
CS-C2160 Theory of Computation

Lecture 11: Rice’s Theorem, General Grammars

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

2/48

Topics:

Rice’s Theorem

Unrestricted grammars

... and their relationship to Turing machines

Context-sensitive grammars

* A glimpse beyond: Computational complexity

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

3/48

Recap

Church–Turing thesis: Intuitive notion of algorithms ≡ Turing
machines.

Formal language ≡ Yes/No decision problem.

A language is semi-decidable (also called recursively
enumerable) if it can be recognised by some Turing machine.

A language is decidable (also called recursive) if it can be
recognised by some machine that halts on all inputs.

A language is undecidable if it is not decidable.

An undecidable language may still be semi-decidable.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

4/48

The “acceptance” decision problem for Turing machines is

Given a Turing machine M and a string w.
Does M accept w?

The formal language representing this is the universal language

U = {cMw |M is a TM and M accepts w}.

The language U is semi-decidable but not decidable.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

5/48

Rice’s Theorem

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

6/48

11.1 Rice’s theorem
Rice’s Theorem states that all decision problems concerning the
languages recognised by Turing machines1 are undecidable.
Let us denote the family of all semi-decidable (i.e. recursively
enumerable) languages by RE.
A semantic property2 S of Turing machines is any family of
semi-decidable languages, i.e. S⊆ RE.
A machine M has property S if L(M) ∈ S.
Examples of semantic properties:

I NE = {L⊆ {0,1}∗ | L 6= /0}
I ALLSTRINGS = {L⊆ {0,1}∗ | L = {0,1}∗}= {{0,1}∗}
I EVEN = {L⊆ {0,1}∗ | |x| is even for all x ∈ L}
I ONLYw = {L⊆ {0,1}∗ | x ∈ L⇔ x = w}= {{w}}
I EMPTYSET = {L⊆ {0,1}∗ | L = /0}= { /0}

1i.e. the input-output behaviours of computer programs
2or “specification”

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

7/48

A semantic property is trivial if
I S = /0 (no machine has this property) or
I S = RE (all machines have this property)

A property S is decidable if the language

codes(S) = {cM |M is a Turing machine and L(M) ∈ S}
is decidable.

In other words: A semantic property is decidable if one can
algorithmically decide whether a given Turing machine has the
property.3

Theorem 11.1 (Rice 1953)
All non-trivial semantic properties of Turing machines are undecidable.

3equivalently “a given computer program matches the specification”

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

8/48

Example:

Let us consider the non-emptiness problem for Turing machines
from Lecture 10:

Given a Turing machine M.
Does the machine accept any strings?

The corresponding semantic property is NE = {L ∈ RE | L 6= /0}.
The property is non-trivial because:

I NE 6= /0 (witness any semi-decidable language L 6= /0)
I NE (RE (since /0 ∈ RE\NE)

Thus by Rice’s theorem, the language

codes(NE) = {cM |M is a Turing machine and L(M) ∈ NE}
= {cM |M is a Turing machine and L(M) 6= /0}

is undecidable. (Note that this is precisely the result in
Lemma 10.5.)

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

9/48

Theorem 11.1
All non-trivial semantic properties of Turing machines are undecidable.

Proof
A simple generalisation of the proof of Lemma 10.5.

Let S be any non-trivial semantic property.

We can assume that /0 /∈ S; in other words, machines that
recognise the empty language do not have the property.a

As S is non-trivial, there is a Turing machine MS that has the
property S, i.e. one for which L(MS) 6= /0 and L(MS) ∈ S hold.

aIf /0 ∈ S, we can first show that the property S̄ = RE\S is undecidable and then
conclude that also S is undecidable because if we could decide codes(S), we could
also decide codes(S̄) as cM ∈ codes(S̄) iff cM /∈ codes(S).

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

10/48

We now prove that codes(S) is undecidable by reducing the
undecidable language U to it.

Let (M,w) be any instance of the Turing machine acceptance
problem, encoded as the string cMw.
From input cMw construct (the code for) a Turing machine Mw

that on any input string x works as follows:
I First run machine M on string w, and then

• if M accepts w, run MS on x
• if M rejects w (or doesn’t halt), reject x (or don’t halt)

Now Mw recognises the language

L(Mw) =

{
L(MS) if w ∈ L(M)
/0 if w /∈ L(M)

Thus M accepts w if and only if Mw has the property S.
That is, cMw ∈ U if and only if cMw ∈ codes(S).
Therefore, codes(S) is an undecidable language.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

11/48

General Grammars

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

12/48

11.2 Unrestricted grammars

A generalisation of context-free grammars.

The left-hand sides of rules can now include multiple symbols.

As will be shown, can generate all semi-decidable languages.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

13/48

Definition 11.1
An unrestricted grammar is a quadruplea

G = (V,Σ,P,S),

where

V is a finite set of variables;

Σ is a finite set, disjoint from V , of terminals;

P⊆ (V ∪Σ)+× (V ∪Σ)∗ is a finite set of rules (also called
productions), where (V ∪Σ)+ = (V ∪Σ)∗ \{ε};
S ∈ V is the start variable.

A rule (ω,ω′) ∈ P is usually written as ω→ ω′.

aNote the minor streamlining of the structure of the definition from Lecture 5.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

14/48

A string γ ∈ (V ∪Σ)∗ yields a string γ′ ∈ (V ∪Σ)∗ in the grammar
G, denoted by

γ⇒
G

γ
′

if
I the grammar contains a rule ω→ ω′ such that
I γ = αωβ and γ′ = αω′β for some α,β ∈ (V ∪Σ)∗.

A string γ ∈ (V ∪Σ)∗ derives a string γ′ ∈ (V ∪Σ)∗ in the
grammar G, denoted by

γ⇒
G
∗

γ
′

if there is a sequence of strings γ0,γ1, . . . ,γn for some n≥ 0 such
that

γ = γ0, γ0⇒
G

γ1⇒
G
. . .⇒

G
γn, γn = γ

′.

If the grammar G is clear from the context, we can simply write
γ⇒ γ′ and γ⇒∗ γ′ instead of γ⇒

G
γ′ and γ⇒

G
∗ γ′, respectively.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

15/48

Example:

An unrestricted grammar for the non-context-free language
{akbkck | k ≥ 0}:

S → LT | ε

T → ABCT | ABC

BA → AB

CB → BC

CA → AC

LA → a

aA → aa

aB → ab

bB → bb

bC → bc

cC → cc

A derivation of string aabbcc in the grammar:

S ⇒ LT⇒ LABCT ⇒ LABCABC ⇒ LABACBC
⇒ LAABCBC ⇒ LAABBCC ⇒ aABBCC
⇒ aaBBCC ⇒ aabBCC ⇒ aabbCC
⇒ aabbcC ⇒ aabbcc

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

16/48

Theorem 11.2
If a language L can be generated with an unrestricted grammar, then it
can be recognised with a Turing machine.

Proof

Let G=(V,Σ,P,S) be an unrestricted grammar generating language L.
We can design a two-tape nondeterministic Turing machine MG recog-
nising L as follows:

q0

CBCABAL

ccbbaa · · ·

· · ·

δ

q1 q2

On tape 1 the machine stores
a copy of the input string.

Tape 2 holds the current
string that the machine tries to
rewrite to match the one on
tape 1.

In the beginning, the machine
writes the start variable S on
tape 2.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

17/48

The computation of machine MG is composed of stages. In each stage,
the machine:

1. Moves the read/write-head of tape 2 nondeterministically to some
position on the tape.

2. Chooses nondeterministically a rule in G that it tries to apply at
the selected position. (The rules of G are encoded in the
transitions of MG.)

3. If the left-hand side of the chosen rule matches the symbols on
the tape, MG rewrites these symbols with the ones in the
right-hand side of the rule. Otherwise MG rejects.

4. At the end of the stage, MG compares the strings on tapes 1 and
2. If they are the same, the machine acceps and halts. Otherwise,
the machine executes the next stage (loops back to step 1).

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

18/48

Theorem 11.3
If a language L can be recognised with a Turing machine, then it can
be generated with an unrestricted grammar.

Proof

Let M = (Q,Σ,Γ,δ,q0,qacc,qrej) be a (deterministic one-tape) Turing
machine recognising language L. We can design an unrestricted gram-
mar GM generating L based on the following idea.

The variables of GM include (among others) symbols for all the
states q ∈ Q of M.

A configuration (q,uav) of M will be represented as a string
[uqav].

Based on the transitions of M, GM will have rules that ensure

[uqav]⇒
GM

[u′q′a′v′] if and only if (q,uav)
M̀
(q′,u′a′v′).

Thus M accepts the input x if and only if for some u,v ∈ Σ∗:

[q0x]⇒
GM

∗ [uqaccv]

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

19/48

The rules in GM comprise three types:

1. Rules with which one can derive from the start variable S any
string of form x[q0x], where x ∈ Σ∗ and ’[’, ’q0’ and ’]’ are variables
in GM.

2. Rules that allow one to derive from the string [q0x] a string
[uqaccv] if and only if M accepts x.

3. Rules that enable one to rewrite any string of form [uqaccv] to the
empty string.

Deriving a string x ∈ L(M) can then be done as follows:

S
(1)
⇒∗ x[q0x]

(2)
⇒∗ x[uqaccv]

(3)
⇒∗ x

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

20/48

Let us thus define the grammar G = (V,Σ,P,S), where

V = (Γ\Σ)∪Q∪{S,T, [,],EL,ER}∪{Xa | a ∈ Σ}

and the rules in P include the following three sets:

1. Producing the initial configuration:

S → T[q0]
T → ε

T → aTXa (a ∈ Σ)
Xa[q0 → [q0Xa (a ∈ Σ)
Xab → bXa (a,b ∈ Σ)
Xa] → a] (a ∈ Σ)

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

21/48

2. Simulating the transitions of M (a,b ∈ Γ, c ∈ Γ∪{ [}):

Transitions: Rules:

δ(q,a) = (q′,b,R) qa → bq′

δ(q,a) = (q′,b,L) cqa → q′cb
δ(q,.) = (q′,.,R) q[→ [q′

δ(q,/) = (q′,b,R) q] → bq′]
δ(q,/) = (q′,b,L) cq] → q′cb]
δ(q,/) = (q′,/,L) cq] → q′c]

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

22/48

3. Emptying an accepting configuration:

qacc → ELER

qacc[→ ER

aEL → EL (a ∈ Γ)
[EL → ε

ERa → ER (a ∈ Γ)
ER] → ε

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

23/48

11.3 Context-sensitive grammars

An unrestricted grammar is context-sensitive if all its rules are of
form ω→ ω′, where |ω′| ≥ |ω|, or S→ ε, where S is the start
variable.

In addition, it is required that if the grammar has the rule S→ ε,
then the start variable S does not occur on the right-hand side of
any rule.

A language L is context-sensitive if it can be generated with some
context-sensitive grammar.

A normal form for context-sensitive grammars: Each
context-sensitive language can be generated with a grammar
whose rules are of form S→ ε and αAβ→ αωβ, where A is a
variable and ω 6= ε.

A rule αAβ→ αωβ can be interpreted as the application of a rule
A→ ω “in the context” α_ β.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

24/48

Theorem 11.4
A language L is context-sensitive if and only if it can be recognised
with a non-deterministic Turing machine that does not use more tape
space than was already allocated for the input.

The machines in Theorem 11.4 are called linear bounded
automata.

It is an open problem whether the non-determinism in Theorem
11.4 is necessary or not. (The “LBA ?= DLBA” problem.)

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

25/48

11.4 Recap: The Chomsky hierarchy

finite
languages

· U

· Ū

· {akbkck | k ≥ 0}

· {ak | k ≥ 0}

0

1

2

3

· {akbk | k ≥ 0}

A classification of grammars,
languages generated by grammars
and recogniser automata classes:
Type-0: unrestricted grammars /
semi-decidable languages / Turing
machines
Type-1: context-sensitive grammars /
context-sensitive languages / linear
bounded automata
Type-2: context-free grammars /
context-free languages / pushdown
automata
Type-3: right and left linear grammars
/ regular languages / finite automata

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

26/48

* A Glimpse Beyond: Computational Complexity

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

27/48

* Computational complexity

So far: only what is decidable (solvable with computers) and what
is not.

But some problems are “more decidable than others”.

For instance, finding a smallest element in an array is/seems
much easier than solving sudokus.

−43−43 −2 8763 −234 9828 23102
10 16 12 15 4 5 1

11 14 13 5 10 16
12 11

1 9 7 4 11 8 13 12

5 10 14 11 9 3 4
9 7 4 6 15 1 11 13 16

16 5 3 2 15 9
6 7 2

14 13 1 2 9 16 8 6
16 7 14 9 8 1 2 5
2 8 6 4 13 3 5 14 1

4 7

16 14 1 12 7
11 14 5

2 10 6 11 7 13 9 5
3 12 15 2 10

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

28/48

In fact, the set of decidable problems can be divided in many
smaller complexity classes:

P — problems that can be solved in
polynomial time (≈ always efficiently)
with deterministic Turing machines /
algorithms.

NP — problems that can be solved in
polynomial time with non-deterministic
Turing machines.

PSPACE — problems that can be solved
with a polynomial amount of extra space
(possibly in exponential time).

EXPTIME — problems that can be
solved in exponential time.

and many more...

recursively

P

NP

PSPACE

EXPTIME

recursive

enumerable

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

29/48

Example: a nontrivial, but efficiently solvable problem
Definition (PERFECT MATHING)
INSTANCE: Bipartite graph B = (U,V,E), where U = {u1, . . . ,un},
V = {v1, . . . ,vn}, and E ⊆ U×V .
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

v1

u3

u2

u4 v4

v3

v2

u1

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

30/48

Example: a nontrivial, but efficiently solvable problem
Definition (PERFECT MATHING)
INSTANCE: Bipartite graph B = (U,V,E), where U = {u1, . . . ,un},
V = {v1, . . . ,vn}, and E ⊆ U×V .
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

v1

u3

u2

u4 v4

v3

v2

u1

reduce
−→
to

t
u3

u2

u4 v4

v3

v2

v1

s

u1

We can solve a PERFECT MATCHING instance by

1. Polynomial-time reducing it to a MAXFLOW instance so that:
the MAXFLOW instance has a flow of n units if and only if
the PERFECT MATCHING instance has a perfect matching.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

31/48

Example: a nontrivial, but efficiently solvable problem
Definition (PERFECT MATHING)
INSTANCE: Bipartite graph B = (U,V,E), where U = {u1, . . . ,un},
V = {v1, . . . ,vn}, and E ⊆ U×V .
QUESTION: Does B have a perfect matching, i.e. a 1-1 pairing of vertices?

v1

u3

u2

u4 v4

v3

v2

u1

reduce
−→
to

t
u3

u2

u4 v4

v3

v2

v1

s

u1

efficient

algorithm

for MAXFLOW

(e.g Edmonds−Karp)

We can solve a PERFECT MATCHING instance by

1. Polynomial-time reducing it to a MAXFLOW instance so that:
the MAXFLOW instance has a flow of n units if and only if
the PERFECT MATCHING instance has a perfect matching.

2. Solving the resulting MAXFLOW instance.

3. The reduction is linear-time and Edmonds-Karp alg. works in O(VE2).

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

32/48

Example: a not-so efficiently solvable problem
Definition (propositional satisfiability, SAT)
INSTANCE: A Boolean formula φ in conjunctive normal form.
QUESTION: Is there a truth assignment that satisfies φ?

Example

(x)∧ (¬x∨ y)∧ (¬x∨¬z)∧ (¬x∨¬y∨¬z) is satisfiable
with {x 7→ true,y 7→ true,z 7→ false}.
(x)∧ (¬x∨ y)∧ (¬x∨¬z)∧ (¬x∨¬y∨ z) is unsatisfiable.

Even the best known SAT algorithms, with sophisticated pruning
techniques can perform very badly on some instances
(although they can solve many relevant problems efficiently).

No polynomial-time algorithm for SAT is known despite several
decades of effort in trying to find one.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

33/48

Problem class NP (Non-deterministic Polynomial time)
Two alternative ways to characterise problems in NP:

1. Problems that can be solved in polynomial time with
non-deterministic Turing machines (≈ algorithms that can guess
perfectly).

2. Problems whose solutions (when they exist) are
I reasonably small (i.e., of polynomial size), and
I easy to check (i.e., in polynomial time).

but not necessarily easy to find (or prove non-existent)!

PERFECT
MATCHING

v1

u3

u2

u4 v4

v3

v2

u1

SAT

(x∨ y∨¬z)∧
(¬x∨¬y∨ v)∧
(x∨w∨ z)∧

(y∨¬w∨¬z)∧
...

TRAVELLING
SALESPERSON

GENERALISED
SUDOKUS

10 16 12 15 4 5 1
11 14 13 5 10 16

12 11
1 9 7 4 11 8 13 12

5 10 14 11 9 3 4
9 7 4 6 15 1 11 13 16

16 5 3 2 15 9
6 7 2

14 13 1 2 9 16 8 6
16 7 14 9 8 1 2 5
2 8 6 4 13 3 5 14 1

4 7

16 14 1 12 7
11 14 5

2 10 6 11 7 13 9 5
3 12 15 2 10

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

34/48

NP-complete problems
A problem A in NP is NP-complete if every other problem B in NP
can be reduced to it with a polynomial time computable reduction.

x time reduction
R

polynomial
R(x) algorithm

for A

efficient
solution

problem A
NP-complete
Instance of

in NP
problem B
Instance of

Efficient algorithm for B

Property: x has a solution in B if and only if R(x) has a solution in A.

+ If an NP-complete problem A can be solved in polynomial time,
then all the problems in NP can.

+ NP-complete problems are the most difficult ones in NP!

+ We do not know(!!!) whether NP-complete problems can be
solved efficiently or not.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

35/48

NP-complete problems
A problem A in NP is NP-complete if every other problem B in NP
can be reduced to it with a polynomial time computable reduction.

x time reduction
R

polynomial
R(x) algorithm

for A

efficient
solution

problem A
NP-complete
Instance of

in NP
problem B
Instance of

Efficient algorithm for B

Property: x has a solution in B if and only if R(x) has a solution in A.

+ If an NP-complete problem A can be solved in polynomial time,
then all the problems in NP can.

+ NP-complete problems are the most difficult ones in NP!

+ We do not know(!!!) whether NP-complete problems can be
solved efficiently or not.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

36/48

The Cook–Levin theorem
Theorem (S. A. Cook 1971, L. Levin 1973)
SAT is NP-complete.

Stephen Cook (1939–) Leonid Levin (1948–) Richard Karp (1935–)

R. Karp soon (1972) listed the next 21 NP-complete problems.
Since then, 1000’s of problems have been shown NP-complete.
E.g. TRAVELLING SALESPERSON, GENERALISED SUDOKUS
etc. are NP-complete.
Classic text: Garey and Johnson (1979): Computers and
Intractability: A Guide to the Theory of NP-Completeness.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

37/48

How to prove a new problem NP-complete?
Given: a new problem C that you suspect NP-complete.
To prove that C is NP-complete:

1. show that C is in NP,

2. take any existing NP-complete problem A, and

3. reduce A to your problem C.

your new

S(x)

problem A
NP-complete
Instance of

in NP
problem B
Instance of

Efficient algorithm for B

x time reduction
polynomial

S
solution

Instance of

problem C

x

Polynomial time reductions compose: any B in NP reduces to C!

+ Your problem C is NP-complete.

+ If your problem C can be solved in polynomial time,
then so can A and all the problems in NP.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

38/48

How to prove a new problem NP-complete?
Given: a new problem C that you suspect NP-complete.
To prove that C is NP-complete:

1. show that C is in NP,

2. take any existing NP-complete problem A, and

3. reduce A to your problem C.

your new

time reduction
R

polynomial
R(x)

problem A
NP-complete
Instance of

in NP
problem B
Instance of

Efficient algorithm for B

x S(R(x))time reduction
polynomial

S
solution

Instance of

problem C

Polynomial time reductions compose: any B in NP reduces to C!

+ Your problem C is NP-complete.

+ If your problem C can be solved in polynomial time,
then so can A and all the problems in NP.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

39/48

How to prove a new problem NP-complete?
Given: a new problem C that you suspect NP-complete.
To prove that C is NP-complete:

1. show that C is in NP,

2. take any existing NP-complete problem A, and

3. reduce A to your problem C.

your new

for C
time reduction

R

polynomial
R(x)

problem A
NP-complete
Instance of

in NP
problem B
Instance of

Efficient algorithm for B

x S(R(x))time reduction
polynomial

S
solution

Instance of

problem C

algorithm
efficient

Polynomial time reductions compose: any B in NP reduces to C!

+ Your problem C is NP-complete.

+ If your problem C can be solved in polynomial time,
then so can A and all the problems in NP.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

40/48

Proving NP-completeness: an example
Definition (PARTYING WITH STRANGERS)
INSTANCE: A network of students and a positive integer K, where a
network consists of (i) a finite set of students and (ii) a symmetric,
binary “X knows Y” relation among them.
QUESTION: Is it possible to arrange a party with (at least) K students,
none of whom know each other?

Pete Pave

Inez Mary John Aino

Ida

with K = 3?

Definition (INDEPENDENT SET)

INSTANCE: An undirected graph G = (V,E) and an integer K.
QUESTION: Is there an independent set I ⊆ V with |I|= K?

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

41/48

Proving NP-completeness: an example
Definition (PARTYING WITH STRANGERS)
INSTANCE: A network of students and a positive integer K, where a
network consists of (i) a finite set of students and (ii) a symmetric,
binary “X knows Y” relation among them.
QUESTION: Is it possible to arrange a party with (at least) K students,
none of whom know each other?

Pete Pave

Inez Mary John Aino

Ida

with K = 3?

Definition (INDEPENDENT SET)

INSTANCE: An undirected graph G = (V,E) and an integer K.
QUESTION: Is there an independent set I ⊆ V with |I|= K?

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

42/48

Proving NP-completeness: an example
Definition (PARTYING WITH STRANGERS)
INSTANCE: A network of students and a positive integer K, where a
network consists of (i) a finite set of students and (ii) a symmetric,
binary “X knows Y” relation among them.
QUESTION: Is it possible to arrange a party with (at least) K students,
none of whom know each other?

Pete Pave

Inez Mary John Aino

Ida

with K = 3?

Definition (INDEPENDENT SET)

INSTANCE: An undirected graph G = (V,E) and an integer K.
QUESTION: Is there an independent set I ⊆ V with |I|= K?

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

43/48

Theorem
INDEPENDENT SET is NP-complete.

Proof
Reduction from 3SAT.

The SAT formula φ:

(x1∨ x2∨ x3)∧
(¬x1∨¬x2∨¬x3)∧
(¬x1∨ x2∨ x3)

The corresponding graph G with K = 3:

¬x3

x1

x2

¬x1

x3 ¬x2

¬x1

x3x2

1. If φ is satisfiable, then G has an independent set of size K.

2. If G has an independent set of size K, then φ is satisfiable.

⇒ φ is satisfiable if and only if G has an independent set of size K.

+ If we can solve INDEPENDENT SET efficiently, then we can
solve SAT and all other problems in NP efficiently as well.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

44/48

Theorem
INDEPENDENT SET is NP-complete.

Proof
Reduction from 3SAT.

The SAT formula φ:

(x1∨ x2∨ x3)∧
(¬x1∨¬x2∨¬x3)∧
(¬x1∨ x2∨ x3)

The corresponding graph G with K = 3:

¬x3

x1

x2

¬x1

x3 ¬x2

¬x1

x3x2

1. If φ is satisfiable, then G has an independent set of size K.

2. If G has an independent set of size K, then φ is satisfiable.

⇒ φ is satisfiable if and only if G has an independent set of size K.

+ If we can solve INDEPENDENT SET efficiently, then we can
solve SAT and all other problems in NP efficiently as well.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

45/48

Theorem
INDEPENDENT SET is NP-complete.

Proof
Reduction from 3SAT.

The SAT formula φ:

(x1∨ x2∨ x3)∧
(¬x1∨¬x2∨¬x3)∧
(¬x1∨ x2∨ x3)

The corresponding graph G with K = 3:

¬x3

x1

x2

¬x1

x3 ¬x2

¬x1

x3x2

1. If φ is satisfiable, then G has an independent set of size K.

2. If G has an independent set of size K, then φ is satisfiable.

⇒ φ is satisfiable if and only if G has an independent set of size K.

+ If we can solve INDEPENDENT SET efficiently, then we can
solve SAT and all other problems in NP efficiently as well.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

46/48

Theorem
INDEPENDENT SET is NP-complete.

Proof
Reduction from 3SAT.

The SAT formula φ:

(x1∨ x2∨ x3)∧
(¬x1∨¬x2∨¬x3)∧
(¬x1∨ x2∨ x3)

The corresponding graph G with K = 3:

¬x3

x1

x2

¬x1

x3 ¬x2

¬x1

x3x2

1. If φ is satisfiable, then G has an independent set of size K.

2. If G has an independent set of size K, then φ is satisfiable.

⇒ φ is satisfiable if and only if G has an independent set of size K.

+ If we can solve INDEPENDENT SET efficiently, then we can
solve SAT and all other problems in NP efficiently as well.

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

47/48

NP-completeness: Significance

Can NP-complete problems be solved in polynomial time?

One of the seven 1M$ Clay Mathematics Institute Millenium Prize
problems, see
http://www.claymath.org/millennium-problems/

What to do when a problem is NP-complete?
I Attack special cases that occur in practice
I Develop backtracking search algorithms with efficient heuristics

and pruning techniques
I Develop approximation algorithms
I Apply incomplete local search methods
I ...

http://www.claymath.org/millennium-problems/

CS-C2160 Theory of Computation / Lecture 11

Aalto University / Dept. Computer Science

48/48

Some further courses:

CS-E3190 Principles of Algorithmic Techniques

CS-E4530 Computational Complexity Theory

CS-E4320 Cryptography and Data Security

and so on...

	Rice's Theorem
	General Grammars
	Unrestricted grammars
	Context-sensitive grammars
	Recap: The Chomsky hierarchy

	* A Glimpse Beyond: Computational Complexity

