CS-C2160 Theory of Computation

Lecture 11: Rice's Theorem, General Grammars
Pekka Orponen
Aalto University
Department of Computer Science
Spring 2021

Topics:

- Rice's Theorem
- Unrestricted grammars
- ... and their relationship to Turing machines
- Context-sensitive grammars
- * A glimpse beyond: Computational complexity

Recap

- Church-Turing thesis: Intuitive notion of algorithms \equiv Turing machines.
- Formal language \equiv Yes/No decision problem.
- A language is semi-decidable (also called recursively enumerable) if it can be recognised by some Turing machine.
- A language is decidable (also called recursive) if it can be recognised by some machine that halts on all inputs.
- A language is undecidable if it is not decidable.
- An undecidable language may still be semi-decidable.
- The "acceptance" decision problem for Turing machines is Given a Turing machine M and a string w. Does M accept w ?
- The formal language representing this is the universal language

$$
U=\left\{c_{M} w \mid M \text { is a TM and } M \text { accepts } w\right\} .
$$

- The language U is semi-decidable but not decidable.

Rice's Theorem

11.1 Rice's theorem

- Rice's Theorem states that all decision problems concerning the languages recognised by Turing machines ${ }^{1}$ are undecidable.
- Let us denote the family of all semi-decidable (i.e. recursively enumerable) languages by RE.
- A semantic property ${ }^{2} \mathbf{S}$ of Turing machines is any family of semi-decidable languages, i.e. $\mathbf{S} \subseteq \mathbf{R E}$.
- A machine M has property \mathbf{S} if $\mathcal{L}(M) \in \mathbf{S}$.
- Examples of semantic properties:
- $\mathbf{N E}=\left\{L \subseteq\{0,1\}^{*} \mid L \neq 0\right\}$
- ALLSTRINGS $=\left\{L \subseteq\{0,1\}^{*} \mid L=\{0,1\}^{*}\right\}=\left\{\{0,1\}^{*}\right\}$
- $\operatorname{EVEN}=\left\{L \subseteq\{0,1\}^{*}| | x \mid\right.$ is even for all $\left.x \in L\right\}$
- $\mathbf{O N L Y}_{w}=\left\{L \subseteq\{0,1\}^{*} \mid x \in L \Leftrightarrow x=w\right\}=\{\{w\}\}$
- EMPTYSET $=\left\{L \subseteq\{0,1\}^{*} \mid L=\emptyset\right\}=\{\emptyset\}$

[^0]- A semantic property is trivial if
- $\mathbf{S}=\emptyset$ (no machine has this property) or
- $\mathbf{S}=\mathbf{R E}$ (all machines have this property)
- A property \mathbf{S} is decidable if the language $\operatorname{codes}(\mathbf{S})=\left\{c_{M} \mid M\right.$ is a Turing machine and $\left.\mathcal{L}(M) \in \mathbf{S}\right\}$ is decidable.
- In other words: A semantic property is decidable if one can algorithmically decide whether a given Turing machine has the property. ${ }^{3}$

Theorem 11.1 (Rice 1953)

All non-trivial semantic properties of Turing machines are undecidable.

[^1]
Example:

- Let us consider the non-emptiness problem for Turing machines from Lecture 10:

Given a Turing machine M.
Does the machine accept any strings?

- The corresponding semantic property is $\mathbf{N E}=\{L \in \mathbf{R E} \mid L \neq \emptyset\}$.
- The property is non-trivial because:
- NE $\neq \emptyset$ (witness any semi-decidable language $L \neq \emptyset$)
- NE $\subsetneq \mathbf{R E}$ (since $\emptyset \in \mathbf{R E} \backslash \mathbf{N E}$)
- Thus by Rice's theorem, the language

$$
\begin{aligned}
\operatorname{codes}(\mathbf{N E}) & =\left\{c_{M} \mid M \text { is a Turing machine and } \mathcal{L}(M) \in \mathbf{N E}\right\} \\
& =\left\{c_{M} \mid M \text { is a Turing machine and } \mathcal{L}(M) \neq \emptyset\right\}
\end{aligned}
$$

is undecidable. (Note that this is precisely the result in Lemma 10.5.)

Theorem 11.1

All non-trivial semantic properties of Turing machines are undecidable.

Proof

- A simple generalisation of the proof of Lemma 10.5.
- Let \mathbf{S} be any non-trivial semantic property.
- We can assume that $\emptyset \notin \mathbf{S}$; in other words, machines that recognise the empty language do not have the property. ${ }^{a}$
- As \mathbf{S} is non-trivial, there is a Turing machine $M_{\mathbf{S}}$ that has the property \mathbf{S}, i.e. one for which $\mathcal{L}\left(M_{\mathbf{S}}\right) \neq \emptyset$ and $\mathcal{L}\left(M_{\mathbf{S}}\right) \in \mathbf{S}$ hold.

[^2]- We now prove that $\operatorname{codes}(\mathbf{S})$ is undecidable by reducing the undecidable language U to it.
- Let (M, w) be any instance of the Turing machine acceptance problem, encoded as the string $c_{M} w$.
- From input $c_{M} w$ construct (the code for) a Turing machine M^{w} that on any input string x works as follows:
- First run machine M on string w, and then
- if M accepts w, run $M_{\mathbf{S}}$ on x
- if M rejects w (or doesn't halt), reject x (or don't halt)
- Now M^{w} recognises the language

$$
\mathcal{L}\left(M^{w}\right)= \begin{cases}\mathcal{L}\left(M_{\mathbf{S}}\right) & \text { if } w \in \mathcal{L}(M) \\ \emptyset & \text { if } w \notin \mathcal{L}(M)\end{cases}
$$

- Thus M accepts w if and only if M^{w} has the property \mathbf{S}. That is, $c_{M} w \in U$ if and only if $c_{M^{w}} \in \operatorname{codes}(\mathbf{S})$.
- Therefore, $\operatorname{codes}(\mathbf{S})$ is an undecidable language.

General Grammars

11.2 Unrestricted grammars

- A generalisation of context-free grammars.
- The left-hand sides of rules can now include multiple symbols.
- As will be shown, can generate all semi-decidable languages.

Definition 11.1

An unrestricted grammar is a quadruple ${ }^{a}$

$$
G=(V, \Sigma, P, S),
$$

where

- V is a finite set of variables;
- Σ is a finite set, disjoint from V, of terminals;
- $P \subseteq(V \cup \Sigma)^{+} \times(V \cup \Sigma)^{*}$ is a finite set of rules (also called productions), where $(V \cup \Sigma)^{+}=(V \cup \Sigma)^{*} \backslash\{\varepsilon\}$;
- $S \in V$ is the start variable.

A rule $\left(\omega, \omega^{\prime}\right) \in P$ is usually written as $\omega \rightarrow \omega^{\prime}$.
${ }^{a}$ Note the minor streamlining of the structure of the definition from Lecture 5.

- A string $\gamma \in(V \cup \Sigma)^{*}$ yields a string $\gamma^{\prime} \in(V \cup \Sigma)^{*}$ in the grammar G, denoted by

$$
\underset{G}{\Rightarrow} \gamma^{\prime}
$$

if

- the grammar contains a rule $\omega \rightarrow \omega^{\prime}$ such that
- $\gamma=\alpha \omega \beta$ and $\gamma^{\prime}=\alpha \omega^{\prime} \beta$ for some $\alpha, \beta \in(V \cup \Sigma)^{*}$.
- A string $\gamma \in(V \cup \Sigma)^{*}$ derives a string $\gamma^{\prime} \in(V \cup \Sigma)^{*}$ in the grammar G, denoted by

$$
\gamma \underset{G}{\Rightarrow} \gamma^{\prime}
$$

if there is a sequence of strings $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}$ for some $n \geq 0$ such that

$$
\gamma=\gamma_{0}, \quad \gamma_{0} \underset{G}{\Rightarrow} \gamma_{1} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{n}, \quad \gamma_{n}=\gamma^{\prime} .
$$

- If the grammar G is clear from the context, we can simply write $\gamma \Rightarrow \gamma^{\prime}$ and $\gamma \Rightarrow^{*} \gamma^{\prime}$ instead of $\gamma \underset{G}{\Rightarrow} \gamma^{\prime}$ and $\gamma \underset{G}{\Rightarrow^{*}} \gamma^{\prime}$, respectively.

Example:

An unrestricted grammar for the non-context-free language $\left\{a^{k} b^{k} c^{k} \mid k \geq 0\right\}$:

S	$\rightarrow L T \mid \varepsilon$	$L A$	$\rightarrow a$
T	$\rightarrow A B C T \mid A B C$	$a A$	$\rightarrow a a$
$B A$	$\rightarrow A B$	$a B$	$\rightarrow a b$
$C B$	$\rightarrow B C$	$b B$	$\rightarrow b b$
$C A$	$\rightarrow A C$	$b C$	$\rightarrow b c$
		$c C$	$\rightarrow c c$

A derivation of string aabbcc in the grammar:

$$
\begin{aligned}
& \underline{S} \Rightarrow L \underline{T} \Rightarrow L A B C \underline{T} \Rightarrow L A B \underline{C A B C} \Rightarrow L A B A C B C \\
& \Rightarrow L A A B \underline{C B C} \quad \Rightarrow \quad \underline{L A A B B C C} \Rightarrow \underline{a A B B C C} \\
& \Rightarrow a \underline{a} B B C C \quad \Rightarrow a a \underline{b B} C C \quad \Rightarrow a a b \underline{b C C} \\
& \Rightarrow \text { aabbcc } \quad \Rightarrow \text { aabbcc }
\end{aligned}
$$

Theorem 11.2

If a language L can be generated with an unrestricted grammar, then it can be recognised with a Turing machine.

Proof

Let $G=(V, \Sigma, P, S)$ be an unrestricted grammar generating language L. We can design a two-tape nondeterministic Turing machine M_{G} recognising L as follows:

- On tape 1 the machine stores
 a copy of the input string.
- Tape 2 holds the current string that the machine tries to rewrite to match the one on tape 1.
- In the beginning, the machine writes the start variable S on tape 2.

The computation of machine M_{G} is composed of stages. In each stage, the machine:

1. Moves the read/write-head of tape 2 nondeterministically to some position on the tape.
2. Chooses nondeterministically a rule in G that it tries to apply at the selected position. (The rules of G are encoded in the transitions of M_{G}.)
3. If the left-hand side of the chosen rule matches the symbols on the tape, M_{G} rewrites these symbols with the ones in the right-hand side of the rule. Otherwise M_{G} rejects.
4. At the end of the stage, M_{G} compares the strings on tapes 1 and 2. If they are the same, the machine acceps and halts. Otherwise, the machine executes the next stage (loops back to step 1).

Theorem 11.3

If a language L can be recognised with a Turing machine, then it can be generated with an unrestricted grammar.

Proof

Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)$ be a (deterministic one-tape) Turing machine recognising language L. We can design an unrestricted grammar G_{M} generating L based on the following idea.

- The variables of G_{M} include (among others) symbols for all the states $q \in Q$ of M.
- A configuration ($q, u \underline{a} v$) of M will be represented as a string [uqav].
- Based on the transitions of M, G_{M} will have rules that ensure

$$
[u q a v] \underset{G_{M}}{\Rightarrow}\left[u^{\prime} q^{\prime} a^{\prime} v^{\prime}\right] \quad \text { if and only if } \quad(q, u \underline{a} v) \underset{M}{\vdash}\left(q^{\prime}, u^{\prime} \underline{a}^{\prime} v^{\prime}\right) .
$$

- Thus M accepts the input x if and only if for some $u, v \in \Sigma^{*}$:

$$
\left[q_{0} x\right] \underset{G_{M}}{\Rightarrow}{ }^{*}\left[u q_{\mathrm{acc}} v\right]
$$

The rules in G_{M} comprise three types:

1. Rules with which one can derive from the start variable S any string of form $x\left[q_{0} x\right]$, where $x \in \Sigma^{*}$ and '[', ' q_{0} ' and ']' are variables in G_{M}.
2. Rules that allow one to derive from the string $\left[q_{0} x\right]$ a string [$\left.u q_{\mathrm{acc}} v\right]$ if and only if M accepts x.
3. Rules that enable one to rewrite any string of form $\left[u q_{\mathrm{acc}} v\right]$ to the empty string.

Deriving a string $x \in \mathcal{L}(M)$ can then be done as follows:

$$
S \stackrel{(1)}{\Rightarrow}^{*} x\left[q_{0} x\right] \stackrel{(2)}{\Rightarrow}^{*} x\left[u q_{\mathrm{acc}} v\right] \stackrel{(3)}{\Rightarrow}^{*} x
$$

Let us thus define the grammar $G=(V, \Sigma, P, S)$, where

$$
V=(\Gamma \backslash \Sigma) \cup Q \cup\left\{S, T,[,], E_{L}, E_{R}\right\} \cup\left\{X_{a} \mid a \in \Sigma\right\}
$$

and the rules in P include the following three sets:

1. Producing the initial configuration:

$$
\begin{array}{lll}
S & \rightarrow T\left[q_{0}\right] & \\
T & \rightarrow \varepsilon & \\
T & \rightarrow a T X_{a} & \\
(a \in \Sigma) \\
X_{a}\left[q_{0}\right. & \rightarrow\left[q_{0} X_{a}\right. & \\
X_{a} b & \rightarrow b X_{a} & (a, b \in \Sigma) \\
\left.X_{a}\right] & \rightarrow a] & (a \in \Sigma)
\end{array}
$$

2. Simulating the transitions of $M(a, b \in \Gamma, c \in \Gamma \cup\{[\})$:

Transitions:

$$
\begin{aligned}
& \delta(q, a)=\left(q^{\prime}, b, R\right) \\
& \delta(q, a)=\left(q^{\prime}, b, L\right) \\
& \delta(q, \triangleright)=\left(q^{\prime}, \triangleright, R\right) \\
& \delta(q, \triangleleft)=\left(q^{\prime}, b, R\right) \\
& \delta(q, \triangleleft)=\left(q^{\prime}, b, L\right) \\
& \delta(q, \triangleleft)=\left(q^{\prime}, \triangleleft, L\right)
\end{aligned}
$$

Rules:

$$
\begin{array}{lll}
q a & \rightarrow b q^{\prime} \\
c q a & \rightarrow & q^{\prime} c b \\
q[& \rightarrow & {\left[q^{\prime}\right.} \\
q] & \left.\rightarrow b q^{\prime}\right] \\
c q] & \rightarrow & \left.q^{\prime} c b\right] \\
c q] & \left.\rightarrow q^{\prime} c\right]
\end{array}
$$

3. Emptying an accepting configuration:

$$
\begin{array}{llll}
q_{\text {acc }} & \rightarrow E_{L} E_{R} & \\
q_{\text {acc }}[& \rightarrow E_{R} & \\
a E_{L} & \rightarrow E_{L} & (a \in \Gamma) \\
{\left[E_{L}\right.} & \rightarrow \varepsilon & \\
E_{R} a & \rightarrow E_{R} & (a \in \Gamma) \\
\left.E_{R}\right] & \rightarrow \varepsilon &
\end{array}
$$

11.3 Context-sensitive grammars

- An unrestricted grammar is context-sensitive if all its rules are of form $\omega \rightarrow \omega^{\prime}$, where $\left|\omega^{\prime}\right| \geq|\omega|$, or $S \rightarrow \varepsilon$, where S is the start variable.
- In addition, it is required that if the grammar has the rule $S \rightarrow \varepsilon$, then the start variable S does not occur on the right-hand side of any rule.
- A language L is context-sensitive if it can be generated with some context-sensitive grammar.
- A normal form for context-sensitive grammars: Each context-sensitive language can be generated with a grammar whose rules are of form $S \rightarrow \varepsilon$ and $\alpha A \beta \rightarrow \alpha \omega \beta$, where A is a variable and $\omega \neq \varepsilon$.
- A rule $\alpha A \beta \rightarrow \alpha \omega \beta$ can be interpreted as the application of a rule $A \rightarrow \omega$ "in the context" $\alpha_{-} \beta$.

Theorem 11.4

A language L is context-sensitive if and only if it can be recognised with a non-deterministic Turing machine that does not use more tape space than was already allocated for the input.

- The machines in Theorem 11.4 are called linear bounded automata.
- It is an open problem whether the non-determinism in Theorem 11.4 is necessary or not. (The "LBA ?= DLBA" problem.)

11.4 Recap: The Chomsky hierarchy

A classification of grammars, languages generated by grammars and recogniser automata classes: Type-0: unrestricted grammars / semi-decidable languages / Turing machines
Type-1: context-sensitive grammars / context-sensitive languages / linear bounded automata
Type-2: context-free grammars / context-free languages / pushdown automata
Type-3: right and left linear grammars / regular languages / finite automata

* A Glimpse Beyond: Computational Complexity

* Computational complexity

- So far: only what is decidable (solvable with computers) and what is not.
- But some problems are "more decidable than others".
- For instance, finding a smallest element in an array is/seems much easier than solving sudokus.
\square

10		16			12				15					4	${ }^{5}$	
	11		14	13			5	${ }^{10}$	10				16			
			12										11			
	1		9				${ }^{7} 4$				11	8	13		12	
5	10	${ }^{14}$					1				9		3		4	
		9	7		4	6						15	1	11	13	16
				16										2	15	9
			6				7	2								
14		13		1		2		9			${ }^{16}$		8	${ }^{6}$		
16				7	14	9		8	1			2	5			
2		8			6	4	4	13	$3{ }^{3}$			5	14		1	
			4									7				
			16	14							1		12			
			11						14		5					
		2			10		6	11	17			13	9	5		
3		12	15										2			

- In fact, the set of decidable problems can be divided in many smaller complexity classes:
- P - problems that can be solved in polynomial time (\approx always efficiently) with deterministic Turing machines / algorithms.
- NP - problems that can be solved in polynomial time with non-deterministic Turing machines.
- PSPACE - problems that can be solved with a polynomial amount of extra space
 (possibly in exponential time).
- EXPTIME - problems that can be solved in exponential time.
- and many more...

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph $B=(U, V, E)$, where $U=\left\{u_{1}, \ldots, u_{n}\right\}$, $V=\left\{v_{1}, \ldots, v_{n}\right\}$, and $E \subseteq U \times V$.
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph $B=(U, V, E)$, where $U=\left\{u_{1}, \ldots, u_{n}\right\}$,
$V=\left\{v_{1}, \ldots, v_{n}\right\}$, and $E \subseteq U \times V$.
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

1. Polynomial-time reducing it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of n units if and only if the PERFECT MATCHING instance has a perfect matching.

Example: a nontrivial, but efficiently solvable problem

Definition (PERFECT MATHING)

INSTANCE: Bipartite graph $B=(U, V, E)$, where $U=\left\{u_{1}, \ldots, u_{n}\right\}$,
$V=\left\{v_{1}, \ldots, v_{n}\right\}$, and $E \subseteq U \times V$.
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

We can solve a PERFECT MATCHING instance by

1. Polynomial-time reducing it to a MAXFLOW instance so that: the MAXFLOW instance has a flow of n units if and only if the PERFECT MATCHING instance has a perfect matching.
2. Solving the resulting MAXFLOW instance.
3. The reduction is linear-time and Edmonds-Karp alg. works in $O\left(V E^{2}\right)$.

Example: a not-so efficiently solvable problem

Definition (propositional satisfiability, SAT)

INSTANCE: A Boolean formula ϕ in conjunctive normal form.
QUESTION: Is there a truth assignment that satisfies ϕ ?

Example

$(x) \wedge(\neg x \vee y) \wedge(\neg x \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z)$ is satisfiable with $\{x \mapsto$ true, $y \mapsto$ true, $z \mapsto$ false $\}$.
$(x) \wedge(\neg x \vee y) \wedge(\neg x \vee \neg z) \wedge(\neg x \vee \neg y \vee z)$ is unsatisfiable.

- Even the best known SAT algorithms, with sophisticated pruning techniques can perform very badly on some instances (although they can solve many relevant problems efficiently).
- No polynomial-time algorithm for SAT is known despite several decades of effort in trying to find one.

Problem class NP (Non-deterministic Polynomial time)

Two alternative ways to characterise problems in NP:

1. Problems that can be solved in polynomial time with non-deterministic Turing machines (\approx algorithms that can guess perfectly).
2. Problems whose solutions (when they exist) are

- reasonably small (i.e., of polynomial size), and
- easy to check (i.e., in polynomial time).
but not necessarily easy to find (or prove non-existent)!

SAT

$$
(x \vee y \vee \neg z) \wedge
$$

$$
(\neg x \vee \neg y \vee v) \wedge
$$

$$
(x \vee w \vee z) \wedge
$$

$$
(y \vee \neg w \vee \neg z) \wedge
$$

TRAVELLING

SALESPERSON

GENERALISED SUDOKUS

NP-complete problems

- A problem A in NP is NP-complete if every other problem B in NP can be reduced to it with a polynomial time computable reduction.

Property: x has a solution in B if and only if $R(x)$ has a solution in A.

NP-complete problems

- A problem A in NP is NP-complete if every other problem B in NP can be reduced to it with a polynomial time computable reduction.

Property: x has a solution in B if and only if $R(x)$ has a solution in A.
[1-8) If an NP-complete problem A can be solved in polynomial time, then all the problems in NP can.
[ing NP-complete problems are the most difficult ones in NP!
[1] We do not know(!!!) whether NP-complete problems can be solved efficiently or not.

The Cook-Levin theorem

Theorem (S. A. Cook 1971, L. Levin 1973)

SAT is NP-complete.

Stephen Cook (1939-)

Leonid Levin (1948-)

Richard Karp (1935-)

- R. Karp soon (1972) listed the next 21 NP-complete problems.
- Since then, 1000's of problems have been shown NP-complete.
- E.g. TRAVELLING SALESPERSON, GENERALISED SUDOKUS etc. are NP-complete.
- Classic text: Garey and Johnson (1979): Computers and Intractability: A Guide to the Theory of NP-Completeness.

How to prove a new problem NP-complete?

Given: a new problem C that you suspect NP-complete. To prove that C is NP-complete:

1. show that C is in NP,
2. take any existing NP-complete problem A, and
3. reduce A to your problem C.

Instance of
NP-complete
problem A

$x \longrightarrow$| polynomial |
| :---: |
| time reduction |
| S | | Instance of |
| :---: |
| your new |
| problem C |

How to prove a new problem NP-complete?

Given: a new problem C that you suspect NP-complete.
To prove that C is NP-complete:

1. show that C is in NP,
2. take any existing NP-complete problem A, and
3. reduce A to your problem C.

Polynomial time reductions compose: any B in NP reduces to C ! [远 Your problem C is NP-complete.

How to prove a new problem NP-complete?

Given: a new problem C that you suspect NP-complete.
To prove that C is NP-complete:

1. show that C is in NP,
2. take any existing NP-complete problem A, and
3. reduce A to your problem C.

Polynomial time reductions compose: any B in NP reduces to C !
ITz Your problem C is NP-complete.
If 8 If your problem C can be solved in polynomial time, then so can A and all the problems in NP.

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.
QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

with $K=3$?

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.
QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

with $K=3$?

Proving NP-completeness: an example

Definition (PARTYING WITH STRANGERS)

INSTANCE: A network of students and a positive integer K, where a network consists of (i) a finite set of students and (ii) a symmetric, binary "X knows Y" relation among them.
QUESTION: Is it possible to arrange a party with (at least) K students, none of whom know each other?

with $K=3$?

Definition (INDEPENDENT SET)

INSTANCE: An undirected graph $G=(V, E)$ and an integer K. QUESTION: Is there an independent set $I \subseteq V$ with $|I|=K$?

Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge$
$\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

The corresponding graph G with $K=3$:

1. If ϕ is satisfiable, then G has an independent set of size K.
2. If G has an independent set of size K, then ϕ is satisfiable.
$\Rightarrow \phi$ is satisfiable if and only if G has an independent set of size K.

[f] If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.
The SAT formula ϕ :
The corresponding graph G with $K=3$:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge$
$\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

1. If ϕ is satisfiable, then G has an independent set of size K.
2. If G has an independent set of size K, then ϕ is satisfiable.
$\Rightarrow \phi$ is satisfiable if and only if G has an independent set of size K.

[f] If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge$ $\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

The corresponding graph G with $K=3$:

1. If ϕ is satisfiable, then G has an independent set of size K.
2. If G has an independent set of size K, then ϕ is satisfiable.
$\Rightarrow \phi$ is satisfiable if and only if G has an independent set of size K.

[f] If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

Theorem

INDEPENDENT SET is NP-complete.

Proof

Reduction from 3SAT.

The SAT formula ϕ :
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge$
$\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

The corresponding graph G with $K=3$:

1. If ϕ is satisfiable, then G has an independent set of size K.
2. If G has an independent set of size K, then ϕ is satisfiable.
$\Rightarrow \phi$ is satisfiable if and only if G has an independent set of size K.

[f] If we can solve INDEPENDENT SET efficiently, then we can solve SAT and all other problems in NP efficiently as well.

NP-completeness: Significance

- Can NP-complete problems be solved in polynomial time?

One of the seven 1M\$ Clay Mathematics Institute Millenium Prize problems, see

```
http://www.claymath.org/millennium-problems/
```

- What to do when a problem is NP-complete?
- Attack special cases that occur in practice
- Develop backtracking search algorithms with efficient heuristics and pruning techniques
- Develop approximation algorithms
- Apply incomplete local search methods
- ...

Some further courses:

- CS-E3190 Principles of Algorithmic Techniques
- CS-E4530 Computational Complexity Theory
- CS-E4320 Cryptography and Data Security
- and so on...

[^0]: ${ }^{1}$ i.e. the input-output behaviours of computer programs
 ${ }^{2}$ or "specification"

[^1]: ${ }^{3}$ equivalently "a given computer program matches the specification"

[^2]: ${ }^{\text {a }}$ If $\emptyset \in \mathbf{S}$, we can first show that the property $\overline{\mathbf{S}}=\mathbf{R E} \backslash \mathbf{S}$ is undecidable and then conclude that also \mathbf{S} is undecidable because if we could decide codes (\mathbf{S}), we could also decide $\operatorname{codes}(\overline{\mathbf{S}})$ as $c_{M} \in \operatorname{codes}(\overline{\mathbf{S}})$ iff $c_{M} \notin \operatorname{codes}(\mathbf{S})$.

