

School of Science

CS-C2160 Theory of Computation

Lecture 11: Rice's Theorem, General Grammars

Pekka Orponen Aalto University Department of Computer Science

Spring 2021

Topics:

- Rice's Theorem
- Unrestricted grammars
- ... and their relationship to Turing machines
- Context-sensitive grammars
- * A glimpse beyond: Computational complexity

Recap

- Church–Turing thesis: Intuitive notion of algorithms ≡ Turing machines.
- Formal language \equiv Yes/No decision problem.
- A language is semi-decidable (also called recursively enumerable) if it can be recognised by some Turing machine.
- A language is decidable (also called recursive) if it can be recognised by some machine that halts on all inputs.
- A language is undecidable if it is not decidable.
- An undecidable language may still be semi-decidable.

- The "acceptance" decision problem for Turing machines is Given a Turing machine M and a string w. Does M accept w?
- The formal language representing this is the universal language

 $U = \{c_M w \mid M \text{ is a TM and } M \text{ accepts } w\}.$

• The language U is semi-decidable but not decidable.

Rice's Theorem

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

11.1 Rice's theorem

- Rice's Theorem states that *all* decision problems concerning the languages recognised by Turing machines¹ are undecidable.
- Let us denote the family of all semi-decidable (i.e. recursively enumerable) languages by **RE**.
- A semantic property² S of Turing machines is any family of semi-decidable languages, i.e. S ⊆ RE.
- A machine *M* has property **S** if $\mathcal{L}(M) \in \mathbf{S}$.
- Examples of semantic properties:
 - $\blacktriangleright \mathbf{NE} = \{L \subseteq \{0,1\}^* \mid L \neq \emptyset\}$
 - ALLSTRINGS = $\{L \subseteq \{0,1\}^* \mid L = \{0,1\}^*\} = \{\{0,1\}^*\}$
 - EVEN = $\{L \subseteq \{0,1\}^* \mid |x| \text{ is even for all } x \in L\}$
 - **ONLY**_w = { $L \subseteq \{0,1\}^* \mid x \in L \Leftrightarrow x = w$ } = {{ $w\}}$
 - **EMPTYSET** = $\{L \subseteq \{0,1\}^* \mid L = \emptyset\} = \{\emptyset\}$

¹i.e. the input-output behaviours of computer programs ²or "specification"

- A semantic property is *trivial* if
 - $\mathbf{S} = \emptyset$ (no machine has this property) or
 - S = RE (all machines have this property)
- A property S is *decidable* if the language

 $codes(\mathbf{S}) = \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \in \mathbf{S}\}$

is decidable.

 In other words: A semantic property is decidable if one can algorithmically decide whether a given Turing machine has the property.³

Theorem 11.1 (Rice 1953)

All non-trivial semantic properties of Turing machines are undecidable.

³equivalently "a given computer program matches the specification"

Example:

• Let us consider the *non-emptiness problem* for Turing machines from Lecture 10: *Given a Turing machine M.*

Does the machine accept any strings?

- The corresponding semantic property is $NE = \{L \in RE \mid L \neq \emptyset\}.$
- The property is non-trivial because:
 - ▶ $\mathbf{NE} \neq \emptyset$ (witness any semi-decidable language $L \neq \emptyset$)
 - NE \subseteq RE (since $\emptyset \in$ RE \setminus NE)
- Thus by Rice's theorem, the language

 $codes(NE) = \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \in NE\} \\ = \{c_M \mid M \text{ is a Turing machine and } \mathcal{L}(M) \neq \emptyset\}$

is undecidable. (Note that this is precisely the result in Lemma 10.5.)

Theorem 11.1

All non-trivial semantic properties of Turing machines are undecidable.

Proof

- A simple generalisation of the proof of Lemma 10.5.
- Let S be any non-trivial semantic property.
- We can assume that Ø ∉ S; in other words, machines that recognise the empty language do not have the property.^a
- As S is non-trivial, there is a Turing machine M_S that has the property S, i.e. one for which L(M_S) ≠ Ø and L(M_S) ∈ S hold.

^{*a*}If $\emptyset \in \mathbf{S}$, we can first show that the property $\bar{\mathbf{S}} = \mathbf{RE} \setminus \mathbf{S}$ is undecidable and then conclude that also \mathbf{S} is undecidable because if we could decide codes(\mathbf{S}), we could also decide codes($\bar{\mathbf{S}}$) as $c_M \in \text{codes}(\bar{\mathbf{S}})$ iff $c_M \notin \text{codes}(\mathbf{S})$.

- We now prove that codes(S) is undecidable by reducing the undecidable language *U* to it.
- Let (M, w) be any instance of the Turing machine acceptance problem, encoded as the string $c_M w$.
- From input *c_Mw* construct (the code for) a Turing machine *M^w* that on any input string *x* works as follows:
 - First run machine *M* on string *w*, and then
 - if M accepts w, run $M_{\mathbf{S}}$ on x
 - if *M* rejects *w* (or doesn't halt), reject *x* (or don't halt)
- Now *M^w* recognises the language

$$\mathcal{L}(M^w) = \begin{cases} \mathcal{L}(M_{\mathbf{S}}) & \text{if } w \in \mathcal{L}(M) \\ \emptyset & \text{if } w \notin \mathcal{L}(M) \end{cases}$$

- Thus *M* accepts *w* if and only if M^w has the property **S**. That is, $c_M w \in U$ if and only if $c_{M^w} \in \text{codes}(\mathbf{S})$.
- $\bullet~\mbox{Therefore},\,\mbox{codes}(S)$ is an undecidable language.

General Grammars

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 11/48

11.2 Unrestricted grammars

- A generalisation of context-free grammars.
- The left-hand sides of rules can now include multiple symbols.
- As will be shown, can generate all semi-decidable languages.

Definition 11.1

An unrestricted grammar is a quadruple^a

$$G = (V, \Sigma, P, S),$$

where

- V is a finite set of variables;
- Σ is a finite set, disjoint from *V*, of *terminals*;
- P ⊆ (V ∪ Σ)⁺ × (V ∪ Σ)^{*} is a finite set of *rules* (also called productions), where (V ∪ Σ)⁺ = (V ∪ Σ)^{*} \ {ε};
- $S \in V$ is the *start variable*.

A rule $(\omega, \omega') \in P$ is usually written as $\omega \to \omega'$.

^aNote the minor streamlining of the structure of the definition from Lecture 5.

• A string $\gamma \in (V \cup \Sigma)^*$ *yields* a string $\gamma' \in (V \cup \Sigma)^*$ in the grammar *G*, denoted by

$$\gamma \underset{G}{\Rightarrow} \gamma'$$

if

- the grammar contains a rule $\omega \to \omega'$ such that
- $\gamma = \alpha \omega \beta$ and $\gamma' = \alpha \omega' \beta$ for some $\alpha, \beta \in (V \cup \Sigma)^*$.
- A string $\gamma \in (V \cup \Sigma)^*$ *derives* a string $\gamma' \in (V \cup \Sigma)^*$ in the grammar *G*, denoted by

$$\gamma \underset{G}{\Rightarrow}^* \gamma$$

if there is a sequence of strings $\gamma_0, \gamma_1, \ldots, \gamma_n$ for some $n \ge 0$ such that

$$\gamma = \gamma_0, \qquad \gamma_0 \underset{G}{\Rightarrow} \gamma_1 \underset{G}{\Rightarrow} \dots \underset{G}{\Rightarrow} \gamma_n, \qquad \gamma_n = \gamma'.$$

• If the grammar *G* is clear from the context, we can simply write $\gamma \Rightarrow \gamma'$ and $\gamma \Rightarrow^* \gamma'$ instead of $\gamma \Rightarrow \gamma'$ and $\gamma \Rightarrow^* \gamma'$, respectively.

Example:

An unrestricted grammar for the non-context-free language $\{a^k b^k c^k \mid k \ge 0\}$:

S	\rightarrow	$LT \mid \varepsilon$	LA	\rightarrow	a
Т	\rightarrow	ABCT ABC	aA	\rightarrow	aa
BA	\rightarrow	AB	аB	\rightarrow	ab
СВ	\rightarrow	BC	bB	\rightarrow	bb
CA	\rightarrow	AC	bC	\rightarrow	bc
			cC	\rightarrow	сс

A derivation of string *aabbcc* in the grammar:

<u>S</u>	\Rightarrow	$L\underline{T} \Rightarrow LABC\underline{T}$	\Rightarrow	LAB <u>CA</u> BC	\Rightarrow	LA <u>BA</u> CBC
	\Rightarrow	LAAB <u>CB</u> C	\Rightarrow	<u>LA</u> ABBCC	\Rightarrow	<u>aA</u> BBCC
	\Rightarrow	a <u>aB</u> BCC	\Rightarrow	aa <u>bB</u> CC	\Rightarrow	aab <u>bC</u> C
	\Rightarrow	aabbcC	\Rightarrow	aabbcc		

Theorem 11.2

If a language L can be generated with an unrestricted grammar, then it can be recognised with a Turing machine.

Proof

Let $G = (V, \Sigma, P, S)$ be an unrestricted grammar generating language L. We can design a two-tape nondeterministic Turing machine M_G recognising L as follows:

- On tape 1 the machine stores a copy of the input string.
- Tape 2 holds the current string that the machine tries to rewrite to match the one on tape 1.
- In the beginning, the machine writes the start variable *S* on tape 2.

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science The computation of machine M_G is composed of stages. In each stage, the machine:

- 1. Moves the read/write-head of tape 2 *nondeterministically* to *some* position on the tape.
- 2. Chooses *nondeterministically* a rule in *G* that it tries to apply at the selected position. (The rules of *G* are encoded in the transitions of M_{G} .)
- 3. If the left-hand side of the chosen rule matches the symbols on the tape, M_G rewrites these symbols with the ones in the right-hand side of the rule. Otherwise M_G rejects.
- 4. At the end of the stage, M_G compares the strings on tapes 1 and 2. If they are the same, the machine acceps and halts. Otherwise, the machine executes the next stage (loops back to step 1).

Theorem 11.3

If a language L can be recognised with a Turing machine, then it can be generated with an unrestricted grammar.

Proof

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ be a (deterministic one-tape) Turing machine recognising language *L*. We can design an unrestricted grammar G_M generating *L* based on the following idea.

- The variables of *G_M* include (among others) symbols for all the states *q* ∈ *Q* of *M*.
- A configuration $(q, u\underline{a}v)$ of M will be represented as a string [uqav].
- Based on the transitions of M, G_M will have rules that ensure $[uqav] \underset{G_M}{\Rightarrow} [u'q'a'v']$ if and only if $(q, u\underline{a}v) \underset{M}{\vdash} (q', u'\underline{a'}v')$.
- Thus *M* accepts the input *x* if and only if for some $u, v \in \Sigma^*$:

$$[q_0 x] \underset{G_M}{\Rightarrow}^* [uq_{acc} v]$$

The rules in G_M comprise three types:

- 1. Rules with which one can derive from the start variable *S* any string of form $x[q_0x]$, where $x \in \Sigma^*$ and '[', 'q_0' and ']' are variables in G_M .
- 2. Rules that allow one to derive from the string $[q_0x]$ a string $[uq_{acc}v]$ if and only if *M* accepts *x*.
- 3. Rules that enable one to rewrite any string of form $[uq_{acc}v]$ to the empty string.

Deriving a string $x \in \mathcal{L}(M)$ can then be done as follows:

$$S \stackrel{(1)}{\Rightarrow^*} x[q_0 x] \stackrel{(2)}{\Rightarrow^*} x[uq_{\mathsf{acc}} v] \stackrel{(3)}{\Rightarrow^*} x$$

Let us thus define the grammar $G = (V, \Sigma, P, S)$, where

$$V = (\Gamma \setminus \Sigma) \cup Q \cup \{S, T, [,], E_L, E_R\} \cup \{X_a \mid a \in \Sigma\}$$

and the rules in P include the following three sets:

1. Producing the initial configuration:

$$egin{array}{cccc} S & o & T[q_0] \ T & o & m{\epsilon} \ T & o & aTX_a & (a \in \Sigma) \ X_a[q_0 & o & [q_0X_a & (a \in \Sigma) \ X_ab & o & bX_a & (a,b \in \Sigma) \ X_a] & o & a] & (a \in \Sigma) \end{array}$$

2. Simulating the transitions of *M* ($a, b \in \Gamma$, $c \in \Gamma \cup \{ [\} \}$):

Transitions:

Rules:

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 3. Emptying an accepting configuration:

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

11.3 Context-sensitive grammars

- An unrestricted grammar is *context-sensitive* if all its rules are of form ω → ω', where |ω'| ≥ |ω|, or S → ε, where S is the start variable.
- In addition, it is required that if the grammar has the rule S → ε, then the start variable S does not occur on the right-hand side of any rule.
- A language *L* is *context-sensitive* if it can be generated with some context-sensitive grammar.
- A normal form for context-sensitive grammars: Each context-sensitive language can be generated with a grammar whose rules are of form $S \rightarrow \varepsilon$ and $\alpha A \beta \rightarrow \alpha \omega \beta$, where A is a variable and $\omega \neq \varepsilon$.
- A rule $\alpha A\beta \rightarrow \alpha \omega \beta$ can be interpreted as the application of a rule $A \rightarrow \omega$ "in the context" $\alpha_{-}\beta$.

Theorem 11.4

A language L is context-sensitive if and only if it can be recognised with a non-deterministic Turing machine that does not use more tape space than was already allocated for the input.

- The machines in Theorem 11.4 are called *linear bounded automata*.
- It is an open problem whether the non-determinism in Theorem 11.4 is necessary or not. (The "LBA ?= DLBA" problem.)

11.4 Recap: The Chomsky hierarchy

A classification of grammars, languages generated by grammars and recogniser automata classes: **Type-0:** unrestricted grammars / semi-decidable languages / Turing machines

Type-1: context-sensitive grammars / context-sensitive languages / linear bounded automata

Type-2: context-free grammars / context-free languages / pushdown automata

Type-3: right and left linear grammars / regular languages / finite automata

* A Glimpse Beyond: Computational Complexity

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 26/48

* Computational complexity

- So far: only what is decidable (solvable with computers) and what is not.
- But some problems are "more decidable than others".
- For instance, finding a smallest element in an array is/seems much easier than solving sudokus.

102				
(

10		16			12				15				4	5	1
	11		14	13			5	10				16			
			12									11			
	1		9			7	4			11	8	13		12	
5	10	14				11				9		3		4	
		9	7		4	6					15	1	11	13	16
				16		5	3						2	15	9
			6				7	2							
14		13		1		2		9		16		8	6		
16				7	14	9		8	1		2	5			
2		8			6	4		13	3		5	14		1	
			4								7				
			16	14						1		12			7
			11						14	5					
		2			10		6	11	7		13	9	5		
3		12	15									2		10	

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

- In fact, the set of decidable problems can be divided in many smaller *complexity classes*:
 - P problems that can be solved in polynomial time (≈ always efficiently) with deterministic Turing machines / algorithms.
 - **NP** problems that can be solved in polynomial time with *non-deterministic Turing machines*.
 - **PSPACE** problems that can be solved with a polynomial amount of extra space (possibly in exponential time).
 - **EXPTIME** problems that can be solved in exponential time.
 - and many more...

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, \dots, u_n\}$, $V = \{v_1, \dots, v_n\}$, and $E \subseteq U \times V$. QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 29/48

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, ..., u_n\}$, $V = \{v_1, ..., v_n\}$, and $E \subseteq U \times V$. QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

1. *Polynomial-time reducing* it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of *n* units if and only if the PERFECT MATCHING instance has a perfect matching.

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph B = (U, V, E), where $U = \{u_1, ..., u_n\}$, $V = \{v_1, ..., v_n\}$, and $E \subseteq U \times V$. QUESTION: Does *B* have a *perfect matching*, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

- 1. *Polynomial-time reducing* it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of *n* units if and only if the PERFECT MATCHING instance has a perfect matching.
- 2. Solving the resulting MAXFLOW instance.
- 3. The reduction is linear-time and Edmonds-Karp alg. works in $O(VE^2)$.

Example: a not-so efficiently solvable problem

Definition (propositional satisfiability, SAT)

INSTANCE: A Boolean formula ϕ in conjunctive normal form. QUESTION: Is there a truth assignment that satisfies ϕ ?

Example

$$(x) \land (\neg x \lor y) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor \neg z)$$
 is satisfiable
with $\{x \mapsto \mathbf{true}, y \mapsto \mathbf{true}, z \mapsto \mathbf{false}\}$.

 $(x) \land (\neg x \lor y) \land (\neg x \lor \neg z) \land (\neg x \lor \neg y \lor z)$ is unsatisfiable.

- Even the best known SAT algorithms, with sophisticated pruning techniques can perform very badly on some instances (although they can solve many relevant problems efficiently).
- No polynomial-time algorithm for SAT is known despite several decades of effort in trying to find one.

Problem class NP (Non-deterministic Polynomial time)

Two alternative ways to characterise problems in NP:

- Problems that can be solved in *polynomial time* with *non-deterministic* Turing machines (≈ algorithms that can guess perfectly).
- 2. Problems whose solutions (when they exist) are
 - reasonably small (i.e., of polynomial size), and
 - easy to check (i.e., in polynomial time).

but not necessarily easy to find (or prove non-existent)!

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science

NP-complete problems

• A problem *A* in **NP** is **NP**-complete if every other problem *B* in **NP** can be reduced to it with a polynomial time computable reduction.

Property: *x* has a solution in *B* if and only if R(x) has a solution in *A*.

NP-complete problems

• A problem A in **NP** is **NP**-complete if every other problem B in **NP** can be reduced to it with a polynomial time computable reduction.

Property: *x* has a solution in *B* if and only if R(x) has a solution in *A*.

- If an **NP**-complete problem *A* can be solved in polynomial time, then *all the problems in* **NP** *can*.
- **NP**-complete problems are the *most difficult ones* in **NP**!
- We *do not know*(!!!) whether **NP**-complete problems can be solved efficiently or not.

The Cook–Levin theorem

Theorem (S. A. Cook 1971, L. Levin 1973)

SAT is NP-complete.

Stephen Cook (1939–)

Leonid Levin (1948-)

Richard Karp (1935-)

- R. Karp soon (1972) listed the next 21 NP-complete problems.
- Since then, 1000's of problems have been shown NP-complete.
- E.g. TRAVELLING SALESPERSON, GENERALISED SUDOKUS etc. are **NP**-complete.
- Classic text: Garey and Johnson (1979): Computers and Intractability: A Guide to the Theory of NP-Completeness.

Aalto University School of Science

How to prove a new problem NP-complete?

Given: a new problem C that you suspect **NP**-complete. To prove that C is **NP**-complete:

- 1. show that C is in **NP**,
- 2. take any existing NP-complete problem A, and
- 3. reduce A to your problem C.

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept. Computer Science 37/48

How to prove a new problem NP-complete?

Given: a new problem C that you suspect **NP**-complete. To prove that C is **NP**-complete:

- 1. show that C is in **NP**,
- 2. take any existing NP-complete problem A, and
- 3. reduce A to your problem C.

Polynomial time reductions compose: any *B* in **NP** reduces to *C*! Nor problem *C* is **NP**-complete.

How to prove a new problem NP-complete?

Given: a new problem C that you suspect **NP**-complete. To prove that C is **NP**-complete:

- 1. show that C is in **NP**,
- 2. take any existing NP-complete problem A, and
- 3. reduce A to your problem C.

Polynomial time reductions compose: any B in NP reduces to C!

- Solution C is **NP**-complete.
- If your problem C can be solved in polynomial time, then so can A and all the problems in **NP**.

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.

QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

Definition (INDEPENDENT SET)

INSTANCE: An undirected graph G = (V, E) and an integer *K*. QUESTION: Is there an independent set $I \subseteq V$ with |I| = K?

CS-C2160 Theory of Computation / Lecture 11 Aalto University / Dept, Computer Science

INDEPENDENT SET is **NP**-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ : $(x_1 \lor x_2 \lor x_3) \land$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3) \land$ $(\neg x_1 \lor x_2 \lor x_3)$ The corresponding graph *G* with K = 3:

- 1. If ϕ is satisfiable, then *G* has an independent set of size *K*.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- $\Rightarrow \phi$ is satisfiable if and only if G has an independent set of size K.

INDEPENDENT SET is **NP**-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ : $(x_1 \lor x_2 \lor x_3) \land$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3) \land$ $(\neg x_1 \lor x_2 \lor x_3)$

- 1. If ϕ is satisfiable, then *G* has an independent set of size *K*.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- $\Rightarrow \phi$ is satisfiable if and only if G has an independent set of size K.

INDEPENDENT SET is **NP**-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ : $(x_1 \lor x_2 \lor x_3) \land$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3) \land$ $(\neg x_1 \lor x_2 \lor x_3)$ The corresponding graph *G* with K = 3:

- 1. If ϕ is satisfiable, then *G* has an independent set of size *K*.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- $\Rightarrow \phi$ is satisfiable if and only if G has an independent set of size K.

INDEPENDENT SET is **NP**-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ : $(x_1 \lor x_2 \lor x_3) \land$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3) \land$ $(\neg x_1 \lor x_2 \lor x_3)$ The corresponding graph *G* with K = 3:

- 1. If ϕ is satisfiable, then *G* has an independent set of size *K*.
- 2. If G has an independent set of size K, then ϕ is satisfiable.
- $\Rightarrow \phi$ is satisfiable if and only if G has an independent set of size K.

NP-completeness: Significance

• Can NP-complete problems be solved in polynomial time?

One of the seven 1M\$ Clay Mathematics Institute Millenium Prize problems, see

http://www.claymath.org/millennium-problems/

- What to do when a problem is NP-complete?
 - Attack special cases that occur in practice
 - Develop backtracking search algorithms with efficient heuristics and pruning techniques
 - Develop approximation algorithms
 - Apply incomplete local search methods
 - <u>►</u> ...

Some further courses:

- CS-E3190 Principles of Algorithmic Techniques
- CS-E4530 Computational Complexity Theory
- CS-E4320 Cryptography and Data Security
- and so on...

