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Abstract

Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision
medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are
able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers
to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery.
These types of models have unique characteristics that may make them more suitable for the complex task of modeling
drug response based on both biological and chemical data, but the application of DL to drug response prediction has been
unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL
for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically
review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also
provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we
present a selection of publicly available drug screening data resources that can be used to develop drug response prediction
models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further
improvement. Contact: mrocha@di.uminho.pt
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Introduction

Precision medicine represents a challenge for this century, with
the search for personalized cancer treatments being one of the
most prominent endeavors in the field. The hope with precision
medicine is that by profiling tumors at the molecular level it
will be possible to design treatments specifically adapted to the
characteristics of a particular molecular subgroup of tumors or
even individual patients, improving treatment outcomes. The
success of precision medicine relies, therefore, on effectively
translating the combination of clinical data with genomics and
other ‘omics’ data into prognostic and predictive biomarkers.

Besides the characterization of tumors at themolecular level,
another relevant task for precision oncology is to generate drug

response profiles, spanning a wide range of drugs and cancer
subtypes. In recent years, data from several large-scale drug
screening initiatives [1–4] have been made publicly available,
helping to further the field of precision oncology. These projects
have screened known and candidate anti-cancer drugs against
cancer cell lines, which have been extensively characterized at
the molecular level. The data from these initiatives have already
enabled the identification of putative drug response biomarkers
using computational methods (elastic net regression) [1, 5] and
the development of predictive models, such as elastic net and
random forest (RF) models to predict drug sensitivity [6].

Indeed, computational methods are crucial to make sense of
these large drug screening data sets. Although high-throughput
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screening is a common 1st step in drug discovery, experimentally
screening all possible candidate drugs or drug combinations
is not feasible, for both practical and financial reasons [7, 8].
Therefore, the development of computational strategies to pre-
dict drug response is essential to limit the search space and
guide the discovery process, reducing the experimental effort
required. Since performing screening assays in cell cultures is
currently the only alternative enabling high-throughput drug
screening, computational methods are also needed to translate
the knowledge obtained from cell line-based screens to drug
response profiles of specific patients.

A variety of computational methods for drug response pre-
diction and the discovery of drug response biomarkers have
already been reported in the literature, includingmachine learn-
ing (ML)-based approaches such as support vector machines
(SVMs) [9], Bayesian multitask multiple kernel learning [10, 11],
RFs [6, 12–14] and neural network [15] models. Nevertheless,
there is stillmuch room for improvement of these computational
models in terms of predictive performance and model general-
izability [16].

A particular subclass of ML algorithms referred to collectively
as deep learning (DL) might be well suited to the prediction of
drug response based on pharmacological and cell line omics
data. Since DL methods can handle large volumes of high-
dimensional and noisy data, they may be able to capture the
nonlinear and complex relationships typical of biological data
better than other types of ML algorithms. Furthermore, DL has
already been successfully applied to a wide range of other drug
discovery-related tasks. For most of these tasks, the predictive
performance of DL-basedmodels is at least on par with other ML
approaches, if not better [17]. For instance, DL has been shown
to outperform traditional ML approaches in the prediction of
compound activity [18–20], compound toxicity [21] and other
compound properties [22]. Nevertheless, the application of DL
to drug response prediction problems has been under-explored
until very recently.

In this article,we review the state-of-the-art of DL-based drug
response prediction methods. First, we introduce the concept of
deep learning and describe the main types of DL architectures
(Table 1 defines some of the technical terms that will be used
throughout the manuscript). We then present a selection of
publicly available drug screening data resources that can be used
to develop drug response prediction models. Next, we briefly
describe and comment on the DL models for drug response
prediction that have been reported in the literature. We address
both the strengths and limitations of these models and discuss
suggestions for further improvement. The insights gleaned from
these studies will undoubtedly be useful in guiding the future
development of computational methods for the rational design
of effective anti-cancer treatments.

Deep learning

DL refers to a distinct class of ML algorithms based on artifi-
cial neural networks (NNs), which, as the name suggests, are
inspired by their biological counterparts. Artificial NNs consist
of several connected layers, each containing multiple units, also
called neurons. A shallow NN is composed of an input layer,
a single hidden layer and an output layer, while deep neural
networks (DNN) are typically composed of multiple processing
layers [23]. This characteristic allows thesemodels to learn com-
plex nonlinear functions. Furthermore, unlike most traditional
ML methods, DL approaches typically do not require extensive
feature selection before training, since they have the ability to

learn higher-order representations directly from raw input data
[36].

In the hidden or output layers, each unit receives its inputs
from the preceding layer. The connections between nodes in
adjacent layers, called edges, each have an associated weight,
reflecting the relative importance of a given input. Each unit
applies an activation function to the weighted sum of its inputs
to calculate its output value [23]. This forward propagation of
information is continued until the final output values (last layer)
are predicted.

Training an NN is an optimization problem, where the goal
is to minimize the difference between the predicted output
values and the real values, that is, to minimize the error defined
by a suitable loss function. Once an input example has been
forward propagated until the output layer, the predicted and real
output values are compared, and the error is determined using
the defined loss function. To train the network, the gradient of
the loss function can be calculated, and then the backpropaga-
tion algorithm can be applied so that the error is propagated
backwards, from the output layer to the input layer [23]. In
this manner, the gradients with respect to the weights can be
computed. The weights can then be adjusted using gradient
methods, such as stochastic gradient descent (SGD) or variants
such as the Adam algorithm [37]. Therefore, learning is achieved
by iteratively modifying the weights.

There is a wide variety of DL architectures, some of which
are illustrated in Figure 1. In the following paragraphs, we will
describe the main types DL models that have been applied to
the problem of drug response prediction.

The simplest DLmodels are fully connectedDNNs (Figure 1a).
They are similar to the previously described shallow (single
hidden layer) artificial NNs but have a greater number of
hidden layers. These networks are feedforward networks,
which means that they constitute an acyclic graph in which
information flows in only one direction, from input nodes to
output nodes [35]. DNNs have already been used to estimate
drug response in cancer cell lines [39]. More complex models
composed of multiple subnetworks (described in Section 5) also
usually use a DNN as the final subnetwork that predicts drug
response.

Convolutional neural networks (CNN) (Figure 1d) represent
another type of feedforward DLmodel [40]. As the name implies,
these NNs apply convolutions in some of their layers, usually in
the initial layers of the network. Other common operations in
CNNs include pooling and normalization, while the final layers
of these networks are usually fully connected layers to allow for
supervised classification or regression. Unlike DNNs, CNNs have
sparse or local connectivity, which means that units in one layer
are only directly connected to certain units in the previous layer
[23]. This characteristic helps to preserve the local structure of
the data [41]. CNNs also have comparatively fewer parameters to
learn as the weights are shared,making them easier to train [23].
Two-dimensional CNNs are particularly well suited to handle
input data in the form of a grid (multidimensional arrays), such
as images [23], and they can be used for drug response prediction
if the input data is represented in the required format (e.g. using
compound images as input [42]). One-dimensional CNNs are
more appropriate for data in the formof sequences, such as com-
pound Simplified Molecular-Input Line-Entry System (SMILES)
strings.

Recurrent neural networks (RNNs) (Figure 1b) are a distinct
class of NNs characterized by the existence of cycles in the
networks, typically formed due to edges that connect adjacent
time steps (recurrent edges) [43]. Nodes with incoming recurrent
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Table 1. Terminology box

Term Definition

Activation function A function that each unit in a neural network applies to the weighted sum of its inputs to
calculate its output value [23]

Attention mechanism A method from the field of machine translation that identifies which parts of an input sequence
are relevant to the output [24]

Backpropagation An algorithm that propagates the prediction error of a neural network backwards, from the output
layer to the input layer so that the gradients with respect to the weights of each unit can be

computed [23]
Drug response biomarker A biological characteristic that is predictive of the response of a tumor to a given treatment [25]
Classification A supervised learning task where the output variable is categorical
Cross-validation A model validation technique where data are divided into several subsets (folds) that are

successively held out from the training set and used to estimate model performance
Data augmentation Increasing the number of training data points
Discriminative model Learns the conditional probability of the output given the inputs [26]
Dose-response relationship The relationship between the observed effect (response) of a drug and its concentration (dose) [27]
Dropout A technique that ‘drops’ some neurons from a neural network in each iteration to reduce

overfitting [28]
Drug sensitivity The susceptibility of a cell line/tumor to a drug
Drug synergy A phenomenon where the response to a combination is enhanced, going beyond the effect that

would be expected based on the responses to each individual drug [29]
End-to-end learning A learning approach where feature learning/extraction and outcome prediction are automatically

performed by a single neural network instead of requiring multiple steps
Ensemble learning Methods that combine the predictions of multiple ML models (base models), forming a single

model
Feature selection A method to reduce model complexity by only considering smaller subsets of the original

variables.
Generative model Generative models learn the joint probability distribution of input and output variables being able

to generate new inputs for a given distribution [26]
High-throughput screening In the context of this paper, high-throughput screening refers to experiments where many

candidate drugs are screened at varying concentrations across a panel of cancer cell lines and
response to the drug is measured [1]

Hyperparameter A model parameter that is not learned during training and must be set beforehand
Loss function A function that measures the penalty associated with prediction errors [30]
Machine learning A subfield of artificial intelligence that refers to algorithms that can learn information directly

from data and make accurate predictions using a model that is inferred from input data alone [31]
Molecular descriptors Experimentally determined or theoretical properties of compounds summarized in numerical

form [32]
Molecular fingerprints A representation of the structure in the form of numerical vectors (e.g. binary fingerprints

represent the presence of absence of certain chemical substructures within a molecule) [32]
Molecular graph A representation of the structure of a compound in the form of a graph, where nodes represent

atoms and edges represent bonds [33]
Multimodal learning Using models that can relate and learn from data from different modalities (i.e. different input

data types) [34]
Omics data Fields of study in biology that focus on characterizing particular biological entities and

interactions. Genomics studies genomes of organisms, transcriptomics the set of RNA transcripts,
epigenomics the epigenetic modifications, proteomics the proteins of an organism and

metabolomics the concentration of compounds
One-hot encoding Converting categorical variables into a numerical (binary) form
Overfitting Overfitting occurs when a model fits the training data well but is unable to generalize to unseen

data
Regression A supervised learning task where the output variable is continuous
Representation learning The process through which relevant features are learned automatically from the input data
Semi-supervised learning A type of ML task where an estimator is trained on both labeled and unlabeled data to learn a

function mapping input variables to output variables.
SMILES strings A representation of compound structures in the form of ASCII strings
Supervised learning A type of ML task where an estimator is trained on labeled data (a data set that contains a set of

input features and the corresponding output values) to predict the output for unseen samples of
input data

(Model) Training (fitting) The process through which the parameters of a model (in DL, the weights in a neural networks)
are estimated

Transfer learning An ML method where a model developed for one prediction task (a pre-trained network) is reused
as the starting point for a similar task [35]

Unsupervised learning A type of ML where the goal is for the algorithm to find structure in unlabeled data
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Fig. 1. DL architectures that have been used in drug response prediction models. (A) A fully connected feedforward DNN. (B) An RNN and the corresponding

computational graph unfolded in time (t-1, t and t+1 denote different time steps); adapted from [23]. (C) A DBN; adapted from [38]. (D) A CNN. (E) An AE. (F) A VAE; µ

and σ are vectors of parameters defining the distributions of the latent variables.

connections can receive as input not only the current data point
but also the values of hiddenunits fromprevious time steps.This
makes RNNs suitable tomodel data that are sequential in nature,
such as natural language or time series. An RNN can be unfolded
in time and represented as deep feedforward networks with the
same weights being shared among layers [23]. In drug response
predictionmodels, feature encoders with recurrent layers can be
used to learn representations from SMILES strings, for example
[44].

Unsupervised DL methods also exist. Autoencoders (AEs) are
typically used for dimensionality reduction and feature repre-
sentation learning before using other ML or DL methods for
prediction (Figure 1e). An AE is a NN that learns to reconstruct
its inputs [45]. By restricting the number of units in the hidden
layers of the network and creating a bottleneck, the AE can
learn a low-dimensional latent representation of the original
input data, called a ‘code’. A basic AE is therefore composed of
two parts: an encoder, which produces the code; and a decoder,
which attempts to reconstruct the input from the code [46].
Deep AEs are formed by stacking several AEs. AEs can be used
to encode both compounds and omics data, and these learned
representations can be fed into a predictive model to estimate
drug response [47–49].

There are other variants of AEs, such as variational autoen-
coders (VAEs) [50], for instance (Figure 1f). A VAE is a generative

model based on approximate inference. A VAE models the
underlying probability distribution of the latent representations
of the inputs. Like other AEs, VAEs are also composed of two
networks. The encoder network learns a Gaussian distribution
of the possible values of the latent representation from
which a given sample could have been generated, while
the decoder learns the distribution of the possible values
of a sample that could be produced given a certain latent
representation [50].

A less common type of DL model is the deep belief network
(DBN) [51] (Figure 1c). A DBN is a generative model that consists
of several layers of latent variables. The connections between the
1st two layers are undirected, while the connections between
the remaining layers are all directed. DBNs can be considered
stacks of restricted Boltzmann machines (RBMs) [52], which are
composed of a visible layer and a hidden layer, with undirected
connections between the two layers and without connections
between units in the same layer. They can thus be trained
layer by layer [51]. With the addition of a discriminative fine-
tuning step at the end, DBNs can also be transformed into
discriminative models [51]. DBN models have already been
used to predict the response of cancer cell lines to drug
combinations [53].

DL models can be implemented using one of the many open
source DL libraries that are available. Some of the most popular
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DL libraries are Python-based, including PyTorch [54] and the
TensorFlow [55] Python application programming interface (API).
Keras [56] is a higher-level DL API written in Python that facili-
tates the use of other lower-level libraries such as TensorFlow.
Most of the models described in this review were implemented
using one of these Python libraries. Another Python library that
may be of interest to researchers in this field is DeepChem [57], a
DL framework built on top of TensorFlow that offers implemen-
tations of chemistry-specific DL architectures and featurization
techniques.

Data resources

The high-throughput screening of compounds is a common
step in the drug discovery process. Its purpose is to determine
which compounds or combinations of compounds will poten-
tially result in effective treatments. In recent years, several large-
scale anti-cancer drug screens have been undertaken, the results
of which have been made available through public repositories.
Projects such as Genomics of Drug Sensitivity in Cancer (GDSC)
[2], Cancer Cell Line Encyclopedia (CCLE) [1], Cancer Therapeutics
Response Portal (CTRP) [3, 4] and NCI-60 [58] provide access to
drug sensitivity profiles for a wide variety of cancer cell lines.
An extended list of single-drug screening data sets is provided in
Table 2. Large pan-cancer drug combination screening data sets
have also been made available to the public (Table 2). These data
sets can serve as the basis for the development of DL-based drug
response prediction models.

In addition to the dose-response data gathered from thehigh-
throughput screening experiments, some of these databases
also provide access to omics data characterizing the cancer cell
lines that the compounds were screened against. The cancer cell
lines used in the National Cancer Institute 60 Human Cancer
Cell Line Screen (NCI-60), CCLE and GDSC screening panels, for
example, have all been extensively characterized at the molecu-
lar level. All three projects provide genomic, transcriptomic and
epigenomic data characterizing the cell lines, and proteomics
[60, 66] and metabolomics [61] data are available for the NCI-60
and CCLE cell lines. If there is a considerable overlap between
cell lines, then the omics data available from these databases
can also be useful to extend other screening data sets that
only include pharmacological dose-response data, such as the
CTRPv2 data set, for example.

The CCLE, GDSC and NCI-60 projects only offer baseline
cell line data, that is, data obtained before treatment. The
Connectivity Map (CMap) [67, 68] and the Library of Integrated
Network-Based Cellular Signatures (LINCS) [69, 70] projects are
resources that provide data on the transcriptional responses
of cancer cells after treatment with small molecules. Another
project recently analyzed the response of cells to treatment with
small molecules at the proteomic and epigenomic levels [71].
These cellular response signatures can complement the data
from other drug screening initiatives andmay be a very valuable
source of information when building drug response prediction
models.

Smaller-scale and more specific (single cancer) drug screen-
ing data sets that were not included in Table 2 or Table 3 may
cover other cell lines or compounds that were not contemplated
by the larger screening initiatives.These data setsmay be used to
fine-tunemodels trained on larger pan-cancer data sets,making
them more specific to certain tumor types.

Ideally, the data sets used to train drug response prediction
models would come from patient cohorts, as cancer cell
lines may not be representative of their tumors of origin [72,
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73]. Although high-throughput screening has already been
attempted using patient-derived xenografts [74] and organoids
[75], the vast majority of anti-cancer drug response data sets
are currently from cell line-based screening experiments. As
a result, DL models are usually trained on the more abundant
cell line-based screening data. Nevertheless, patient-derived
data can be particularly useful to validate and refine drug
response prediction models trained on in vitro data, improving
their clinical applicability. For example, patient-level data can
be incorporated into DL models of cellular drug response by
using the molecular data characterizing patient tumors in a
pre-training step, as proposed in a recent study [49]. Large-scale
patient-level omics data sets can be obtained from resources
such as the Genomic Data Commons (GDC) Portal [76] and the
International Cancer Genome Consortium (ICGC) [77].

Prior knowledge from additional data sources can comple-
ment and enrich the data from these publicly available drug
screening data sets. Further information on the compounds
screened in these experiments can be retrieved from PubChem
[78], ChEMBL [79] or DrugBank [80], for instance. Information on
drug targets and the pathways underlying drug response can be
acquired from public databases, such as search tool for interac-
tions of chemicals (STITCH) [81] and the Guide to Pharmacology
[82].

External data sources can also be useful when exploring cell
line omics data. The Catalogue Of Somatic Mutations In Cancer
(COSMIC) database [83] is an important source of information
on somatic mutations in cancer. Project Achilles [84], now a
part of Cancer Dependency Map (DepMap) [85], is a project that
aims to provide information on gene essentiality for cancer cell
lines that have been extensively characterized at the molecular
level. The Pharmacogenomics Knowledgebase (PharmGKB)
[86] provides information regarding the influence of genetic
variation on drug response. Besides these, many other sources
of prior biological knowledge can be leveraged to enrich the
drug response data sets and create more biologically informed
models.

The Dialogue on Reverse Engineering Assessment and Meth-
ods (DREAM) challenges initiative is a community effort aimed
at developing new computational approaches to address impor-
tant biological and human health questions. In recent years,
the DREAM community has proposed several challenges, which
can be useful sources of drug response data. In 2012, the com-
munity launched the National Cancer Institute (NCI)-DREAM
Drug Sensitivity [10] and Drug Synergy [7] Challenges. The Drug
Sensitivity challenge was aimed at building models to predict
and rank the sensitivity of breast cancer cell lines to individual
compounds,while the goal of the Drug Synergy challenge [7] was
to predict the effect of drug combinations on a diffuse large B-cell
lymphoma cell line. In September 2015, the DREAM community
launched the AstraZeneca-Sanger Drug Combination Prediction
challenge [8] to gather more insight on the factors underlying
drug synergy and to accelerate the development of methods
to predict drug combination effects. Challenge participants had
access to a drug combination screening data set provided by
AstraZeneca which has now been published [8].

Other similar, but not cancer-specific, DREAM challenges
can also be important sources of data that can complement
the large anti-cancer drug screening data sets. For instance,
the NIEHS-NCATS-UNC DREAM Toxicogenetics Challenge [87],
which was aimed at predicting the cytotoxicity of com-
pounds in humans, provides access to data that can be
used to determine the toxic effects of anti-cancer drugs on
patients.
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Fig. 3. Input and output data types commonly used when building DL-based drug response prediction models. Compound structures are usually represented as

SMILES strings in drug screening data sets. SMILES can be fed directly into DL models that learn embeddings, or they can be used to calculate molecular descriptors or

molecular fingerprints. SMILES strings can also be one-hot encoded, transformed into the corresponding molecular graphs, which can then be used as input to graph

convolutional networks, or converted into an image of the compound, which can be used as input to regular convolutional neural networks. Cell line input features are

usually somatic mutations, copy number variations and gene expression data, although other omics data (epigenomics, proteomics etc.) can also be incorporated into

the models. Somatic mutations are usually binarized (presence/absence of an alteration). Copy number variations can be summarized as binary features, as scores (e.g.

G-scores [88]), or in some other form.Gene expression features are usually continuous features,which have undergone some form of normalization. Target information,

when used, is usually used to derive features that reflect the pathways a particular target is associated with. The outputs of drug response predictionmodels are values

describing the dose–response relationships. For single drugs, this is usually half maximal inhibitory concentration (IC50), 50% growth inhibition (GI50) or area under the

dose–response curve (AUC). For drug combinations, the output variable is usually a score that quantifies drug combination effects based on a given reference model,

such as the Loewe additivity [89] or Bliss independence [90] models.

Implementing deep learning workflows for
drug response prediction

Most drug response prediction workflows follow the same gen-
eral steps, which are shown in Figure 2. These include the fol-
lowing:

1. Selecting a DL framework to implement the model.
2. Defining the prediction problem (drug sensitivity versus drug

synergy prediction).
3. Selecting the data set(s) used to train the model (see Tables 2

and 3 for lists of data sets for each type of problem).
4. Defining which data types will be used as inputs (Figure 3

provides an overviewof themost common types of input data
and output variables used in these models, as well as some
of the most common preprocessing steps).

5.
6. Deciding howmultiple data typeswill be handled.Usersmust

decidewhether theywill concatenate all features irrespective
of data type or if they will use a multimodal strategy with
separate feature-encoding subnetworks for each data type.

7. Defining the model architecture. Input data type will deter-
mine the types of DL architectures that can be used for each
network, as well as the preprocessing methods that need
to be applied. For example, RNN-based architectures will
require input data that is sequential in nature, such as SMILES
strings.

8. Preprocessing and selecting appropriate data representa-
tions.

9. Training the model and tuning hyperparameters. Hyperpa-
rameter optimization can be achieved through manual tun-
ing, by performing a search across all or a subset of possible
combinations of user-specified values or by using other opti-
mization techniques.

10. Evaluating model performance. Researchers need to select
appropriate scoring metrics, define how the screening data

set will be split into training and validation/test sets and
select any external data sets that will be used to validate the
model.

11. Interpreting and explaining model predictions. Many of the
model explanation methods mentioned in Section 8 have
been implemented as Python packages and can be easily
incorporated into the workflow. Other post hoc analyses of
the predictions can also be performed, as described in many
of the studies reviewed here.

To illustrate these steps, we present a hypothetical drug
response predictionworkflow for the problem of drug sensitivity
prediction. The 1st steps could be selecting the GDSC data set
for model training and deciding to use gene expression data
and one-hot encoded SMILES strings as input data. We could
opt to use a multimodal model with a subnetwork for gene
expression composed of fully connected layers and an encoding
subnetwork for compounds that is a 1D CNN, both linked to
a final prediction DNN. Such a network could be implemented
using the Keras Python package. Hyperparameter optimization
could be performed using grid search with cross-validation.
After training the model, a model interpretability tool such as
the shap Python package could be used to explain the model
and determine feature importance. Model performance could
be evaluated using the leave-drug-out and leave-cell-line out
approaches, and the model could be further validated on the
CCLE data set. Considering that the problem is a regression task,
we would use regression-specific scoring metrics such as R2 to
measure model performance.

The workflow would be very similar for a hypothetical drug
synergy prediction problem. The main differences would be the
screening data sets used for training and external validation, the
output variable (measuring drug combination effects instead of
drug sensitivity) and the model architecture would have to be
adapted to allow for more than one drug. Since the hypothetical
NN described in the previous example is modular and already

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/1/360/5707551 by H

elsinki U
niversity of Technology Library user on 26 M

arch 2021



Deep learning for drug response prediction 367

Fig. 2. The usual steps in a DL-based drug response prediction workflow. A drug screening dataset is obtained from GDSC, CCLE or other resources. Complementary

data and prior knowledge from other databases can also be collected at this stage. The data are then preprocessed according to data type. This results in a set of drug

features and multiple omics features characterizing the cell lines. Afterwards, these distinct sets of features are either merged into a single training set or fed into

separate encoding subnetworks. Themodel is then fit on the training set.Model hyperparameters can be optimized during the training stage.Differentmodel validation

techniques are used to evaluate model performance and select the best model. After training, the model can be used to predict drug response for new samples.

includes a compound-encoding subnetwork, it could simply be
extended by, for example, adding a subnetwork for the 2nd
compound that could share weights with the 1st compound
subnetwork.

Drug response prediction models

Until recently, DL had seldom been applied to pharmacoge-
nomics problems such as drug response prediction, but interest
in DL approaches has greatly increased in the past few years.
In this section, we first introduce readers to the main steps
involved in DL-based workflows for drug response prediction,
and then we briefly review the DL models for drug response
prediction that have been published so far. For the most part, we
did not consider preprints that have not been peer-reviewed yet.
Table 4 summarizes the 1st few studies that have included DL in
some form in their drug response prediction workflows. Tables 5
and 6 summarize the performance scores achieved by DL-based
drug response prediction models for single drugs and drug com-
binations, respectively, as reported by the original studies.

Predicting single-drug sensitivity

Unlike many traditional ML algorithms, DL can be used not
only to predict the outcome of single-drug or combination anti-
cancer treatments but also to directly learn internal, lower-
dimensional representations of the input data. This reduces
the need for the explicit calculation of molecular features or
extensive feature selection prior to training, as the features that
are most predictive of drug response are automatically learned
during the training process.

Some research groups have investigated the use of AEs for
unsupervised feature learning and dimensionality reduction as
a 1st step in the drug response prediction workflow. Ding et al.

[47] recently showed that deep AEs are able to capture relevant
information on the state of tumor cells prior to treatment. In this
study, deep AEs were used to derive compressed representations
from input data consisting of somatic mutations, copy number
variations (CNVs) and gene expression data. The learned fea-
tures were subsequently used to train elastic net classifiers to

predict drug sensitivity in cancer cell lines. The encoded rep-
resentations improved model performance, especially for drugs
that were not well modeled when using either the original
features or a selection of known genomic markers of drug sen-
sitivity as input.The high sensitivity [true positive rate (TPR)]
and specificity [true negative rate (TNR)] scores (5) show that
the model was able to correctly identify drug sensitivity/non-
sensitivity, but the modest area under the receiver operating
characteristic curve (AUROC) score achieved on an external test
set suggests that the model had more difficulty generalizing to
data from a different screen experiment.

Dr.VAE [91] is a semi-supervised approach that simultane-
ously trains a generativemodel of drug-induced changes in gene
expression and a predictor that estimates drug response. As the
name suggests, the method uses a VAE to create latent repre-
sentations of the pre-treatment gene expression profiles. This
latent representation is used to predict a latent representation
of the corresponding post-treatment gene expression profile.
Both latent representations are then fed into a logistic regression
classifier to predict drug response. Dr. VAE was compared to
other ML methods that were not trained on the same latent
representations andwas shown to have achieved superior cross-
validatedAUROC scores.The jointmodeling of drug perturbation
signatures was key to improve the predictive performance of the
drug response classifier.

Other research groups have used DL in a more end-to-
end manner to predict drug response. Many of these models
take advantage of the modular nature of DL networks when
integrating multiple data types. Instead of concatenating
different feature types into a single training data set, distinct
subnetworks for each type of data are constructed, and then
the learned representations are fed into a final prediction
subnetwork.

The DeepDSC model [48] uses DL methods both for
dimensionality reduction and to predict drug sensitivity. It first
employs a stacked deep AE to encode gene expression data
characterizing the cancer cell lines as compressed representa-
tions. The encoded features were merged with pre-computed
molecular fingerprints and then fed into a fully connected
predictive network. DeepDSC was trained and evaluated on
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Table 4. Published studies that have used DL for drug response prediction

Study Model Training data sets Input data types Prediction task

Ding et al. [47] Deep AEs + elastic nets/SVMs GDSC MUT, CNV, mRNA EXP Drug sensitivity
Dr.VAE [91] VAE + logistic regression Cmap & CTRPv2 mRNA EXP (before &

after treatment)
Joint modeling of
drug sensitivity &
drug perturbation

signatures
DeepDSC [48] Stacked AE + DNN CCLE & GDSC mRNA EXP, FP Drug sensitivity
DeepDR [49] DNN with separate feature-encoding

subnetworks for each data type
(encoders pre-trained on patient data)

GDC & CCLE & GDSC MUT, mRNA EXP Drug sensitivity

PaccMann [44] DL models with a gene expression
encoder with an attention

mechanism and a compound encoder
(bRNN, SCNN, SA, CA or MCA)

GDSC mRNA EXP, SMILES Drug sensitivity

MOLI [92] DNN with separate feature-encoding
subnetworks for each data type

GDSC MUT, CNV, mRNA EXP Drug sensitivity

tCNNS [93] 1D CNN, with separate encoders for
drugs and genomic data

GDSC MUT, CNV, SMILES Drug sensitivity

KekuleScope [42] CNN models pre-trained on ImageNet ChEMBL Compound images
(Kekulé structures)

Drug sensitivity

Matlock et al. [94] Heterogeneous ensembles that
include DNNs

CCLE, GDSC, or synthetic
data

mRNA EXP and/or
DSCRPTR, target

information

Drug sensitivity

ELDAP [95] Heterogeneous ensembles that
include DNNs

CCLE, GDSC, LINCS mRNA EXP, drug activity
and cell line sensitivity
signatures derived from

drug-induced gene
expression profiles

Drug sensitivity

CDRScan [96] Ensemble of 5 CNNs COSMIC, GDSC MUT, FP & DSCRPTR Drug sensitivity
DeepSynergy [39] DNN GDSC & Merck

Compound Screen
mRNA EXP, FP & other
compound features

Drug synergy

Xia et al. [97] DNN with separate feature-encoding
subnetworks for each data type

NCI-ALMANAC & NCI-60 mRNA EXP, PROT, miRNA
EXP, DSCRPTR

Drug synergy

Chen et al. [53] DBN AstraZeneca-Sanger
DREAM & GDSC

mRNA EXP, ontology
fingerprints

Drug synergy

‘DMIS new model’ [8] DL model with four different
feature-encoding modules

AstraZeneca-Sanger
DREAM & GDSC

MUT, target, drug & cell
line-related features

Drug synergy

MUT, mutation data; CNV, copy number variation data; mRNA EXP, mRNA expression data; miRNA EXP, microRNA expression data; PROT, proteomics data; SMILES,
SimplifiedMolecular-Input Line-Entry System strings; FP,molecular fingerprints; DSCRPTR,molecular descriptors; bRNN, bidirectional recurrent neural network; SCNN,
stacked convolutional neural network; SA, self-attention; CA, contextual attention; MCA, multichannel convolutional attentive

both GDSC and CCLE. For both data sets, they found that model
performance decreased drastically when using the leaving
drugs out of the training set, showing that the model is not
generalizing well to compounds it has never seen before, despite
having achieved relatively high R2 scores when a 10-fold cross-
validation scheme was used.

The modular nature of the models also allows for transfer
learning, by reusing parts of networks that have been pre-trained
on other data sets. DeepDR [49] is a DL model that predicts drug
sensitivity based on the mutation and expression profiles of
cancer cell lines or tumors. It consists of three subnetworks, the
1st two of which are a mutation encoder and a gene expression
encoder, both pre-trained using data retrieved from the GDC
database. The final subnetwork integrates the previous two and
predicts half maximal inhibitory concentration (IC50) values. The
model was fully trained on cell line data from CCLE and GDSC
and then used to predict drug response in cancer patients. The
DeepDR model outperformed linear regression models, SVMs
and DNNs without pre-training, having achieved lower mean
squared error (MSE) scores (around an 80% improvement over
linear regression and SVM models). Furthermore, by analyzing

the genomic profiles of GDC patients predicted to be highly
sensitive or resistant to a given drug, the authors showed that
DeepDR was able to uncover the mechanisms underlying the
response of cancer patients towell-knownanti-cancer drugs and
was also capable of discovering potential therapeutic indications
for novel compounds.

PaccMann [44], presented at the NIPS 2018 ‘Machine Learning
for Molecules and Materials’ workshop, is another end-to-end
DL method for drug sensitivity prediction. It uses baseline gene
expression data and SMILES representations of compounds to
predict IC50. SMILES enumeration [98], which takes advantage
of the fact that several different SMILES strings can represent a
given compound, was employed as a data augmentation strat-
egy. The PaccMann model is composed of a gene expression
encoder, a compound encoder and a prediction subnetwork,
which takes as input the encoded features. The gene expres-
sion encoder includes an attention mechanism, a method bor-
rowed from the machine translation field, which assigns higher
weights to the most informative input features. For the com-
pound encoder, the authors evaluated five different methods,
having concluded that the encoders that include an attention
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Table 5. Performance scores for some of the drug response prediction models for single compounds referred to in this review

Model
Screening data

set Validation scheme MSE RMSE R2 r rs AUROC AUPRC TPR TNR

Ding et al. [47]
(per-drug results)

GDSC 25-fold CV 1.96 0.82 0.82

Ding et al. [47]
(per-cell line
results)

GDSC 25-fold CV 0.80 0.82

Ding et al. [47] CCLE External test set 0.67
Dr. VAE (per-drug
models)

CTRPv2 100 train-validation-test
splits (20 x 5-fold CV)

0.706 0.718

DeepDSC [48] CCLE 10-fold CV 0.23 0.78
DeepDSC [48] GDSC 10-fold CV 0.52 0.78
DeepDSC [48] CCLE Leave-one-tissue-out 0.28 0.73
DeepDSC [48] GDSC Leave-one-tissue-out 0.64 0.66
DeepDSC [48] CCLE Leave-one-drug-out 0.61 0.05
DeepDSC [48] GDSC Leave-one-drug-out 1.24 0.04
DeepDR [49] GDSC 100 train-validation-test

splits
1.96 (median)

PaccMann [44]
(bRNN)

GDSC 25-fold CV (only different
cell lines & drugs in test fold)

0.118

PaccMann [44]
(SCNN)

GDSC 25-fold CV (only different
cell lines & drugs in test fold)

0.133

PaccMann [44]
(SA)

GDSC 25-fold CV (only different
cell lines & drugs in test fold)

0.112

PaccMann [44]
(CA)

GDSC 25-fold CV (only different
cell lines & drugs in test fold)

0.110

PaccMann [44]
(MCA)

GDSC 25-fold CV (only different
cell lines & drugs in test fold)

0.120

tCNNS [93] GDSC 50 train-validation-test splits
(80%/10%/10%) (different

interaction pairs in each set)

0.027 0.826 0.909

tCNNS [93] GDSC Leave-one-tissue-out 0.039 0.665 0.818
CDRScan [96] GDSC train-test split (95%/5%) 1.069 0.843 0.98
CDRScan [96] GDSC 5-fold CV 0.847

MSE, mean squared error; RMSE, root mean squared error; MAE, mean absolute error; R2, coefficient of determination; r, Pearson correlation coefficient; rs , Spearman’s rank correlation coefficient; AUROC, area under the receiver
operating characteristic curve; AUPRC, area under the precision-recall curve; TPR, true positive rate/recall/sensitivity; TNR, true negative rate/specificity; CV, cross-validation; bRNN, bidirectional recurrent neural network; SCNN,
stacked convolutional neural network; SA, self-attention; CA, contextual attention; MCA, multichannel convolutional attentive
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mechanism performed best. The validation results for each of
these models are shown in Table 5.

MOLI [92] is another DL model for drug response prediction
that uses distinct encoding subnetworks for each data type.
Three separate encoders learn representations for somatic
mutations, CNVs and gene expression data, and a final sub-
network uses the concatenated features to classify the response
of cancer cells to a given drug. MOLI was trained on cancer
cell line data from GDSC and validated on data from patient
derived xenografts and patient samples (GDC). When training
the network, the authors adopted a unique combined loss
function consisting of a binary cross-entropy loss and a triplet
loss, which helped to improve model performance. The authors
also observed that using multiple omics data was preferable
to single omics data and that integrating the different data
types after representation learning led to better performance
when compared to approaches that merge different feature
types before training.MOLImodels were originally drug-specific,
but the authors found that training on a data set consisting
of multiple drugs with the same target improved model
performance.

The tCNNSmodel [93] also consists of separate encoding sub-
networks—one that receives one-hot encoded representations
of compound SMILES and another for genomic features. The
two encoders are linked to a final prediction subnetwork. Both
encoding subnetworks are 1D convolutional networks instead of
the DNNs used in the previously described models. tCNNS per-
formedwell when predicting drug sensitivity for unknown drug-
cell line pairs, having achieved high R2 and Pearson correlation
scores (Table 5) that were better than the previously reported
models that it was compared to. However, the authors noted
that themodel performedmuchworsewhenmaking predictions
for unknown drugs achieving R2 and Pearson correlation values
close to zero. This is similar to what has been observed for other
models [48], and it is a problem that should be more carefully
assessed in future studies.

KekuleScope [42] is a unique end-to-end method for drug
response prediction. It uses transfer learning by employing CNNs
that have been pre-trained on the unrelated ImageNet data
set [99]. These pre-trained CNNs were minimally modified and
then trained on images of compounds (Kekulé structures) to
predict drug sensitivity for eight cell line-specific cytotoxicity
data sets from ChEMBL. KekuleScope was able to achieve similar
performance to DNNs and RFs trained usingMorgan fingerprints
as input. The authors found that data augmentation by using
modified versions of the compound images greatly improved
the predictive performance of the models. The authors also
observed that performance increased when the CNNs and the
RF fingerprint-based model were joined in simple averaging
ensemble. They suggest that this is an indication that the pre-
trainedCNNswere able to extract compound features containing
information that is distinct from that encoded in Morgan finger-
prints.

Combining multiple, complementary MLmodels is a strategy
that has been shown to improve the predictive performance of
drug response prediction models [10], even if only slightly [8].
Additionally, it increases model robustness [10]. Some recent
drug response studies have includedDL-basedmodels in ensem-
bles.

Matlock et al. [94] evaluated a variety of ensembles that
were trained to predict drug sensitivity, some of which included
DNNs. The authors found that an ensemble of five different base
models, including a DL model trained on gene expression data,
achieved the best performance overall.
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Another heterogeneous ensemble, called ELDAP [95], is
composed of four different base models, including a mul-
titask DNN with two hidden layers. Apart from the ELDAP
ensemble, this study also evaluated the performance of single
models and ensembles composed of a single base learner.
The results of this assessment showed that ensembles of
multitask NNs were able to achieve significantly lower MSE
values than single NN models on both the GDSC and CCLE
data sets.

CDRscan is an ensemble entirely composed of DL base learn-
ers [96]. It consists of five CNNs, four of which adopt a ‘dual con-
vergence architecture’. In the dual convergence models, a series
of convolutions are performed on each input data type (muta-
tions and molecular fingerprints) separately. The two sets of
convoluted features are then merged and convolution is applied
again before predicting the IC50 values for cell line-drug pairs
from the GDSC. CDRscan achieved high predictive performance,
showing a considerable improvement in terms of R2 when
compared to RF and SVM models (21% and 50% improvement,
respectively). The authors found that base models that adopted
the dual convergence architecture performed better. They also
noted that two of the base models performed better than the
ensemble, which suggests that individual DL models might
sometimes be sufficient. However, they argue that the ensemble
approach improves the robustness and generalizability of
the model.

Predicting drug combination effects

After an initial period of responsiveness, the efficacy of drug-
based anti-cancer therapies is often reduced due to the existence
of intrinsic or acquired tumor drug resistancemechanisms [100].
A common strategy to overcome drug resistance is the admin-
istration of two or more drugs in combination. Drug synergy,
the enhancement of combination effects beyond expected, is a
highly desirable outcome, as it may increase treatment efficacy
without requiring an increase in drug dosage [29]. Once again,
computational methods could greatly reduce the experimental
effort required, but predicting drug combination effects is an
even more complex problem than the prediction of sensitivity
to single drugs.

A recent study [39] was the first in the literature to propose
the use of DL to predict drug combination effects. The model,
named DeepSynergy, is a DNN that uses drug response data,
chemical features and gene expression data to predict a drug
synergy score. The model was trained using pharmacological
data from theMerck Compound Screen [64] and omics data from
GDSC [6]. The DNN achieved relatively high performance scores.
Wilcoxon signed rank-sum tests confirmed that DeepSynergy
performed significantly better than the gradient boosting, RFs,
SVMs and elastic net models it was compared to, in terms of
several different scoring metrics. It was able to achieve an MSE
that was 7.2% lower than the 2nd-best method (gradient boost-
ing) and a 5.8% improvement in terms of Pearson correlation.
Nevertheless, the authors noted that DeepSynergy, as well as
all of the other evaluated methods, had difficulties predicting
drug synergy when presented with data from previously unseen
cell lines or compounds [39]. DeepSynergy was also evaluated
as a classifier, and results for a variety of scoring metrics were
reported.While the high AUROC score seems to be an indication
of good predictive performance, other metrics show that this
might be overly optimistic. This makes clear that assessing
multiple scoring metrics is necessary to fully evaluate the per-
formance of a model.

Another promising DL model for the prediction of drug com-
bination effects was proposed by Xia et al. [97]. The model was
trained on data from the large National Cancer Institute-A Large
Matrix of Anti-Neoplastic Agent Combinations (NCI-ALMANAC)
[65] data set. Similarly to many of the previously described
drug sensitivity models, this model consists of separate feature
encoding subnetworks for each type of input data (drug descrip-
tors, gene expression, microRNA and proteomics data) and a
final prediction subnetwork that estimates growth inhibition.
All of the weights and layers in the drug descriptor subnetwork
are shared between the two drugs in a given drug combination,
allowing data from single-drug experiments to also be used as
input. Themodel was able to achieve R2, Pearson correlation and
Spearman correlation values that were quite high (see Table 6)
when compared to models built for other drug discovery-related
prediction tasks. Furthermore, the model was able to correctly
identify the majority of the most promising drug combinations.
Unfortunately, the model was only evaluated through 5-fold
cross-validation. It would have been interesting to see if the
model could maintain its high predictive performance when
applied to previously unseen drugs or cell lines. A performance
comparison to other state-of-the-art methods trained on the
same data set is also missing.

The supplementary information provided alongside the
recently published AstraZeneca-Sanger Drug Combination
DREAM challenge paper [8] also briefly mentions the use of a
multimodal DL model to predict drug combination effects. The
post-challengemodel developed by the DMIS team included four
subnetworks that separately encode mutations, target proteins,
chemical and pharmacological features, and other cell-line
related features, and a final prediction network that predicts a
continuous synergy score. When evaluated on an external data
set, themodel outperformed the originalmodel developed by the
team and other top-ranking challenge submissions evaluated on
the same test set.

Chen et al. [53] used a completely different DL architec-
ture, DBNs, to classify the effects of drug combination experi-
ments as synergistic or non-synergistic. The study used baseline
gene expression data and drug target information from the
AstraZeneca-Sanger Drug Combination DREAM challenge [8].
Unlike many of the previously mentioned studies, drug target
information played a essential role, having been used to derive
ontology fingerprints [101] for the target genes and information
on the pathways targeted by each drug. The authors claim that
their approach outperformed other ML models submitted to
the DREAM challenge, having achieved higher precision, recall
and F1 scores. We note, however, that the DBN model was
evaluated using the leave-one-out approach,while the challenge
submissionswere evaluated on an external data set to which the
participants did not have access.

The potential for drug repurposing

Drug repurposing refers to the act of discovering new therapeutic
indications for existing drugs that were originally intended for
other purposes [102]. The main advantage of this strategy is
that these compounds have already been well studied in terms
of their pharmacokinetic and safety profiles, which can help
accelerate drug development. Several DL models for in silico drug
repurposing have already been reported in the literature [103–
105].

Besides predicting how cells respond to novel drugs, the
drug response models described in this review can also be used
for drug repurposing. The large screening initiatives mentioned
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in Section 3 have screened both experimental compounds and
drugs that have already been approved. Therefore, if a high-
performing model trained on one of these large screening data
sets predicts that a given cell type is sensitive to a drug that
was not approved for that particular cancer type, it may be an
indication of the repurposing potential of that particular drug.
Furthermore, databases of approved drugs can be ‘screened’ in
silico, using the drug sensitivity models to predict how cancer
cell lines would respond to these compounds. The authors of
CDRScan [96] studied the drug repurposing potential of their
model by using it to predict the response of 787 cancer cell lines
to over a thousand approved drugs from the DrugBank database
[80]. CDRScan predicted that 23 known anti-cancer drugs were
also active against at least one other cancer type besides their
approved indications. It was also able to uncover potential anti-
cancer indications for 27 non-oncological drugs [96]. A similar
approach could be employed to determine the drug repurposing
potential of other DL-based drug sensitivity prediction models.

Model evaluation

When evaluating the performance of a drug response prediction
model, the choice of an adequate validation strategy is essential
to ensure that the model is able to generalize well to new drugs
and cell lines. Many of the models surveyed in this review used
some form of cross-validation to evaluate model performance
and generalizability, but not all of them guarantee that the
validation set only includes previously unseen cell lines and
drugs/drug combinations (see Tables 5 and 6). Preuer et al. [39]
found that their DeepSynergy model performed poorly when
predicting drug response for test cases with drugs or cell lines
that were distinct from those seen during the training phase.
This highlights the importance of using more rigorous valida-
tion schemes, such as ‘leave-drug-out’ or ‘leave-cell-line-out’
(Figure 4).

When using a ‘leave-drug-out’ cross-validation scheme, one
or more compounds are held out from the training set. This is
repeated until all of the drugs have been held out once. The
results of this type of validation more accurately reflect how a
model would behave when presented with a new compound.

The ‘leave-cell-line-out’ validation strategy leaves out cell
lines from the training set, while a ‘leave-tissue-out’ validation
scheme leaves out all cell lines of a particular tissue type. Leaving
specific cell lines or tissue out from training is important to
assess whether the model is just learning to identify the cell
line or the tissue type based on the omics features and asso-
ciating it with a certain response [47]. A useful drug response
prediction model is one that is able to uncover tumor-specific
associations between omics features and response, reflecting
the heterogeneity of responses [6] that is often seen even among
tumors of the same type.

Many of the studies also used external data sets from differ-
ent screening initiatives with some degree of overlap with the
training data set to further validate the models. Since different
data sets may have been generated using different screening
methodologies, this overlap can be particularly useful to assess
the robustness of the models with respect to different exper-
imental conditions. A model can be considered robust if it is
able make similar predictions for the same interaction pairs
in different data sets and if the same candidate drug response
biomarkers are identified irrespective of the experimental setup.

Another specific validation step reported in some of the
studies is evaluating if a model is able to identify gene–drug
associations that are have already been well studied in the

literature. This step helps to confirm the clinical usefulness of
the response biomarkers identified by the model.

The choice of adequate scoring metrics to evaluate and com-
pare different drug response prediction models is also crucial.
Some commonly used metrics such as MSE/root MSE (RMSE) are
data set-specific andmay not be the best for comparing between
models trained on different data sets, for instance. Problem-
tailored scoring metrics such as the weighted scoring metrics
proposed in past DREAM challenges [8, 10] may provide a more
accurate idea of the predictive performance and generalization
capacity of the models. In any case, the use of multiple scoring
metrics is recommended, as different scoring metrics may offer
different insights.

Most of the reviewed studies also compared their proposed
DLmodels to traditional MLmodels. However, the hyperparame-
ter space for theMLmodels is usually not as extensively explored
and the models may be trained using slightly different input
data, as feature selection techniques may need to be employed.
Furthermore, some studies do not directly compare the proposed
models to the state-of-the-art ML-based drug response predic-
tion models. This may lead to optimistic results showing that
DL models perform better, when in fact the DL models are not
being compared to the best possible traditional ML alternatives.

Now that several DL-based drug response models have been
published, it would also be interesting to compare them with
one another. However, as can be seen in Tables 5 and 6, different
studies use different scoring metrics and validation strategies,
with little overlap between studies. This highlights the impor-
tance of defining a benchmarking strategy for the community,
so that performance can be easily compared across methods.

Improving model performance

Although these initial studies have demonstrated that DL drug
response models are usually able to outperform traditional
ML models, there is still room for improvement. For instance,
although several DL models have already achieved R2 scores
greater than 0.80 (see Tables 5 and 6) when predicting drug
response for unknown drug-cell line pairs, drug response
prediction models in general still struggle to generalize well
to novel cell lines and drugs.

Diverse neural network architectures have been used to build
drug response prediction models, from simple DNNs, to CNNs
or natural language processing (NLP)-inspired approaches. One
of the main advantages of using DL to predict drug response is
that DL models can learn to learn higher-order representations
directly from input data. Many of these models have already
taken advantage of this unique characteristic of DLmodels.How-
ever, none have tested the use of graph convolutions [33, 106].
Graph convolutional networks are able to learn representations
of compound structures represented as molecular graphs and
have been used in various other drug discovery prediction tasks
[107]. Besides graph convolutions, other DL methods to learn
continuous representations of compounds, such as the NLP-
inspired Seq2seq fingerprint [108] for example, have yet to be
explored.

As demonstrated in some of the studies reviewed in this
article, DL can also be used to learn representations of cell
line omics data. The development of suitable DL methods for
feature extraction from these types of data should continue to
be investigated.

It is important to note, however, that it is still unclear if
features learned directly from raw input data always perform
better than manually engineered features. Two recent studies
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Fig. 4.. Different model validation schemes. (A) A data set can be split once or multiple times into training, validation and test sets. (B) In k-fold cross-validation, a data

set is split into k different folds, and in each iteration a different fold is used as the validation set. In these cases, the held out validation sets consist of randomly selected

drug-cell line interaction pairs. (C) The leave-cell-line-out and leave-drug-out validation methods hold out one or more specific cell lines or drugs when training and

use them as the validation set.

[109, 110] have reached different conclusions when comparing
the performance of learned representations of compounds and
pre-computed molecular descriptors and fingerprints. Another
study found that learned representations of compounds do not
perform well when the training data set is small or highly
imbalanced [107]. Furthermore, manually engineered features
may be more interpretable.

In addition, previous drug response prediction studies [8, 10]
have observed that the type ofML algorithmuseddoes not have a
considerable effect on the predictive performance of themodels,
as opposed to the way the input data is processed and integrated
into the model.

Most of the models referred to in this review still use prior
biological knowledge such as pathway data to filter out less
relevant features and to refine the models. Some preprocessing
and filtering of the input data sets is still necessary due to the
fact that these drug response data sets aremultidimensional and
very noisy, especially the omics data sets characterizing the cell
lines. The success of DLmodels in this field will probably depend
on the successful combination of learned representations of
the original data and carefully selected manually engineered
features.

Drug response prediction models are usually trained on het-
erogeneous data sets, comprising both pharmacological data

and various types of omics data. Integrating multiple input data
types is a complex task. Each feature type must be preprocessed
differently before being fed into the network, and variable types
and value rangesmay greatly differ between different data types.
The problem of biological data integration has been addressed
in more detail in another review [111]. Several DL drug response
models [44, 49, 92, 93, 96, 97] have adopted amultimodal learning
approach, in which separate subnetworks with distinct architec-
tures are used to model different input data types. In the future,
most, if not all, DL-based drug response models will probably
follow a similar multimodal, modular approach.

Besides the choice of network architecture, assessing which
combinations of different data types are the most predictive is
essential. Gene expression data is by far the most commonly
used input data type for drug response models. Several studies
have found that gene expression is indeed the most informa-
tive data type [6, 10], but a recent DL-based study found that
drug descriptors were more predictive than cell line features
[97]. One study also found that, in a tissue-specific setting,
genomic features were more predictive of drug response than
gene expression [6]. Furthermore, certain types of data may be
more readily available in a clinical setting than others, and it is
important to also take this into considerationwhen selecting the
input data types for these models.
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There are many sources of data that could be valuable
when building drug response prediction models, but leveraging
these data may not always be feasible. For instance, the lack
of target information for compounds may limit the use of
pathway data. Integrating additional data may also be difficult
due to the lack of sufficient overlap between different resources.
Tan et al. [95] observed that the lack of overlap (in terms of
compounds) between LINCS and the drug screening data sets
from GDSC and CCLE was a limiting factor. Semi-supervised
learning can be used to overcome this problem in some cases
[91].

Since DL models are complex and have many learnable
parameters, they have a tendency to overfit. Due to this, DL
models perform better when trained on large amounts of data
[17, 41, 112]. The scarcity of sufficiently large anti-cancer drug
screening data sets has limited the use of DL for drug response
prediction. However, it is important to note that the need for
large, high-quality drug screening data sets is common to all
types of ML-based drug response prediction models [16] and
not just DL models. Larger and more diverse training sets are
therefore necessary to be able to obtain drug response models
that can generalize well to a wider range of drugs and cell lines
than is currently possible.

Integrating several drug screening data sets could be a way to
create data sets with a greater amount of samples representing
a wider variety of drugs and cell lines. However, this may not be
a simple task. Data from different screening initiativesmay have
been obtained using different experimental methods and under
different conditions, and the way drug response is quantified
may be different. It may also be necessary to standardize gene
and compound identifiers to guarantee that they are uniform
across the different data sets. Furthermore, some authors have
expressed concerns regarding the inconsistency between differ-
ent drug screening data sets [113, 114], although others are more
optimistic [62, 115, 116].

An alternativeway to increase the size of the training setmay
be to employ data augmentation techniques, such as the SMILES
enumeration technique [98]. DL methods such as generative
adversarial networks (GANs) [117] could also be used for data
augmentation purposes by generating artificial data based on
the original training set [118].

Transfer learning can also help mitigate the effects of small
training data sets. Pre-training compound encoder subnetworks
using larger, more general compound data sets may help to
createmore robust compound encoders.Omics feature encoders
can also be pre-trained in a similar manner. In addition, using
patient-level data to pre-train parts of the networks can aid
in the extraction of clinically relevant features. This type of
approach might help overcome the differences between the cell
type contexts in cell lines and patients that prevent translatabil-
ity to the clinic. Nevertheless, it is still unclear if DL models will
be able to fully resolve this issue.

The majority of the models described in this review are not
cell line or drug-specific models, but integrate drug response
data from a variety of compounds screened against of variety
of cancer cell lines representing different types of tumors. Train-
ing pan-drug and pan-cancer drug response prediction models
is necessary because the amount of data available for certain
cancer cell lines or drugs that are underrepresented in the
available screening data sets may be insufficient to train robust
DL models for these cases. It may also help the model to learn
more general features, increasing model generalizability. These
general models can be subsequently fine-tuned using smaller,
more specific data sets (limited to a specific tumor type or a

certain class of drugs), enabling the creation of models that are
more specific and clinically useful.

Finally, as the complexity of DL drug response prediction
models increases, the financial and environmental costs asso-
ciated with building these models will also increase substan-
tially [119, 120]. In the future, balancing model performance and
clinical applicability with these additional factors will become
increasingly important.

Model interpretability

One of the main characteristics of DL models that has limited
their application to biological and health-related problems in
general is their lack of interpretability [17, 41, 112], although
some of the traditional ML models commonly used in pharma-
ceutical research also have this problem [17], and the quality of
the input data itself can also affect the biological interpretability
of model predictions [16]. While the ability to extract relevant
features directly from raw data may be considered an advantage
of using DL, the abstract learned representations may be very
difficult for humans to interpret.

DL models are generally considered ‘black boxes’, but the
ability to easily to interpret the results of a drug response model
is essential for its acceptance and application in the pharma-
ceutical industry or in the clinic. Ensuring that these models are
interpretable would improve our understanding of the factors
underlying drug sensitivity/resistance or drug synergy, rather
than merely predicting drug response. Only a few of the studies
mentioned in this review addressed the issue of interpretability,
but if DL-based drug response models are to be relevant, tech-
niques to make these types of models more interpretable must
continue to be explored.

A step in this direction is to build models trained on different
combinations of input data to find out which data types are the
most predictive, as described in the work of Xia et al. [97], for
example. However, although this provides an idea of which data
sets might be the most informative, it still does not reveal how
specific features influence prediction.

Determining which input features contributed most to a
certain predictionwould help to uncover potential drug response
biomarkers or allow the identification of structural features of
drugs that are associated with improved drug response. Discov-
ering new biomarkers of drug response is particularly important
for precision medicine, as its main purpose is to help to stratify
patients for treatment [6]. Furthermore, putative biomarkers
identified in cell lines and confirmed in patients could be a way
to translate the insights gained from cell line models to the
clinic. Confirming that a well-known biomarker-drug associa-
tion is still observed when a given model trained on cell lines
predicts drug responses for patients (e.g. greater sensitivity pre-
dicted for patients with a known biomarker than those without)
would also be an additional confirmation of the translatability
of the model.

The field of ‘explainable artifical intelligence’ is a very active
one, and numerous strategies to increase the explainability of
DL models have been proposed. Including one of these methods
into the drug response prediction workflowmay help to identify
the most predictive features. We refer readers to a recent article
on model interpretability for a more comprehensive review on
the topic [121].

Some of these strategies determine feature importance by
perturbing specific input units and evaluating the effects on
the outputs. Local Interpretable Model-agnostic Explanations
(LIME), for instance, uses an additional ML model to learn

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/1/360/5707551 by H

elsinki U
niversity of Technology Library user on 26 M

arch 2021



Deep learning for drug response prediction 375

important features based on the predictions of DL models
[122]. Another perturbation-based method applies dropout,
a technique that ignores certain units in a network during
training, to the input layer to rank input features [123]. Another
class of model interpretability methods are backpropagation-
based approaches, which propagate importance backwards
through the network using gradients [124]. Examples include
the Integrated Gradients method [125] and DeepLIFT [124].

Shapley additive explanations (SHAP) [126] unifies several
popular model explanation methods, including LIME and
DeepLIFT, and Shapley value estimation methods from the field
of game theory under a single framework. It approximates
Shapley values [127] to determine the contribution of each
feature to a given prediction [126].

Incorporating attention mechanisms within the network
itself is a more direct way of making a DL model more
explainable. Attention mechanisms assign weights to the input
features during training. In PaccMann [44], learned attention
weights allowed the identification of the specific genes or the
specific atoms and bonds within a molecule that were most
predictive of drug response.

Methods to increase the interpretability of DL models can
also be borrowed from other subfields of artificial intelligence.
For example, given input examples and background knowledge,
inductive logic programming (ILP) models learn logic programs
[128], which are much more humanly interpretable than NNs.
Combining ILP and DL [129] may therefore produce models that
are more easily understood.

The increased complexity of DL models can lead to greater
predictive performance, but it is also what makes these
models very difficult to explain. Due to this trade-off between
accuracy and interpretability, better-performing, complex
models will probably always be more difficult to explain than
simpler models, even if the previously suggested methods to
improve interpretability are employed. Some authors argue that
designing models that are inherently interpretable should be
preferred over attempting to explain ‘black box’ DL models a
posteriori [130].However, recent efforts in the field of explainable
artificial intelligence, such as self-explaining neural networks
[131], have shown that it may be possible to build DL models
that are interpretable by design.

Conclusion

In this article, we reviewed some of the 1st studies that have
employed DL to predict the effects of single drugs and drug
combinations on cancer cell lines. The results of these initial
studies are promising, demonstrating that DL-based models are
able to perform as well as, or even better than, traditional ML-
based models on drug response prediction tasks. Nevertheless,
there is still room for improvement, and the future success of
DL in this field will depend on the improvement of both the
generalizability and the interpretability of these models.

Many of the studies reviewed here highlight the potential
clinical applicability of the DL-based drug response models they
report on, but direct application to patients in a clinical setting is
still far from being a reality. Few of these studies have been able
to demonstrate how cell line models could actually translate to
patients. Due to the lack of interpretability of the models and
the fact that most were trained on cell line data only, the current
results do not substantiate these claims. Furthermore, we must
also consider that the variety of omics data types characterizing
cancer cell lines may not be readily available when it comes

to patients, as obtaining samples from tumors or performing
certain analyses may not always be possible.

Although they are still far from being clinically applicable,
thesemodels help us get closer to achieving the goal of precision
medicine in the clinic. The results of these studies will be useful
to direct future efforts toward the development of computational
methods for the rational design of novel effective anti-cancer
treatments.

Key Points

• Computational methods are essential to make sense of
the several large drug screening data sets made avail-
able to the public in recent years.

• The 1st studies that have used DL to predict the effects
of single drugs or drug combinations on cancer cell
lines have shown promising results, with the majority
outperforming traditional ML models.

• The future success of DL in this field will depend not
only on the improvement of the generalization capacity
of the models but also their interpretability and their
ability to translate to the clinic.

Acknowledgments

We thankDr. Julio Saez-Rodriguez (Heidelberg University) for
comments on the manuscript.

Funding

Portuguese Foundation for Science and Technology (FCT)
under the scope of the strategic funding of (UID/BIO/04469/2019)
unit and SFRH/BD/130913/2017 toD.B; BioTecNorte operation
(NORTE-01-0145-FEDER-000004) funded by the European
Regional Development Fund under the scope of Norte2020—
Programa Operacional Regional do Norte.

References

1. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell
Line Encyclopedia enables predictive modelling of anti-
cancer drug sensitivity. Nature 2012; 483(7391): 603–307.

2. Yang W, Soares J, Greninger P, et al. Genomics of Drug
Sensitivity in Cancer (GDSC): a resource for therapeutic
biomarker discovery in cancer cells. Nucleic Acids Res 2013;
41(D1): D955–61.

3. Basu A, Bodycombe NE, Cheah JH, et al. An interactive
resource to identify cancer genetic and lineage dependen-
cies targeted by small molecules. Cell 2013; 154(5): 1151–61.

4. Seashore-Ludlow B, Rees MG, Cheah JH, et al. Harnessing
connectivity in a large-scale small-molecule sensitivity
dataset. Cancer Discov 2015; 5(11): 1210–23.

5. Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic iden-
tification of genomic markers of drug sensitivity in cancer
cells. Nature 2012; 483(7391): 570–5.

6. Iorio F,Knijnenburg TA,Vis DJ, et al.A landscape of pharma-
cogenomic interactions in cancer. Cell 2016; 166(3): 740–54.

7. Bansal M, Yang J, Karan C, et al. A community computa-
tional challenge to predict the activity of pairs of com-
pounds. Nat Biotechnol 2014; 32(12): 1213–22.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/1/360/5707551 by H

elsinki U
niversity of Technology Library user on 26 M

arch 2021



376 Baptista et al.

8. Menden MP, Wang D, Mason MJ, et al. Community assess-
ment to advance computational prediction of cancer drug
combinations in a pharmacogenomic screen. Nat Commun

2674; 10(1): 2019.
9. Huang C, Mezencev R, McDonald JF, et al. Open source

machine-learning algorithms for the prediction of optimal
cancer drug therapies. PLoS One 2017; 12(10): 1–14.

10. Costello JC,Heiser LM,Georgii E, et al.A community effort to
assess and improve drug sensitivity prediction algorithms.
Nat Biotechnol 2014; 32(12): 1202–12.

11. Gönen M, Margoliny AA. Drug susceptibility prediction
against a panel of drugs using kernelized Bayesian multi-
task learning. Bioinformatics 2014; 30(17): 556–63.

12. Cortés-Ciriano I, Van Westen GJ, Bouvier G, et al. Improved
large-scale prediction of growth inhibition patterns using
the NCI60 cancer cell line panel. Bioinformatics 2015; 32(1):
85–95.

13. Naulaerts S, Dang CC, Ballester PJ. Precision and recall
oncology: combining multiple gene mutations for
improved identification of drug-sensitive tumours.
Oncotarget 2017; 8(57): 97025–40.

14. Gayvert KM, Aly O, Platt J, et al. A computational approach
for identifying synergistic drug combinations. PLoS Comput

Biol 2017; 13(1): e1005308.
15. Menden MP, Iorio F, Garnett M, et al.Machine learning pre-

diction of cancer cell sensitivity to drugs based on genomic
and chemical properties. PLoS One 2013; 8(4): e61318.

16. Kalamara A, Tobalina L, Saez-Rodriguez J. How to find
the right drug for each patient? Advances and chal-
lenges in pharmacogenomics. Curr Opin Syst Biol 2018; 10:
53–62.

17. Goh GB, Hodas NO, Vishnu A. Deep learning for computa-
tional chemistry. J Comput Chem 2017; 38(16): 1291–307.

18. Ma J, Sheridan RP, Liaw A, et al. Deep neural nets as a
method for quantitative structure–activity relationships. J
Chem Inf Model 2015; 55(2): 263–74.

19. Lenselink EB, ten Dijke N, Bongers B, et al. Beyond the hype:
deep neural networks outperform established methods
using a ChEMBL bioactivity benchmark set. J Chem 2017;
9(1): 45.

20. Koutsoukas A, Monaghan KJ, Li X, et al. Deep-learning:
investigating deep neural networks hyper-parameters and
comparison of performance to shallow methods for mod-
eling bioactivity data. J Chem 2017; 9(1): 42.

21. Mayr A, Klambauer G, Unterthiner T, et al.DeepTox: toxicity
prediction using deep learning. Front Environ Sci 2016; 3:
80.

22. Korotcov A, Tkachenko V, Russo DP, et al. Comparison of
deep learning with multiple machine learning methods
and metrics using diverse drug discovery data sets. Mol

Pharm 2017; 14(12): 4462–75.
23. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;

521(7553): 436–44.
24. Bahdanau D, Cho K, Bengio Y. Neural machine translation

by jointly learning to align and translate. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings. 2015.

25. MeyerUA,ZangerUM,SchwabM.Omics and drug response.
Annu Rev Pharmacol Toxicol 2013; 53(1): 475–502.

26. Ng AY, Jordan MI. On Discriminative vs. Generative Classi-
fiers: A comparison of logistic regression and naive Bayes.
In: Dietterich TG, Becker S, Ghahramani Z (eds.) Advances
in Neural Information Processing Systems 14, Cambridge,
Massachusetts: MIT Press, 2002, pp. 841–848.

27. Brunton L, Chabner BA, Knollman B. Goodman and Gilman’s

The Pharmacological Basis of Therapeutics, 12th edn.NewYork,
NY: McGraw-Hill Education, 2011.

28. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a
simple way to prevent neural networks from overfitting. J
Mach Learn Res 2014; 15(1): 1929–58.

29. Tallarida RJ. Quantitative methods for assessing drug syn-
ergism. Genes Cancer 2011; 2(11): 1003–8.

30. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. New York, NY:
Springer Science & Business Media, 2009.

31. Mohri M, Rostamizadeh A, Talwalkar A. Foundations of

Machine Learning. Cambridge, MA: MIT Press, 2012.
32. Lo YC, Rensi SE, Torng W, et al. Machine learning in

chemoinformatics and drug discovery. Drug Discov Today

2018; 23(8): 1538–46.
33. Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al.

Convolutional networks on graphs for learning molecular
fingerprints. J Chem Inf Model 2015; 56(2): 399–411.

34. Baltrusaitis T, Ahuja C, Morency LP. Multimodal Machine
Learning: A Survey and Taxonomy. IEEE Trans Pattern Anal

Mach Intell 2019;41(2):423–443.
35. Goodfellow I, Bengio Y, CA. Deep Learning. MIT Press, 2016.
36. Bengio Y, Courville A, Vincent P. Representation learning: a

review and new perspectives. IEEE Trans Pattern Anal Mach

Intell 2013; 35(8): 1798–828.
37. Kingma DP, Ba J. A method for stochastic optimization. In:

3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. 2015.

38. Salakhutdinov R, Hinton G. Deep Boltzmann machines.
In: Proceedings of the Twelfth International Conference
on Artificial Intelligence and Statistics, AISTATS 2009,
Clearwater Beach, Florida, USA, April 16-18, 2009. 2009
pp. 448–455.

39. Preuer K, Lewis RPI, Hochreiter S, et al. DeepSynergy: pre-
dicting anti-cancer drug synergy with deep learning. Bioin-
formatics 2018; 34(9): 1538–46.

40. Le Cun Y, Jackel L, Boser B, et al. Handwritten digit recog-
nition: applications of neural network chips and automatic
learning. IEEE Commun Mag 1989; 27(11): 41–6.

41. Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Oppor-
tunities and obstacles for deep learning in biology and
medicine. J R Soc Interface 2018; 15(141): 20170387.

42. Cortés-Ciriano I, Bender A. KekuleScope: prediction of can-
cer cell line sensitivity and compound potency using con-
volutional neural networks trained on compound images. J
Chem 2019; 11(1): 41.

43. Lipton ZC, Berkowitz J, Elkan C. A Critical review of
recurrent neural networks for sequence. Learning 2015.
arXiv:1506.00019.

44. Oskooei A, Born J, Manica M, et al. PaccMann: predic-
tion of anticancer compound sensitivity with multi-modal
attention-based neural networks. 2018. arXiv:1811.06802.

45. Bengio Y. Learning deep architectures for AI. Found Trends

Mach Learn 2009; 2(1): 1–127.
46. HintonGE.Reducing the dimensionality of datawith neural

networks. Science 2006; 313(5786): 504–7.
47. Ding MQ, Chen L, Cooper GF, et al. Precision oncol-

ogy beyond targeted therapy: combining omics data with
machine learning matches the majority of cancer cells to
effective therapeutics.Mol Cancer Res 2018; 16(2): 269–78.

48. Li M, Wang Y, Zheng R, et al. DeepDSC: a deep learning
method to predict drug sensitivity of cancer cell lines.
IEEE/ACM Trans Comput Biol Bioinform 2019;1–1.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/1/360/5707551 by H

elsinki U
niversity of Technology Library user on 26 M

arch 2021



Deep learning for drug response prediction 377

49. Chiu YC, Chen HIH, Zhang T, et al. Predicting drug response
of tumors from integrated genomic profiles by deep neural
networks. BMC Med Genomics 2019; 12(S1): 18.

50. Kingma DP, Welling M. Auto-encoding variational bayes.
2013. In: 2nd International Conference on Learning Repre-
sentations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings. 2014.

51. Hinton GE, Osindero S, Teh YW. A fast learning algorithm
for deep belief nets. Neural Comput 2006; 18(7): 1527–54.

52. Smolensky P. Information processing in dynamical sys-
tems: foundations of harmony theory. Technical Report,
Colorado University at Boulder Department of Computer
Science, 1986.

53. Chen G, Tsoi A, Xu H, et al. Predict effective drug combi-
nation by deep belief network and ontology fingerprints. J
Biomed Inform 2018; 85:149–54.

54. Paszke A, Gross S, Massa F, et al. Pytorch: An imperative
style, high-performance deep learning library. In: Wallach
H,Larochelle H,BeygelzimerA, et al. (eds.) Advances inNeu-
ral Information Processing Systems 32, Curran Associates,
Inc. 2019, 2017, pp. 8024–8035.

55. AbadiM,Agarwal A,BarhamP, et al.TensorFlow: large-scale
machine learning on heterogeneous distributed systems.
Nat Neurosci 2016; 16(4): 486–92.

56. Chollet F. Keras. https://keras.io, 2015.
57. Ramsundar B, Eastman P, Walters P, et al. Deep Learning for

the Life Sciences. Sebastopol, CA: O’Reilly Media, 2019.
58. Shoemaker RH. The NCI60 human tumour cell line anti-

cancer drug screen. Nat Rev 2006; 6(10): 813–23.
59. Greshock J, Bachman KE, Degenhardt YY, et al. Molecular

target class is predictive of in vitro response profile. Cancer
Res 2010; 70(9): 3677–86.

60. Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-
generation characterization of the cancer cell line encyclo-
pedia. Nature 2019; 569(7757): 503–8.

61. Li H, Ning S, Ghandi M, et al. The landscape of cancer cell
line metabolism. Nat Med 2019; 25(5): 850–60.

62. Haverty PM, Lin E, Tan J, et al. Reproducible pharmacoge-
nomic profiling of cancer cell line panels. Nature 2016;
533(7603): 333–7.

63. Mpindi JP, Yadav B, Östling P, et al. Consistency in drug
response profiling. Nature 2016; 540(7631): E5–6.

64. O’Neil J, Benita Y, Feldman I, et al. An unbiased oncology
compound screen to identify novel combination strategies.
Mol Cancer Ther 2016; 15(6): 1155–62.

65. Holbeck SL, Camalier R, Crowell JA, et al. The National
Cancer Institute ALMANAC: a comprehensive screening
resource for the detection of anticancer drug pairs with
enhanced therapeutic activity. Cancer Res 2017; 77(13):
3564–76.

66. GholamiAM,HahneH,WuZ, et al.Global proteome analysis
of the NCI-60 cell line panel. Cell Rep 2013; 4(3): 609–20.

67. Lamb J. The connectivity map: using gene-expression sig-
natures to connect small molecules, genes, and disease.
Science 2006; 313(5795): 1929–35.

68. Subramanian A, Narayan R, Corsello SM, et al. A next
generation connectivity map: L1000 platform and the first
1,000,000 profiles. Cell 2017; 171(6): 1437–52 e17.

69. Keenan AB, Jenkins SL, Jagodnik KM, et al. The library of
integrated network-based cellular signatures NIH program:
system-level cataloging of human cells response to pertur-
bations. Cell Syst 2018; 6(1): 13–24.

70. Koleti A,Terryn R, Stathias V, et al.Data portal for the library
of integrated network-based cellular signatures (LINCS)

program: integrated access to diverse large-scale cellular
perturbation response data. Nucleic Acids Res 2018; 46(D1):
D558–66.

71. Litichevskiy L, Peckner R, Abelin JG, et al. A library of phos-
phoproteomic and chromatin signatures for characterizing
cellular responses to drug perturbations.Cell Syst 2018; 6(4):
424–43 e7.

72. Gillet JP, Varma S, Gottesman MM. The clinical relevance of
cancer cell lines. JNCI J Natl Cancer Inst 2013; 105(7): 452–8.

73. Goodspeed A, Heiser LM, Gray JW, et al. Tumor-derived cell
lines as molecular models of cancer pharmacogenomics.
Mol Cancer Res 2016; 14(1): 3–13.

74. Gao H, Korn JM, Ferretti S, et al. High-throughput screening
using patient-derived tumor xenografts to predict clinical
trial drug response. Nat Med 2015; 21(11): 1318–25.

75. van de Wetering M, Francies HE, Francis JM, et al. Prospec-
tive derivation of a living organoid biobank of colorectal
cancer patients. Cell 2015; 161(4): 933–45.

76. Grossman RL, Heath AP, Ferretti V, et al. Toward a shared
vision for cancer genomic data. N Engl J Med 2016; 375(12):
1109–12.

77. Zhang J, Baran J, Cros A, et al. International cancer
genome consortium data portal—a one-stop shop for can-
cer genomics data. Database 2011; 2011:bar026–6.

78. Kim S, Thiessen PA, Bolton EE, et al. PubChem substance
and compound databases. Nucleic Acids Res 2016; 44(D1):
D1202–13.

79. Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale
bioactivity database for drug discovery. Nucleic Acids Res

2012; 40(D1): 1100–7.
80. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a

major update to the DrugBank database for 2018. Nucleic
Acids Res 2018; 46(D1): D1074–82.

81. Szklarczyk D, Santos A, von Mering C, et al. STITCH 5:
augmenting protein–chemical interaction networks with
tissue and affinity data.Nucleic Acids Res 2016; 44(D1): D380–
4.

82. Harding SD, Sharman JL, Faccenda E, et al. The IUPHAR/BPS
guide to PHARMACOLOGY in 2018: updates and expansion
to encompass the new guide to IMMUNOPHARMACOLOGY.
Nucleic Acids Res 2018; 46(D1): D1091–106.

83. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of
somatic mutations in cancer.Nucleic Acids Res 2019; 47(D1):
D941–7.

84. Cowley GS, Weir BA, Vazquez F, et al. Parallel genome-scale
loss of function screens in 216 cancer cell lines for the
identification of context-specific genetic dependencies. Sci
Data 2014; 1: 140035.

85. Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a
cancer dependency map. Cell 2017; 170(3): 564–76 e16.

86. Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Phar-
macogenomics knowledge for personalized medicine. Clin
Pharmacol Ther 2012; 92(4): 414–7.

87. Eduati F,Mangravite LM,Wang T, et al. Prediction of human
population responses to toxic compounds by a collabora-
tive competition. Nat Biotechnol 2015; 33(9): 933–40.

88. Mermel CH, Schumacher SE, Hill B, et al. GISTIC2.0 facili-
tates sensitive and confident localization of the targets of
focal somatic copy-number alteration in human cancers.
Genome Biol 2011; 12(4): R41.

89. Loewe S. Effect of combinations: mathematical basis of
problem. Arch Exp Pathol Pharmakol 1926; 114:313–26.

90. Bliss CI. The toxicity of poisons applied jointly.AnnAppl Biol
1939; 26(3): 585–615.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/1/360/5707551 by H

elsinki U
niversity of Technology Library user on 26 M

arch 2021

https://keras.io


378 Baptista et al.
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