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Text book   Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) 

Chapter 4. Electronic properties (Cramer: chapter 9) 
 

What we can get out form the ab initio calculations 

 

We have now some kind of wave functions and the total energy of 

our system. What can we learn from them? As said in the first 

chapter (and Comp. Chem. I) the atomic total energy is very 

useful for many chemical properties. Most of the structural 

problems in chemistry can be solved with the total energy.  

In this chapter, we focus on the electronic properties, which 

can be computer from the wave functions.  

 

Dipole moment  

 

One of the simplest quantities is the electron density 

𝜌(𝑟) = ∫ ∫ Ψ∗(𝑟, 𝑟2. . , 𝑟𝑁)Ψ(𝑟, 𝑟2. . , 𝑟𝑁) 𝑑𝑟2. . 𝑑𝑟𝑁  

Note that the integral is over the coordinated r2..rN. In the 

case of HF and DFT the 

 𝜌(𝑟) =  ∑ |𝜑𝑛(𝑟)|2
𝑛,𝑜𝑐𝑐 .  

Very often the dipole and higher moments of the molecule are 

interesting. The importance of dipole moment is twofold. First, 

when molecules are interacting with light (e.g. in spectroscopy, 

especially the IR) the main term in this interaction is the 

dipole moment. Secondly, when neutral molecules are interacting 

again the main term is the dipole-dipole interaction.  

The most general moment is  



 

 

〈𝑥𝑛𝑦𝑚𝑧𝑘〉 = ∑ 𝑍𝑖𝑥𝑖
𝑛𝑦𝑖

𝑚𝑧𝑖
𝑘

𝑖 𝑎𝑡𝑜𝑚𝑠

+ ∫ Ψ∗(𝑟1, 𝑟2. . , 𝑟𝑁)𝑥𝑛𝑦𝑚𝑧𝑘Ψ(𝑟1, 𝑟2. . , 𝑟𝑁) 𝑑𝑟1. . 𝑑𝑟𝑁 

Again form DFT and HF 

〈𝑥𝑛𝑦𝑚𝑧𝑘〉 = ∑ 𝑍𝑖𝑥𝑖
𝑛𝑦𝑖

𝑚𝑧𝑖
𝑘

𝑖 𝑎𝑡𝑜𝑚𝑠

+ ∫ 𝜌(𝑟) 𝑥𝑛𝑦𝑚𝑧𝑘 𝑑𝑟 

The dipole moment is <>=<r> or 〈𝜇〉 = √〈𝑥〉2 + 〈𝑦〉2 + 〈𝑧〉2. On average 

the DFT models will produce good dipole moments. The higher 

moments are also easy to compute but one need to remember that 

they depend on the origin of the coordinate system. This is 

typically the centre of mass of the molecule.  

A good database for comparing the experimental and computer data 

can be found from:  

http://cccbdb.nist.gov/compdipole2x.asp 

 

Remember that the dipole moment can be computed for an arbitrary 

molecular geometry. This is useful if we are interested of IR 

vibrational intensities. The IR intensity will depend on the 

change of the dipole moment in the molecular vibration. Thus, 

the difference in dipole moment can be computed with  

∆𝜇 = 𝜇(𝑅0) − 𝜇(𝑅0 + 𝛿𝑉𝑖)   where Vi is the atomic displacement of the 

i:th vibrational mode.   

Total electrostatic potential 
 

One quantity that can be computed is the total electrostatic 

potential 

𝑉𝑒𝑙(𝑟) = ∑
𝑍𝐼

|𝑟 − 𝑅𝐼|
𝐼

− ∫
𝜌(𝑟1)

|𝑟 − 𝑟1|
𝑑𝑟1     

The electrostatic potential is useful for analyzing the charge 

distribution of the molecules.   

 

http://cccbdb.nist.gov/compdipole2x.asp


 

 

Point charges  

 

In chemistry, it is interesting to know the charge of each atom. 

This sound simple but it is not. The true quantity is the 

electron density and there is no unique (correct) way to 

determine the atom charges.  

One type of charge definition is based on the basis functions,  

𝜑𝑛(𝑟) =  ∑ 𝑐𝑛,𝑚𝜉𝑚(𝑟)𝑚  now we can assign the basis functions to 

each atom. We use notation m(I) meaning that functions m are 

centered to atom I. Now the total amount of electrons is N 

𝑁 =  ∑ ∫|𝜑𝑛(𝑟)|2

𝑛 𝑒𝑙𝑒𝑐

𝑑3𝑟 =  ∑ ∑ ∫ 𝑐𝑛,𝑚𝑐𝑛,𝑙𝜉𝑚(𝑟)𝜉𝑙(𝑟)

𝑚,𝑙𝑛 𝑒𝑙𝑒𝑐

𝑑3𝑟  

𝑁 = ∑ (∑ 𝑐𝑛,𝑚(𝐼)
2+ ∑ 𝑆𝑚(𝐼),𝑙(𝐽)

𝐽≠𝐼

𝑐𝑛,𝑚(𝐼)𝑐𝑛,𝑙(𝐽)

𝐼

)

𝑛 𝑒𝑙𝑒𝑐

 

The term in parenthesis for each atom I can be interpreted as an 

atomic charge. This is so called Mulliken charge. It is very 

easy to compute since all needed information in the quantum 

chemical calculations. Unfortunately, it has strong basis 

function dependence (meaning that different basis function will 

give very different charges). The overlap contribution is also 

odd.  

A better way to compute the basis function based charge is to 

use a method proposed by Löwdin where an orthonormal basis is 

used.   

𝜗𝑛(𝑟) =  ∑ 𝑆𝑛𝑚
−1/2

𝜉𝑚(𝑟)

𝑚

 

Now  

𝜑𝑛(𝑟) =  ∑ 𝑎𝑛,𝑚𝜗𝑚(𝑟) =

𝑚

∑ 𝑐𝑛,𝑚𝑆𝑛𝑚
1/2

𝜗𝑚(𝑟)

𝑛𝑚

 



 

 

The Löwdin charges are better (?) than the Mulliken ones. 

Similar but even more realistic method is the Natural Population 

Analysis (NPA). 

 

Bader and similar charges  
 

A completely different approach to determine the charge is the 

Bader method. In the Bader method, the space is divided into 

parts and each atom has a relevant volume ΩI. The charge is 

defined as a simple integral  

 𝑞𝐼 = 𝑍𝐼 +  ∫ 𝜌(𝑟)𝑑𝑟
Ω𝐼

 

 

Unfortunately, the integration areas are complex. Bader have one 

definition of the integration volumes but other volumes, like 

Voronoy cells, can be used. The Bader analysis is usually done 

with separate program. 

 

   

 



 

 

The charges can also be determined from the electrostatic 

potential. We can find the atomic charges that reproduced best 

the total el. potential.    

𝑉𝑒𝑙(𝑟) = ∑
𝑍𝐼

|𝑟 − 𝑅𝐼|
𝐼

− ∫
𝜌(𝑟1)

|𝑟 − 𝑟1|
𝑑𝑟1 ≈  ∑

𝑞𝐼

|𝑟 − 𝑅𝐼|
𝐼

    

These EPS charges are very useful for empirical modelling.  

 

There is an example of the effective charge of some cyclic 

molecules. Note that the values differ a lot (AIM = Bader, MK 

and ChelpG are potential fitting methods, Hirshfeld method we 

did not discuss, GenFF is an empirical ForceField) 

 

 

Polarization 

 

If any molecule is in external electric field (or next to other 

molecules) it’s charge distribution will change. We can define 

polarization as  

𝛼𝑖𝑗 =
𝜕𝜇𝑖

𝜕𝐸𝑗
 



 

 

Where µ is the dipole moment and E is the electric field. The 

polarization is useful to understand the “rigidty” of the 

electrons and the Raman intensities are based on the change of 

polarization in the vibrational mode. (In Orca the Raman 

analysis require numerical frequency calculation, NumFreq.) 

The polarization can be significant. In the case of water, in 

gas phase the dipole moment is 1.85 D and in liquid water around 

3.0 D. The increase is due to the polarization.  

The polarization can be computer with elprop keyword.  

The higher order polarization terms can be defined as 

𝜇 = 𝜇0 + 𝐸𝑖

𝜕𝜇

𝜕𝐸𝑖
+

1

2
𝐸𝑖𝐸𝑗

𝜕2𝜇

𝜕𝐸𝑖𝜕𝐸𝑗
= 𝐸𝑖𝛼𝑖 +

1

2
𝐸𝑖𝐸𝑗𝛽𝑖𝑗 + ⋯ 

Here  is hyperpolarization. (Orca do not calculate 

hyperpolarization.) 

 

Vibrations 
 

Molecular vibrations is one of the  

As mentioned in the first chapter the molecular vibrations can 

be calculated from the second derivative,  

𝐴𝐼𝐽 =
𝜕2𝐸𝑡𝑜𝑡

𝑒𝑙

𝜕𝑅𝐼𝜕𝑅𝐽
  

Often the second derivative can be computed analytically, but 

with more complex methods numerical second derivative has to be 

used. Once the A has been computed it can be used to solve the 

vibrational eigenvalues and –vectors. Sometimes the numerical 

second derivative can be unreliable especially in the case of 

low frequencies.  

The multidimensional vibrational Schrödinger equation can be 

written as:   



 

 

(− ∑
1

2𝑚𝑖

𝑑2

𝑑𝑋𝑖
2 

𝑖

+ ∑ 𝑋𝑖

𝑖𝑗

𝐴𝑋𝑗) Φ(X) = 𝐸Φ(𝑋) 

This is not easy to solve and we need to choose mass weighted 

coordinates 𝑄𝑖 = √𝑚𝑖𝑋𝑖 and 𝐵𝑖𝑗 = √𝑚𝑖𝑚𝑗  𝐴𝑖𝑗 this removes the mass 

dependence from the first term.  

(− ∑
1

2

𝑑2

𝑑𝑄𝑖
2 

𝑖

+ ∑ 𝑄𝑖

𝑖𝑗

𝐵𝑄𝑗) Φ(Q) = 𝐸Φ(𝑄) 

The vibrational energies are the eigenvalues of matrix B and 

vibrational modes (Qi) are eigenvectors of B.  

In classical mechanics, the vibrational problem is easy. We can 

construct system of atoms connected with harmonic springs. We 

can take a water molecule as an example. It has 3 vibrational 

modes and we can build the molecules with two OH bonds (with 

force constant k1) and one H-O-H bending bond (with force 

constant k2). This sounds reasonable but in reality stretching 

one OH bond has small effect to the other OH bond (coupling 

constant k11). We can write a matrix equation of  

𝑀�̈� = (

𝑏1 𝑏11 𝑏12

𝑏11 𝑏1 𝑏12

𝑏12 𝑏12 𝑏2

) 𝑄   

 

Where the b’s are the proper force constants in some coordinate 

system. M is a matrix containing the molecular masses (it depend 

on the coordinate system). Note usually this coordinate system 

is Cartesian. We can diagonalize the B matrix and we find a new 

orthogonal coordinate systems ξ=ξ(Q)  

�̃�𝜉̈ = (

𝜅1 0 0
0 𝜅2 0
0 0 𝜅3

) 𝜉   

We know how the vibrational coordinate system depend of the old 

coordinates (Q) and the values  are the vibrational eigenvalues. 



 

 

Also �̃� is diagonal but it depend on the atoms masses and the 

coordinate transform.  

 

 

IR  intensities 
 

First, we need a term that describe the interaction of light and 

the molecule. The light is described with an time dependent 

electric field E(t)=E0 sin(t). In the first approximation the 

electric field is coupled to the dipole moment,(t) of the 

molecule (there are higher order term like the quadrupole moment 

but we ignore them here.) So the coupling term is (both  and E 

are vectors) 

 

H(t)=-(t)∙E(t) 

 

The main result is the transition dipole rule:  

 

dxxx mnnm )(ˆ)(*  =       (2.1)  

In this equation, the φn is the wave functions of the starting 

state and φm is the wave functions of the end state. Now we can 

compute any transition probability when the wave functions are 

known. (Even a good approximation of the wf will do.)  

 



 

 

Let us apply this to a harmonic oscillator. The wave function is 

Hn(x)exp(-x2/2) but now we need to think carefully what the x 

means. It is the oscillation coordinate. In the case of two atom 

molecule it is the distance between the atoms.   

 

 

   

Also  = x, here x  is x component of the dipole moment, we can 

choose coordinates such that the dipole vector is in x 

direction. 

 

Now the dipole moment is  

 

𝜇(𝑡) = 𝜇0 +  
𝜕𝜇

𝜕𝑥
𝑥 

 

The 0 is the dipole moment at equilibrium distance and the 

derivative tells the change of dipole moment in the vibration. 

When this is inserted to (2.1) we get  

 

...)()()/()()( *

0

* ++=  dxxxxdxddxxx mnmnnm    

 

The first term is 0 when n ≠ m because the wave functions are 

orthogonal. The case where n=m is not interesting since nothing 

happens. The next term is the key term. It shows that the 

intensity will depend on the change of dipole moment in the 

vibration.  

The Orca output have results like, where the T**2 is the 

intensity.  



 

 

----------- 

IR SPECTRUM 

 

 

Mode freq (cm**-1) T**2         TX          TY        TZ 

------------------------------------------------------------ 

6:  1278.77    6.157280  ( -2.481387 -0.000010 -0.000287) 

7:  1395.78    29.682711  ( -0.000003 -5.448182 -0.004815) 

8:  1765.08    4.180497  ( 0.000537 -0.022003 2.044508) 

9:  2100.53   8.550050  ( 0.000080 0.011990 2.924022) 

10: 3498.72   1.843422  ( 0.001027 -0.178764 -1.345907) 

11: 3646.23  19.778426  ( 0.000035 4.446922 -0.057577) 

 

There are also utility program that will make a file Test-Freq-

H2CO.ir.dat that will contain the spectra.  

orca_mapspc Test-Freq-H2CO.out ir -w50 

 

Raman intensities 
 

The electric field is time dependent E(t)= E0 sin 2t. This  

external electric field will pull the electrons and ions on 

different directions and the dipole moment of the molecule will 

change: 𝜇(𝑡) =  𝜇0 + 𝛼 ∙ 𝐸(𝑡) here the  is the polarization of the 

molecule. Now also this change of the dipole moment with respect 

of the vibration can be measured.  

𝛼(𝑡) = 𝛼0 +  
𝜕𝛼

𝜕𝑥
𝑥 

...)()()/(... * ++=  dxxxxdxdE mnnm   

 

The output form the Raman spectrum calculations:  

-------------- 

RAMAN SPECTRUM 

-------------- 

Mode freq (cm**-1) Activity Depolarization 



 

 

-------------------------------------------------- 

6:  1278.77   0.007349 0.749649 

7:  1395.78   3.020010 0.749997 

8:  1765.08  16.366586 0.708084 

9:  2100.53   6.696490 0.075444 

10: 3498.72  38.650431 0.186962 

11: 3646.23  24.528483 0.748312 

 

Compare the intensities (T**2 and Activity) of the same modes. 

Again a file for spectra can be made with orca_mapspc  

orca_mapspc Test-Freq-H2CO.out raman -w50 

 

Anharmonic effects  

 

The anharmonic potential can be taken into account by fitting 

the scanned potential to the Morse potential 

𝑉(𝑟) = 𝐷𝑒[(1 − exp(−𝑎(𝑟 − 𝑟0)))2 − 1] = 𝐷𝑒[exp(−2𝑎(𝑟 − 𝑟0)) − 2exp (−𝑎(𝑟 − 𝑟0))] 

Where D is the dissociation energy. 

 



 

 

The energies of the Morse potential are 

𝐸𝑛 =  ħ𝜔 (𝑛 +
1

2
) −

[ħ𝜔 (𝑛 +
1
2

)]
2

 

4𝐷
= ħ𝜔 (𝑛 +

1

2
) − ħ𝜔𝜒 (𝑛 +

1

2
) 2 

The Morse potential fit can be done to all the vibrational 

modes.  

Orca will have an automatic method for anharmonic analysis, 

VPT2. The VPT2 is based on multidimensional polynomial fit up to 

power 4. It should be used for anharmonic analysis of small 

molecules (search ‘anharmonic’ form the manual). The VPT2 is not 

reliable for larger molecules.  

The output for water:  

 

 

w is the harmonic frequency and v the anharmonic. Note that the 

difference is rather large so the anharmonicity really matters.  



 

 

Benzene 
 

 

 

above is the IR spectra (PBE, TZVP, DFT-GGA model, with def2-

QZVPP basis gave 2-6 cm^-1 smaller freq) of benzene and below 

the computed frequencies. See the PBE0 values in the boxes. 

Check the agreement. Is something missing?  

674 

3091 

3072 

1961

1 

1815 

1528 

1038 

3056

1 



 

 

 

 

The experimental peaks at 1961 and 1815 cm^-1 are not 

fundamental modes of benzene molecule. The 1961 could be an 

overtone of 1038 mode (double excitation) and 1815 could be 

combination of 1038 and 674 (but this do not match very well).  

Vibrations of solid systems  

 

659 (calc. harm)   exp: 674 

689 (PBE0, harm) 

 

3117 (calc. harm)   exp: 3056- 3091 

3207 (PBE0, harm) 

1467 (calc. harm)   exp: 1528  

1520 (PBE0, harm) 

 

 

1036 (calc. harm)   exp: 1038  

1070 (PBE0, harm) 

 



 

 

The vibrational analysis can also be done on solid systems.  

NMR spectra 

 

The molecules NMR spectra can be computed. The theory behind it 

is complex I do not go into it. ORCA have excellent tools for 

NMR calculations but the interpretation of the results needs 

some understanding of NMR. The calculations are easy, you just 

add NMR keyword to the commend line. Typically you should first 

optimize the molecules structure. In NMR calculations you should 

use rather large basis because we need a description of the 

electron density at the nucleus - TZVPP is a good one. (See 

below)  

From Orca manual  

Let us consider an example - propionic acid (CH3CH2COOH). In databases like the AIST 
(http://sdbs.db.aist.go.jp) the 13C spectrum in CDCl3 can be found. The chemical shifts are given 
as δ1 = 8.9 ppm, δ2 = 27.6 ppm, δ3 = 181.5 ppm. While intuition already tells us that the carbon 
of the carboxylic acid group should be shielded the least and hence shifted to lower fields 
(larger δ values), let's look at what calculations at the HF, BP86 and B3LYP level of theory using 
the SVP and the TZVPP basis sets yield: 
 
method     σ1      σ2             σ3 

 

HF/SVP   191.7  176.6  23.7 
HF/TZVPP  183.5  167.1    9.7 
B86/SVP  181.9  165.8  26.5 
B86/TZVPP  174.7  155.5    7.6 
B3LYP/SVP  181.8  165.8  22.9 
B3LYP/TZVPP  173.9  155.0    2.9 
 

Looking at these results, we can observe several things - the dramatic effect of using too small 
basis sets, which yields differences of more than 10 ppm. Second, the results obviously change 
a lot upon inclusion of electron correlation by DFT and are functional dependent. Last, these 
values have nothing in common with the experimental ones (they change in the wrong order), 
as the calculation yields absolute shielding like in the table above, but the experimental ones 
are relative shifts, in this case relative to TMS. 
 
In order to obtain the relative shifts, we calculate the shielding  σTMS of the standard molecule 
(TMS HF/TZVPP: 194.1 ppm, BP86/TZVPP: 184.8 ppm, B3LYP/TZVPP: 184.3 ppm) and by using  
δmol =   σref  -  σmol we can evaluate the relative chemical shieldings (in ppm) and directly 
compare to experiment: 
 



 

 

method    δ1    δ2     δ3 

 

HF/TZVPP  10.6  27.0  184.4 
B86/TZVPP  10.1  29.3  177.2 
B3LYP/TZVPP  10.4  29.3  181.4 
Exp.   8.9  27.6  181.5 


