A

Aalto University
School of Science

CS-C2160 Theory of Computation

Lecture 11: Rice’s Theorem, General Grammars

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

Topics:

@ Rice’s Theorem

@ Unrestricted grammars

@ ... and their relationship to Turing machines
@ Context-sensitive grammars
°

* A glimpse beyond: Computational complexity

Aalto University ©S-C2160 Theory of Computation / Lecture 11

School of Science Aalto University / Dept. Computer Science
2/48

Recap

@ Church—Turing thesis: Intuitive notion of algorithms = Turing
machines.

@ Formal language = Yes/No decision problem.

@ A language is semi-decidable (also called recursively
enumerable) if it can be recognised by some Turing machine.

@ Alanguage is decidable (also called recursive) if it can be
recognised by some machine that halts on all inputs.

@ Alanguage is undecidable if it is not decidable.
@ An undecidable language may still be semi-decidable.

CS-C2160 Theory of Computation / Lecture 11

Aalto University
School of Science Aalto University / Dept. Computer Science

3/48

@ The “acceptance” decision problem for Turing machines is

Given a Turing machine M and a string w.
Does M acceptw?

@ The formal language representing this is the universal language
U= {cyw | M isaTM and M accepts w}.

@ The language U is semi-decidable but not decidable.

A

Aalto University ©S-C2160 Theory of Computation / Lecture 11

School of Science Aalto University / Dept. Computer Science
448

Rice’s Theorem

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto University / Dept. Computer Science

5/48

11.1 Rice’s theorem

@ Rice’s Theorem states that all decision problems concerning the
languages recognised by Turing machines' are undecidable.

@ Let us denote the family of all semi-decidable (i.e. recursively
enumerable) languages by RE.

@ A semantic property? S of Turing machines is any family of
semi-decidable languages, i.e. S C RE.

@ A machine M has property S if L(M) € S.

@ Examples of semantic properties:

NE ={L C {0,1}" | L#0}

ALLSTRINGS = {L C {0,1}" | L={0,1}"} = {{0,1}"}

EVEN = {L C {0,1}" | |x| is evenforall x € L}

ONLY,, ={LC{0,1}" |[xe Lo x=w} ={{w}}

EMPTYSET = {L C {0,1}" | L =0} = {0}

'i.e. the input-output behaviours of computer programs
2or “specification”

v

v

v

v

v

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto University / Dept. Computer Science

6/48

@ A semantic property is trivial if

» S =0 (no machine has this property) or
» S = RE (all machines have this property)

@ A property S is decidable if the language
codes(S) = {cy | M is a Turing machine and L(M) € S}
is decidable.

@ In other words: A semantic property is decidable if one can
algorithmically decide whether a given Turing machine has the
property.3

Theorem 11.1 (Rice 1953)
All non-trivial semantic properties of Turing machines are undecidable.

Sequivalently “a given computer program matches the specification”

A

Aalto University ©S-C2160 Theory of Computation / Lecture 11

School of Science Aalto Universi ity / Dept. Computer Science
7/48

@ Let us consider the non-emptiness problem for Turing machines
from Lecture 10:
Given a Turing machine M.
Does the machine accept any strings?

@ The corresponding semantic property is NE = {L € RE | L # 0}.
@ The property is non-trivial because:

» NE £ 0 (witness any semi-decidable language L # 0)
» NE C RE (since 0 € RE \ NE)

@ Thus by Rice’s theorem, the language

codes(NE) = {cy | M is a Turing machine and L(M) € NE}
= {cm | M is a Turing machine and L(M) # 0}

is undecidable. (Note that this is precisely the result in
Lemma 10.5.)

School of Science Aalto Universi ity / Dept. Computer Science
8/48

A Aalto University ©S-C2160 Theory of Computation / Lecture 11

All non-trivial semantic properties of Turing machines are undecidable. I

@ A simple generalisation of the proof of Lemma 10.5.

@ Let S be any non-trivial semantic property.

@ We can assume that @ ¢ S; in other words, machines that
recognise the empty language do not have the property.?

@ As S is non-trivial, there is a Turing machine Mg that has the
property S, i.e. one for which L(Mg) # 0 and L(Ms) € S hold.

a1f @ € S, we can first show that the property S = RE\ S is undecidable and then
conclude that also S is undecidable because if we could decide codes(S), we could

also decide codes(S) as cys € codes(S) iff cyr ¢ codes(S).

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto University / Dept. Computer Science
9/48

@ We now prove that codes(S) is undecidable by reducing the
undecidable language U to it.

@ Let (M,w) be any instance of the Turing machine acceptance
problem, encoded as the string cyw.
@ From input cpw construct (the code for) a Turing machine M"
that on any input string x works as follows:
» First run machine M on string w, and then
* if M accepts w, run Mg on x
* if M rejects w (or doesn't halt), reject x (or don’t halt)

@ Now M"Y recognises the language

, L(Ms) ifwe L(M)
L(M>:{(b i if we L(M)

@ Thus M accepts w if and only if M" has the property S.
That is, cyyw € U if and only if cpw € codes(S).

@ Therefore, codes(S) is an undecidable language.

v

Aalto University ©S-C2160 Theory of Computation / Lecture 11

School of Science Aalto University / Dept. Computer Science
10/48

General Grammars

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto University / Dept. Computer Science

11/48

11.2 Unrestricted grammars

@ A generalisation of context-free grammars.
@ The left-hand sides of rules can now include multiple symbols.
@ As will be shown, can generate all semi-decidable languages.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto University / Dept. Computer Science
12/48

Definition 11.1
An unrestricted grammar is a quadruple?

G=(V,L,P,S),

where
@ Vs a finite set of variables;
@ X is a finite set, disjoint from V, of terminals;
@ PC (VUE)T x (VUX)* is afinite set of rules (also called
productions), where (VUX)" = (VUX)*\ {e};
@ S € Vs the start variable.
Arule (0, ®') € Pis usually written as ® — ®'.

4Note the minor streamlining of the structure of the definition from Lecture 5.

CS-C2160 Theory of Computation / Lecture 11

Aalto University
School of Science Aalto University / Dept. Computer Science

13/48

@ Astringye (VUX)* yields a string Y € (VUZX)* in the grammar
G, denoted by
v=Y

» the grammar contains a rule ® — «' such that
» y=omf and Y = o' for some o, f € (VUI)*.

@ Astringye (VUX)* derives a string Y € (VUX)* in the
grammar G, denoted by
:>>~<
T2
if there is a sequence of strings Yo, 71, - -, Y for some n > 0 such
that
Y=Y NTNZ =N W=Y

@ If the grammar G is clear from the context, we can simply write
Y=Y and y=* Y instead of y = Y and Y :G>* Y, respectively.

Aalto University ©S-C2160 Theory of Computation / Lecture 11

School of Science Aalto University / Dept. Computer Science
14/48

An unrestricted grammar for the non-context-free language
{a*bFck | k> 0}:

S — LT |¢ LA — a

T — ABCT | ABC aA — aa

BA — AB aB — ab

CB — BC bB — bb

CA — AC bC — bc

cC — cc
A derivation of string aabbcc in the grammar:

S = LT=LABCT = LABCABC = LABACBC
= LAABCBC = LAABBCC = aABBCC
= aaBBCC = aabBCC = aabbCC
= aabbcC = aabbcc

A

Aalto University
School of Science

©S-C2160 Theory of Computation / Lecture 11
Aalto University / Dept. Computer Science
15/48

Theorem 11.2

If a language L can be generated with an unrestricted grammar, then it
can be recognised with a Turing machine.

v

Proof

Let G=(V,X,P,S) be an unrestricted grammar generating language L.
We can design a two-tape nondeterministic Turing machine Mg recog-
nising L as follows:

@ On tape 1 the machine stores
a copy of the input string.

‘a‘a‘b‘b‘c‘c‘ ‘ ‘ ‘

@ Tape 2 holds the current
string that the machine tries to
— rewrite to match the one on

tape 1.
@ In the beginning, the machine

0 writes the start variable S on
tape 2. —

—
A Aalto University ©S-C2160 Theory of Computation / Lecture 11

[e[alslafefslc] | [

School of Science Aalto Universi ity / Dept. Computer Science
16/48

The computation of machine M is composed of stages. In each stage,
the machine:

1. Moves the read/write-head of tape 2 nondeterministically to some
position on the tape.

2. Chooses nondeterministically a rule in G that it tries to apply at
the selected position. (The rules of G are encoded in the
transitions of M¢.)

3. If the left-hand side of the chosen rule matches the symbols on
the tape, M rewrites these symbols with the ones in the
right-hand side of the rule. Otherwise Mg rejects.

4. At the end of the stage, Mz compares the strings on tapes 1 and
2. If they are the same, the machine acceps and halts. Otherwise,
the machine executes the next stage (loops back to step 1).

17/48

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto University / Dept. Computer Science

Theorem 11.3

If a language L can be recognised with a Turing machine, then it can
be generated with an unrestricted grammar.

Proof

|

Let M = (Q,X.T',8,40, gacc, grej) be a (deterministic one-tape) Turing
machine recognising language L. We can design an unrestricted gram-
mar Gy, generating L based on the following idea.

@ The variables of Gy, include (among others) symbols for all the
states g € Q of M.

@ A configuration (g,uav) of M will be represented as a string
[ugav).

@ Based on the transitions of M, G, will have rules that ensure

[ugav] > [WqaV] ifandonlyif (q,uav) 1\'71 (¢ ,u'dV).
M

@ Thus M accepts the input x if and only if for some u,v € £*:

[gox] g>* [UGaceV]

— M -—
e e oy . .
School of Science Aalto Universi ity / Dept. Computer Science

18/48

The rules in Gy, comprise three types:

1. Rules with which one can derive from the start variable S any

string of form x[gox], where x € £* and [, 'go’ and ’|’ are variables
in GM.

2. Rules that allow one to derive from the string [gox] a string
[UqaccV] if and only if M accepts x.
3. Rules that enable one to rewrite any string of form [ugaccV] to the
empty string.
Deriving a string x € L(M) can then be done as follows:

@) 2) 3)
S =" x[gox] =" x[ugaccv] =" x

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science

Aalto University / Dept. Computer Science
19/48

Let us thus define the grammar G = (V,X, P, S), where
V=T\X)UQU{S,T,[,),EL,Er} U{X, | a € £}

and the rules in P include the following three sets:

1. Producing the initial configuration:

S — Tlqo]

T — €

T — aTX, (aeX)
X, [qo — [qua (a S E)
X.b — bX, (a,beX)
X,] — 4 (a€k)

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto University / Dept. Computer Science

20/48

2. Simulating the transitions of M (a,b € T, c e TU{ [}):
Transitions: Rules:
8(¢,a) = (¢',b,R) qa — bq
d(g,a) = (¢,b,L) cgqa — g'cb
8(¢,>) = (¢,>R) a — ¢
8(¢;9) = (¢ ,b,R) q — bq
8(¢,9) = (¢',b,L) cql — g'cb]
8(¢,;9) = (¢',9,L) cql — 4

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto Universi ity / Dept. Computer Science
21/48

3. Emptying an accepting configuration:
Gacc — ELER
Gacc| — Er
aE; — Ep (a & F)
[EL — ¢
Era — Epg (a S F)
ER] — &

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto University / Dept. Computer Science
22/48

11.3 Context-sensitive grammars

An unrestricted grammar is context-sensitive if all its rules are of
form @ — @', where || > |®|, or S — €, where S is the start
variable.

In addition, it is required that if the grammar has the rule S — &,
then the start variable S does not occur on the right-hand side of
any rule.

A language L is context-sensitive if it can be generated with some
context-sensitive grammar.

A normal form for context-sensitive grammars: Each
context-sensitive language can be generated with a grammar
whose rules are of form § — € and AP — a®p, where A is a
variable and ® # €.

A rule 0AP — ampP can be interpreted as the application of a rule
A — o “in the context” a._ .

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto University / Dept. Computer Science

23/48

Theorem 11.4

A language L is context-sensitive if and only if it can be recognised
with a non-deterministic Turing machine that does not use more tape
space than was already allocated for the input.

@ The machines in Theorem 11.4 are called linear bounded
automata.

@ ltis an open problem whether the non-determinism in Theorem
11.4 is necessary or not. (The “LBA ?= DLBA” problem.)

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto Universi ity / Dept. Computer Science
24/48

11.4 Recap: The Chomsky hierarchy

2 - {d* |k >0}

A classification of grammars,
languages generated by grammars
and recogniser automata classes:
Type-0: unrestricted grammars /
semi-decidable languages / Turing
machines

Type-1: context-sensitive grammars /
context-sensitive languages / linear
bounded automata

Type-2: context-free grammars /
context-free languages / pushdown
automata

Type-3: right and left linear grammars
/ regular languages / finite automata

A

Aalto University
School of Science

€S-C2160 Theory of Computation / Lecture 11
Aalto University / Dept. Computer Science
25/48

* A Glimpse Beyond: Computational Complexity

School of Science Aalto Universi ity / Dept. Computer Science
26/48

A Aalto University ©S-C2160 Theory of Computation / Lecture 11

* Computational complexity

@ So far: only what is decidable (solvable with computers) and what
is not.

@ But some problems are “more decidable than others”.

@ Forinstance, finding a smallest element in an array is/seems
much easier than solving sudokus.

10 16 12 15 151
102 1 1413 5] 10 16

) 3 T 2 9 6 N3
o T 9 1 5

16 [11 1 2
1 u|s
2 0 [305

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto University / Dept. Computer Science

27/48

@ In fact, the set of decidable problems can be divided in many
smaller complexity classes:

@ P — problems that can be solved in recursively
enumerable

polynomial time (= always efficiently)

with deterministic Turing machines / recursive

algorithms. EXPTIME
@ NP — problems that can be solved in PSPACE
polynomial time with non-deterministic NP

Turing machines. @
———)

@ PSPACE — problems that can be solved
with a polynomial amount of extra space
(possibly in exponential time).

@ EXPTIME — problems that can be
solved in exponential time.

@ and many more...

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto University / Dept. Computer Science
28/48

Example: a nontrivial, but efficiently solvable problem
Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V,E), where U = {uy,...,u, },
V={vi,...,vp},and ECU X V.
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

o, O
=20
G0

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto Universi ity / Dept. Computer Science

29/48

Example: a nontrivial, but efficiently solvable problem
Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V,E), where U = {uy,...,u, },
V={vi,...,vp},and ECU X V.
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

1. Polynomial-time reducing it to a MAXFLOW instance so that:
the MAXFLOW instance has a flow of n units if and only if
the PERFECT MATCHING instance has a perfect matching.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto Universi ity / Dept. Computer Science
3048

Example: a nontrivial, but efficiently solvable problem
Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V,E), where U = {uy,...,u, },
V={vi,...,vp},and ECU X V.
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

efficient
algorithm

for MAXFLOW
(e.g Edmonds—Karp)

We can solve a PERFECT MATCHING instance by

1. Polynomial-time reducing it to a MAXFLOW instance so that:
the MAXFLOW instance has a flow of n units if and only if
the PERFECT MATCHING instance has a perfect matching.

2. Solving the resulting MAXFLOW instance.
3. The reduction is linear-time and Edmonds-Karp alg. works in O(VE?).

CS-C2160 Theory of Computation / Lecture 11

Aalto University
School of Science Aalto Universi ity / Dept. Computer Science

31/48

Example: a not-so efficiently solvable problem

Definition (propositional satisfiability, SAT)

INSTANCE: A Boolean formula ¢ in conjunctive normal form.
QUESTION: Is there a truth assignment that satisfies ¢?

4

() A (—xVy) A (mxV —z) A (—x V -y V —z) is satisfiable
with {x — true,y — true,z — false}.

() A (~xVy) A (—xV —z) A (—x V -y V z) s unsatisfiable.

@ Even the best known SAT algorithms, with sophisticated pruning
technigues can perform very badly on some instances
(although they can solve many relevant problems efficiently).

@ No polynomial-time algorithm for SAT is known despite several
decades of effort in trying to find one.

CS-C2160 Theory of Computation / Lecture 11

Aalto University
School of Science Aalto University / Dept. Computer Science
32148

Problem class NP (Non-deterministic Polynomial time)
Two alternative ways to characterise problems in NP:

1. Problems that can be solved in polynomial time with
non-deterministic Turing machines (= algorithms that can guess
perfectly).

2. Problems whose solutions (when they exist) are

» reasonably small (i.e., of polynomial size), and
» easy to check (i.e., in polynomial time).
but not necessarily easy to find (or prove non-existent)!

PERFECT SAT TRAVELLING GENERALISED

MATCHING SALESPERSON __ SUDOKUS _
W @ vyv-a)a N e

2N (—xV =y VYA
7= VWV I)A

@ ®), (yV-wV-z)A

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto University / Dept. Computer Science

33/48

NP-complete problems

@ A problem A in NP is NP-complete if every other problem B in NP
can be reduced to it with a polynomial time computable reduction.

Instance of Instance of
problem B NP-complete
in NP . problem A
polynomial
x ——stime reduction R(x)

R

Property: x has a solution in B if and only if R(x) has a solution in A.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto Universi ity / Dept. Computer Science

34/48

NP-complete problems

@ A problem A in NP is NP-complete if every other problem B in NP
can be reduced to it with a polynomial time computable reduction.

(Efficient algorithm for B)
Instance of Instance of
problem B NP-complete
in NP polynomial problem A efficient
x —t=time reduction R(x) algorithm — solution
R for A
N J

Property: x has a solution in B if and only if R(x) has a solution in A.
1> If an NP-complete problem A can be solved in polynomial time,
then all the problems in NP can.

NP-complete problems are the most difficult ones in NP!
We do not know(!!l) whether NP-complete problems can be
solved efficiently or not.

Iy
(I

CS-C2160 Theory of Computation / Lecture 11

Aalto University
School of Science Aalto University / Dept. Computer Science
35/48

The Cook-Levin theorem
Theorem (S. A. Cook 1971, L. Levin 1973)

SAT is NP-complete.

| £Y5

Stephen Cook (1939-) Leonid Levin (1948-) Richard Karp (1935-)

@ R. Karp soon (1972) listed the next 21 NP-complete problems.

@ Since then, 1000’s of problems have been shown NP-complete.

@ E.g. TRAVELLING SALESPERSON, GENERALISED SUDOKUS
etc. are NP-complete.

@ Classic text: Garey and Johnson (1979): Computers and
Intractability: A Guide to the Theory of NP-Completeness.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto Universi ity / Dept. Computer Science

36/48

How to prove a new problem NP-complete?
Given: a new problem C that you suspect NP-complete.
To prove that C is NP-complete:
1. show that Cis in NP,
2. take any existing NP-complete problem A, and
3. reduce A to your problem C.

Instance of Instance of
NP-complete your new

problem A polynomial problem C'
x time reduction S(x)
S

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto Universi ity / Dept. Computer Science

37/48

How to prove a new problem NP-complete?
Given: a new problem C that you suspect NP-complete.
To prove that C is NP-complete:
1. show that Cis in NP,
2. take any existing NP-complete problem A, and
3. reduce A to your problem C.

Instance of Instance of Instance of
problem B NP-complete your new

in NP polynomial problem A polynomial problem C'
x ——={time reduction R(x) time reduction S(R(x))
R S

Polynomial time reductions compose: any B in NP reduces to C!
1> Your problem C is NP-complete.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto University / Dept. Computer Science
38/48

How to prove a new problem NP-complete?
Given: a new problem C that you suspect NP-complete.
To prove that C is NP-complete:
1. show that Cis in NP,
2. take any existing NP-complete problem A, and
3. reduce A to your problem C.

Efficient algorithm for B
Instance of Instance of Instance of
problem B NP-complete your new

in NP polynomial problem A polynomial problem C'
x time reduction R(x) time reduction S(R(x))
R S

Polynomial time reductions compose: any B in NP reduces to C!
1> Your problem C is NP-complete.
1<y If your problem C can be solved in polynomial time,

then so can A and all the problems in NP.

efficient
algorithm
for C'

solution

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto University / Dept. Computer Science
39/48

Proving NP-completeness: an example
Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a
network consists of (i) a finite set of students and (ii) a symmetric,
binary “X knows Y” relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students,
none of whom know each other?

with K =37

CS-C2160 Theory of Computation / Lecture 11

Aalto University
School of Science Aalto Universi ity / Dept. Computer Science

40148

Proving NP-completeness: an example
Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a
network consists of (i) a finite set of students and (ii) a symmetric,
binary “X knows Y” relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students,
none of whom know each other?

with K =37

CS-C2160 Theory of Computation / Lecture 11

Aalto University
School of Science Aalto Universi ity / Dept. Computer Science

a1/48

Proving NP-completeness: an example
Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a
network consists of (i) a finite set of students and (ii) a symmetric,
binary “X knows Y” relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students,
none of whom know each other?

with K =37

Definition (INDEPENDENT SET)

INSTANCE: An undirected graph G = (V,E) and an integer K.
QUESTION: Is there an independent set I C V with |I| = K?

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto University / Dept. Computer Science
42/48

INDEPENDENT SET is NP-complete. I

Proof

Reduction from 3SAT.
The SAT formula ¢: The corresponding graph G with K = 3:
(x1 V X3 \/)C3) VAN
(mx1 Vo V—xs) A
(ﬂxl V X \/X3)

1. If ¢ is satisfiable, then G has an independent set of size K.
2. If G has an independent set of size K, then ¢ is satisfiable.

= 0 is satisfiable if and only if G has an independent set of size K.

v

1" If we can solve INDEPENDENT SET efficiently, then we can
solve SAT and all other problems in NP efficiently as well.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto Universi ity / Dept. Computer Science

43/48

INDEPENDENT SET is NP-complete. I

Proof

Reduction from 3SAT.
The SAT formula ¢: The corresponding graph G with K = 3:
()C] V X3 \/)C3) AN
(mx1 Vxa Voxs) A
(ﬂxl VX \/X3)

1. If ¢ is satisfiable, then G has an independent set of size K.
2. If G has an independent set of size K, then ¢ is satisfiable.

= 0 is satisfiable if and only if G has an independent set of size K.

v

1" If we can solve INDEPENDENT SET efficiently, then we can
solve SAT and all other problems in NP efficiently as well.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto Universi ity / Dept. Computer Science

a4/48

INDEPENDENT SET is NP-complete. I

Proof

Reduction from 3SAT.
The SAT formula ¢: The corresponding graph G with K = 3:
(x1 V xo \/)C3) VAN

(—x1 Vxa Voxs) A
(ﬁxl V X2 \/X3)

1. If ¢ is satisfiable, then G has an independent set of size K.
2. If G has an independent set of size K, then ¢ is satisfiable.

= 0 is satisfiable if and only if G has an independent set of size K.

v

1" If we can solve INDEPENDENT SET efficiently, then we can
solve SAT and all other problems in NP efficiently as well.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto Universi ity / Dept. Computer Science

4548

INDEPENDENT SET is NP-complete. I

Proof

Reduction from 3SAT.
The SAT formula ¢: The corresponding graph G with K = 3:
(x1 V X3 \/)C3) VAN
(mx1 Vo V—xs) A
(ﬂxl V X \/X3)

1. If ¢ is satisfiable, then G has an independent set of size K.
2. If G has an independent set of size K, then ¢ is satisfiable.

= 0 is satisfiable if and only if G has an independent set of size K.

v

1" If we can solve INDEPENDENT SET efficiently, then we can
solve SAT and all other problems in NP efficiently as well.

Aalto University ©S-C2160 Theory of Computation / Lecture 11
School of Science Aalto Universi ity / Dept. Computer Science

46148

NP-completeness: Significance

@ Can NP-complete problems be solved in polynomial time?

One of the seven 1M$ Clay Mathematics Institute Millenium Prize
problems, see
http://www.claymath.org/millennium-problems/
@ What to do when a problem is NP-complete?
» Attack special cases that occur in practice
» Develop backtracking search algorithms with efficient heuristics
and pruning techniques
Develop approximation algorithms
Apply incomplete local search methods

vV vy

Aalto University ©S-C2160 Theory of Computation / Lecture 11
A School of Science Aalto Universi ity / Dept. Computer Science
47/48

http://www.claymath.org/millennium-problems/

Some further courses:
@ CS-E3190 Principles of Algorithmic Techniques

@ CS-E4530 Computational Complexity Theory
@ CS-E4320 Cryptography and Data Security

@ andsoon...

Aalto University ©S-C2160 Theory of Computation / Lecture 11

School of Science Aalto University / Dept. Computer Science
48/a8

	Rice's Theorem
	General Grammars
	Unrestricted grammars
	Context-sensitive grammars
	Recap: The Chomsky hierarchy

	* A Glimpse Beyond: Computational Complexity

