
CS-C2160 Theory of Computation

Lecture 12: Elements of Program Verification

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

2/20

Topics:
Programs as state transformers

I A state-transformation semantics
I Semantics of some basic operations

Specification and correctness of programs
I Weak and strong correctness
I Proving weak correctness via loop invariants
I A general verification approach
I Example: Euclid’s algorithm

Establishing strong correctness



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

3/20

Background

By Rice’s Theorem, one cannot algorithmically decide any
nontrivial input/output properties of computer programs.

Nevertheless, one can still aim to prove that a given individual
program has the desired behaviour, i.e. behaves correctly w.r.t. a
given specification.

More generally, one can aim to advance software design
principles that guarantee that systematically developed programs
are “correct by design”.

These ideas lead to the very broad field of “program verification”,
“program correctness” or “formal methods in software”.

In this lecture, we however only introduce the basic idea of
thinking about programming in terms of state transformations and
correctness assertions (predicates), and how these ideas can be
used to establish program correctness in simple cases.



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

4/20

Programs as State Transformers



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

5/20

12.1 A state-transformation semantics
Let us consider programs (here just simple sequences of
statements) written in a simple programming language with
integer variables, assigments, conditional if-then-else statements
and while-do loops.

The state of such a program (sequence of statements) S with
variables x1,x2, . . . ,xn comprises the current values of the
variables, i.e. it is a vector ω = (ω1,ω2, . . .ωn) ∈ Zn.

A program S then induces a semi-computable relation1 [[S]]
between states:

ω[[S]]ω′ ⇐⇒ executing S in initial state ω halts
and results in final state ω

′.

The state-transformation relation [[S]] can be taken as the
semantical “meaning” of program S.

1Actually, a partially computable function in the case of deterministic programs,
which is what we are considering here.



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

6/20

12.2 Semantics of some basic operations

Let us then determine the state-transformation effects of various
programming language constructs. This can be also viewed as
defining a formal “state-transformation semantics” of our
programming language.

Assignment:

ω[[xk← expr(x)]]ω′, where ω
′
i =

{
ωi for i 6= k,
expr(ω) for i = k.

Here expr(x) is any elementary expression containing variables in
the program.2 Thus, for instance in a program with variables x
and y:

〈x = 1,y = 2〉[[x← x+2∗ y]]〈x = 5,y = 2〉.

2We are here slightly abusing notation by not distinguishing the syntactic
expression on the left and its meaning (semantics) on the right.



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

7/20

The semantics of the composite statement is obtained by simple
relation composition:

ω[[S1;S2; . . . ;Sk]]ω
′ ⇐⇒ ω([[S1]]◦ [[S2]]◦ · · · ◦ [[Sk]])ω

′

The conditional statement is similarly quite straightforward:

ω[[if bool(x) then S1 else S2 fi]]ω′

⇐⇒
{

bool(ω) = T & ω[[S1]]ω
′, or

bool(ω) = F & ω[[S2]]ω
′.

Here bool(x) is any Boolean expression containing variables in
the program.3

3We are again using the same notation for the syntactic expression bool(x) and its
meaning bool(ω).



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

8/20

The semantics of the while-do -loop is more subtle:

ω[[while bool(x) do S od]]ω′

⇐⇒
{

bool(ω) = F & ω = ω′, or
bool(ω) = T & ω[[S;while bool(x) do S od]]ω′.

As an exercise, one may try to establish using these definitions
e.g. the following:

〈i = 1,m = 3〉[[while i > 0 do m← 2∗m; i← i−1 od]]〈i = 0,m = 6〉

or more generally for n≥ 0, m0 ∈ Z:

〈i = n,m = m0〉
[[while i > 0 do m← 2∗m; i← i−1 od]]
〈i = 0,m = m0 ∗2n〉



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

9/20

Specification and Correctness of Programs



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

10/20

12.3 Weak and strong correctness
In program verification, one is usually not concerned about the
detailed state transformation effected by a program S, but only
that S corresponds to some specification.
A specification can be formulated as a pair of logical conditions or
“predicates” over the program variables, a precondition P = P(x)
and a postcondition Q = Q(x).
A program S is weakly correct with respect to a specification
〈P,Q〉, denoted {P}S{Q}, if given an initial state ω where P(ω)
holds, program S will transform it into a state ω′ where Q(ω′)
holds, assuming S halts.
As an example, one can easily verify the following:

{x = x0,y = y0}t← x; x← y; y← t{x = y0,y = x0}
A program S is strongly or totally correct with respect to
specification 〈P,Q〉 if {P}S{Q} holds, and S halts from any initial
state ω satisfying P(ω).



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

11/20

12.4 Proving weak correctness via loop invariants
An essential challenge in establishing the (weak) correctness of a
program P is proving the correctness of the while-do loops.

This can be done by means of loop invariants, which are also a
useful way of thinking about loop design in everyday practical
programming.

A predicate I is an invariant for a program S if {I}S{I}.

For example, one can easily verify that the predicate

I(m, i) : {m∗2i = N},

for any constant N ∈ Z, is an invariant for the body of the loop in
our previous exponentiation program:

{m∗2i = N}m← 2∗m; i← i−1{m∗2i = N}



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

12/20

If an invariant is preserved in each iteration of the body of a loop,
then it is preserved throughout the whole loop. Thus, for any
constant N ∈ Z, the following holds:

{m∗2i = N}
while i > 0 do m← 2∗m; i← i−1 od
{m∗2i = N}

We are free to set the value of the loop variable i before the loop,
and we know that i = 0 at its end. Let us take advantage of this:

{m = m0,n≥ 0}
i← n;
{m∗2i = m0 ∗2n}
while i > 0 do m← 2∗m; i← i−1 od
{m∗2i = m0 ∗2n & i = 0}
⇒ {m = m0 ∗2n}

This establishes the correctness of our exponentiation program:
{m=m0,n≥ 0}i← n; while i > 0 do m← 2∗m; i← i−1 od{m=m0∗2n}



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

13/20

12.5 A general verification approach
These ideas lead to a general approach to proving the weak
correctness of any simple iterative program S such as discussed
here, with respect to a specification {P}S{Q}:

1. Associate an appropriate invariant I to each loop in program S.
2. Verify the invariance of the predicates I.
3. Verify that according to the program flow, for each loop the

respective invariant I holds when the loop is entered. The initial
boundary condition is given by the program precondition P.

4. Verify that the loop invariant(s) of the outermost loop(s)
guarantee that the program postcondition Q holds.

The only items in this recipe that require insight into how the
program operates are items (1) and (2), the rest are mechanical.
These are also the items to which one should pay particular
attention in practical program design.



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

14/20

12.6 Example: Euclid’s algorithm (1/3)
As another example, let us consider the classical Euclid’s
algorithm for computing the greatest common divisor gcd(m,n) of
two nonnegative integers m and n. As a boundary case, we
define gcd(m,0) = gcd(0,m) = m.
For brevity, we use here the abbreviation “m↔ n” for the
operation of exchanging values of variables m and n, and also
allow if-then staments without an else part.
Here’s the algorithm and a specification for its (weak) correctness:

P : {m0 ≥ 0,n0 ≥ 0}
m← m0; n← n0;
if m < n then m↔ n;
while n > 0 do

m← m−n;
if m < n then m↔ n;

od
Q : {m = gcd(m0,n0)}



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

15/20

An appropriate invariant for the loop in Euclid’s algorithm is
simply that even if the values of m and n change, their gcd stays
the same, i.e. the predicate “gcd(m,n) = gcd(m0,n0)”. (Because
of the way the program is written, we need to add to this the
condition “m≥ n”.)

It is easy to validate that this predicate is preserved by the body of
the loop, based on the known facts that (i) gcd(m,n) = gcd(n,m)
for all m,n≥ 0 and (ii) gcd(m−n,n) = gcd(m,n) if m≥ n.

In fact, for any value g the following holds:

I : {m≥ n & gcd(m,n) = g}
m← m−n;
{gcd(m,n) = g}
if m < n then m↔ n
I : {m≥ n & gcd(m,n) = g}



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

16/20

We thus get the following proof sketch for the weak correctness of
Euclid’s algorithm. All the steps between the indicated
correctness assertions are straightforward to check, once the
invariance of the loop predicate I : {m≥ n & gcd(m,n) = g} has
been validated as we just did.

P : {m0 ≥ 0,n0 ≥ 0}
m← m0; n← n0;
if m < n then m↔ n;
I : {m≥ n & gcd(m,n) = gcd(m0,n0)}
while n > 0 do

m← m−n;
if m < n then m↔ n;

od
I′ : {m≥ n & gcd(m,n) = gcd(m0,n0) & n = 0}
Q : {m = gcd(m0,n0)}



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

17/20

12.7 Establishing strong correctness
The remaining part of the story is establishing the strong
correctness of a program S that has already been validated as
weakly correct w.r.t. a specification {P}S{Q}.
This entails proving that all the loops in program S terminate,
given an initial state ω that satisfies precondition P(ω).
This is the theoretically most challenging part of the verification
task, because it is essentially Turing’s Halting Problem. In
practice it is however seldom difficult.

The usual approach is to determine, for each loop in the program,
a ranking function r(ω) that maps admissible (given the
precondition) states of the program to the nonnegative integers or
some other well-founded ordered set,4 and prove that in each
iteration of the loop the value of r(ω) decreases.

4A partially-ordered set is well-founded if the ordering has no infinite descending
sequences.



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

18/20

Exponentiation:

{n≥ 0}
m← 1; i← n;
while i > 0 do

m← 2∗m;
i← i−1

od
{m = 2n}

In the case of the exponentiation pro-
gram, one may clearly choose rank
function r(n,m, i) = i.

Euclid’s algorithm:

{m0 ≥ 0,n0 ≥ 0}
m← m0; n← n0;
if m < n then m↔ n;
while n > 0 do

m← m−n;
if m < n then m↔ n;

od
{m = gcd(m0,n0)}

For Euclid’s algorithm, one
can choose rank function
r(m0,n0,m,n) = m+n.

Another option would be to rank-
order the pairs (m,n) according to:
(m,n) ≺ (m′,n′) if m < n or (m = n
& n < n′).



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

19/20

Summary
Programming languages can (and should) be given a precise
semantics.
One possibility is by giving rules for the state transformations
effected by programs.5

Given a semantics for the language, programs can be formally
verified as correct with respect to a given specification.
A specification can be formulated as a pre-/post-condition pair
〈P,Q〉, where P and Q are conditions on the program variables.
Program S is weakly correct w.r.t. specification 〈P,Q〉, if
precondition P holding before the execution of S guarantees
postcondition Q holding after it.
A program is strongly correct if in addition to weak correctness it
always halts when the precondition holds.
Key proof techniques: loop invariants, ranking functions.

5Cf. Turing machines as configuration-transformers.



CS-C2160 Theory of Computation / Lecture 12

Aalto University / Dept. Computer Science

20/20

Thanks for the Spring and success for the exam!


	Programs as State Transformers
	A state-transformation semantics
	Semantics of some basic operations

	Specification and Correctness of Programs
	Weak and strong correctness
	Proving weak correctness via loop invariants
	A general verification approach
	Example: Euclid's algorithm
	Establishing strong correctness


