rules in *P* include the following three sets:

1. Producing the initial configuration:

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Aalto University / Dept. Computer Science



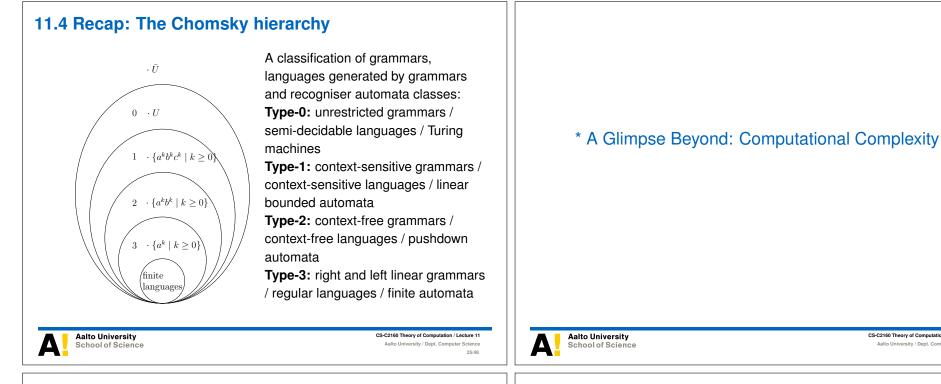
11.3 Context-sensitive grammars

- An unrestricted grammar is *context-sensitive* if all its rules are of form $\omega \to \omega'$, where $|\omega'| \ge |\omega|$, or $S \to \varepsilon$, where S is the start variable.
- In addition, it is required that if the grammar has the rule $S \rightarrow \varepsilon$, then the start variable S does not occur on the right-hand side of any rule.
- A language L is *context-sensitive* if it can be generated with some context-sensitive grammar.
- A normal form for context-sensitive grammars: Each context-sensitive language can be generated with a grammar whose rules are of form $S \rightarrow \varepsilon$ and $\alpha A \beta \rightarrow \alpha \omega \beta$, where A is a variable and $\omega \neq \epsilon$.
- A rule $\alpha A\beta \rightarrow \alpha \omega \beta$ can be interpreted as the application of a rule $A \rightarrow \omega$ "in the context" $\alpha_{-}\beta$.

Theorem 11.4

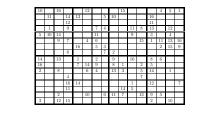
A language L is context-sensitive if and only if it can be recognised with a non-deterministic Turing machine that does not use more tape space than was already allocated for the input.

- The machines in Theorem 11.4 are called linear bounded automata.
- It is an open problem whether the non-determinism in Theorem 11.4 is necessary or not. (The "LBA ?= DLBA" problem.)



* Computational complexity

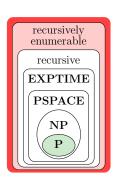
- So far: only what is decidable (solvable with computers) and what is not.
- But some problems are "more decidable than others".
- For instance, finding a smallest element in an array is/seems much easier than solving sudokus.



102

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 27/48

- In fact, the set of decidable problems can be divided in many smaller *complexity classes*:
- P problems that can be solved in polynomial time (\approx always efficiently) with deterministic Turing machines / algorithms.
- NP problems that can be solved in polynomial time with non-deterministic Turing machines.
- PSPACE problems that can be solved with a polynomial amount of extra space (possibly in exponential time).
- EXPTIME problems that can be solved in exponential time.
- and many more...



CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$, $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$. QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?

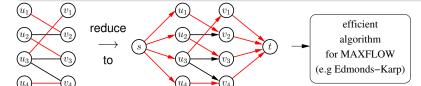
Aalto University School of Science CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 29/48

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$, $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?



We can solve a PERFECT MATCHING instance by

- 1. *Polynomial-time reducing* it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of *n* units if and only if the PERFECT MATCHING instance has a perfect matching.
- 2. Solving the resulting MAXFLOW instance.
- 3. The reduction is linear-time and Edmonds-Karp alg. works in $O(VE^2)$.

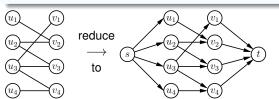
CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 31/48

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$, $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$.

QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?



We can solve a PERFECT MATCHING instance by

1. *Polynomial-time reducing* it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of *n* units if and only if the PERFECT MATCHING instance has a perfect matching.

Aalto University School of Science CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 30/48

Example: a not-so efficiently solvable problem

Definition (propositional satisfiability, SAT)

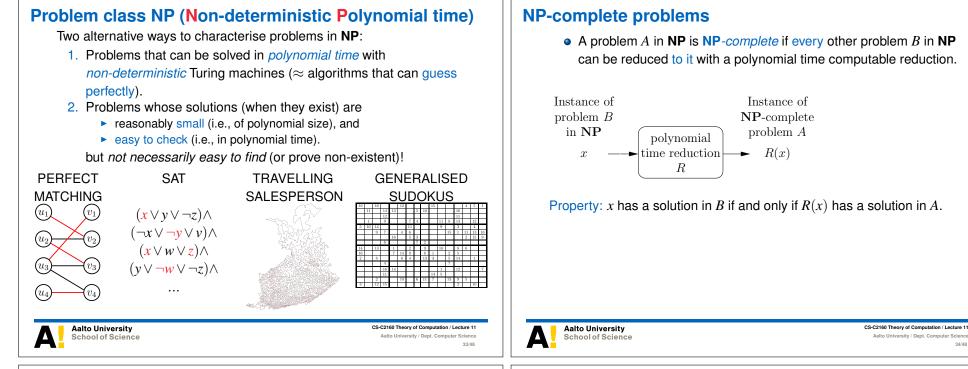
INSTANCE: A Boolean formula ϕ in conjunctive normal form. QUESTION: Is there a truth assignment that satisfies ϕ ?

Example

 $(x) \land (\neg x \lor y) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor \neg z)$ is satisfiable with $\{x \mapsto \mathbf{true}, y \mapsto \mathbf{true}, z \mapsto \mathbf{false}\}.$

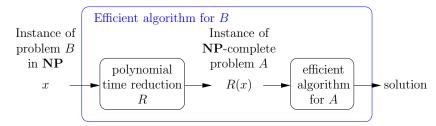
 $(x) \land (\neg x \lor y) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor z)$ is unsatisfiable.

- Even the best known SAT algorithms, with sophisticated pruning techniques can perform very badly on some instances (although they can solve many relevant problems efficiently).
- No polynomial-time algorithm for SAT is known despite several decades of effort in trying to find one.



NP-complete problems

• A problem A in **NP** is **NP**-complete if every other problem B in **NP** can be reduced to it with a polynomial time computable reduction.



- Property: x has a solution in B if and only if R(x) has a solution in A.
- If an **NP**-complete problem A can be solved in polynomial time, 12 then all the problems in NP can.
- NP-complete problems are the *most difficult ones* in NP!
- We do not know(!!!) whether NP-complete problems can be 13 solved efficiently or not.

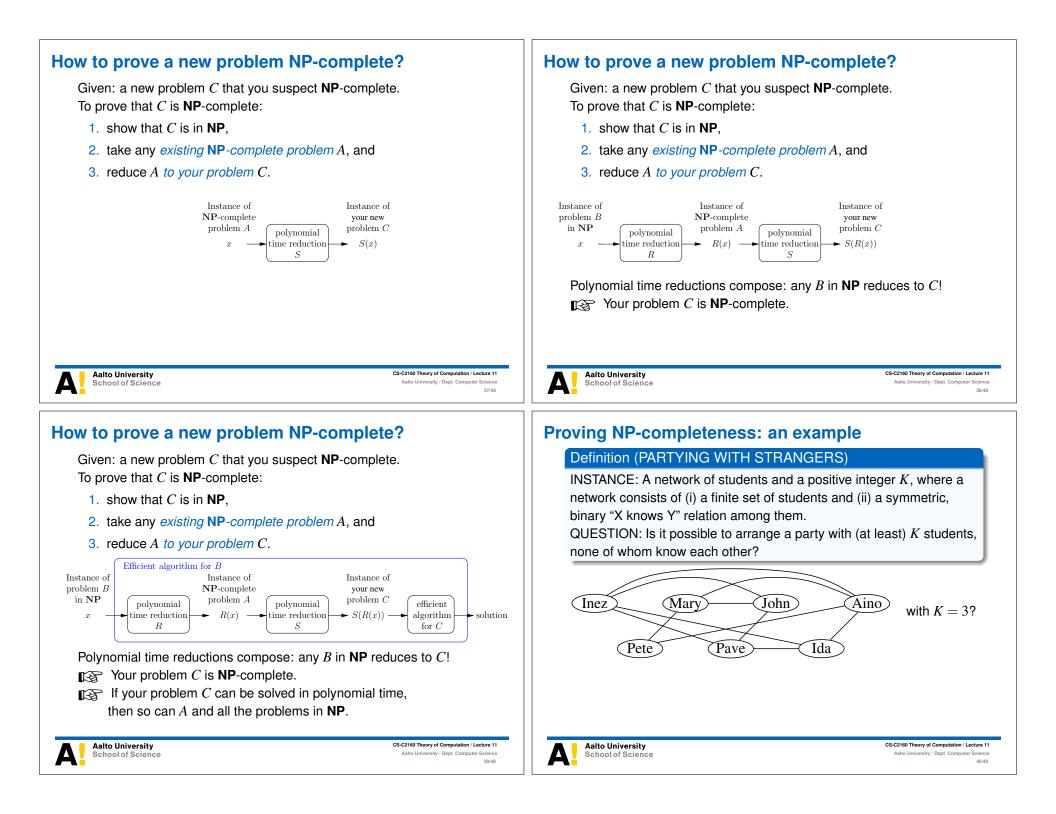
CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

• A problem A in **NP** is **NP**-complete if every other problem B in **NP** can be reduced to it with a polynomial time computable reduction.

> Aalto University / Dept. Computer Science 34/48

The Cook–Levin theorem

- Stephen Cook (1939-)
- Leonid Levin (1948-)
- Richard Karp (1935-)
- R. Karp soon (1972) listed the next 21 NP-complete problems.
- Since then, 1000's of problems have been shown NP-complete.
- E.g. TRAVELLING SALESPERSON, GENERALISED SUDOKUS etc. are NP-complete.
- Classic text: Garey and Johnson (1979): Computers and Intractability: A Guide to the Theory of NP-Completeness.

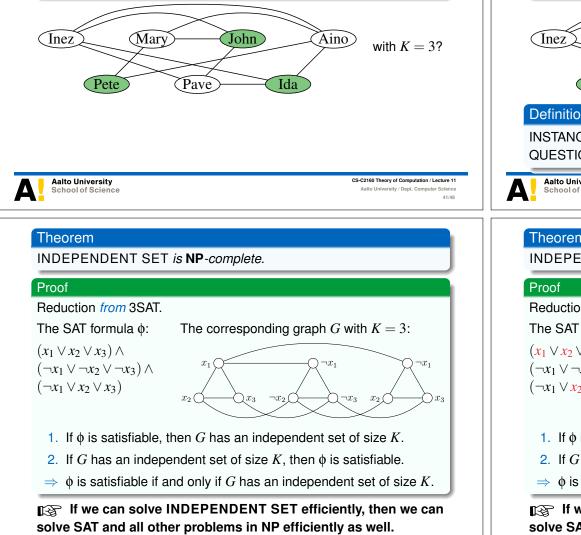


Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

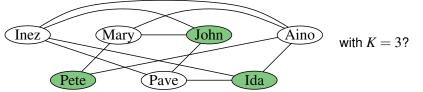
QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?



Proving NP-completeness: an example Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?



Definition (INDEPENDENT SET)

INSTANCE: An undirected graph G = (V, E) and an integer K. QUESTION: Is there an independent set $I \subseteq V$ with |I| = K?

Aalto Universitv School of Science CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 42/48

Theorem

INDEPENDENT SET is NP-complete.

Reduction from 3SAT.

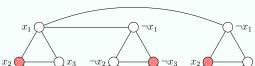
The SAT formula ϕ :

The corresponding graph *G* with K = 3:

 $(x_1 \lor x_2 \lor x_3) \land$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3) \land$ $(\neg x_1 \lor x_2 \lor x_3)$

Aalto University

School of Science



1. If ϕ is satisfiable, then G has an independent set of size K.

2. If G has an independent set of size K, then ϕ is satisfiable.

 ϕ is satisfiable if and only if G has an independent set of size K.

If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

44/48

Theorem

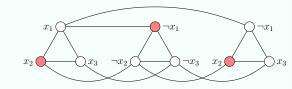
INDEPENDENT SET is NP-complete.

Proof

Reduction *from* 3SAT.

The SAT formula ϕ :

 $(x_1 \lor x_2 \lor x_3) \land$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3) \land$ $(\neg x_1 \lor x_2 \lor x_3)$



The corresponding graph *G* with K = 3:

- 1. If ϕ is satisfiable, then *G* has an independent set of size *K*.
- 2. If *G* has an independent set of size *K*, then ϕ is satisfiable.
- $\Rightarrow \phi$ is satisfiable if and only if *G* has an independent set of size *K*.

If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

Aalto University School of Science

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

NP-completeness: Significance

• Can NP-complete problems be solved in polynomial time?

One of the seven 1M\$ Clay Mathematics Institute Millenium Prize problems, see

http://www.claymath.org/millennium-problems/

- What to do when a problem is NP-complete?
 - Attack special cases that occur in practice
 - Develop backtracking search algorithms with efficient heuristics and pruning techniques
 - Develop approximation algorithms
 - Apply incomplete local search methods

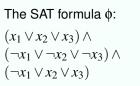
۱...

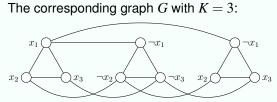
Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.





1. If ϕ is satisfiable, then *G* has an independent set of size *K*.

- 2. If *G* has an independent set of size *K*, then ϕ is satisfiable.
- $\Rightarrow \phi$ is satisfiable if and only if *G* has an independent set of size *K*.

If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

Aalto University School of Science

Some further courses:

- CS-E3190 Principles of Algorithmic Techniques
- CS-E4530 Computational Complexity Theory
- CS-E4320 Cryptography and Data Security
- and so on...

