
CS-E4075 - Special Course in Machine Learning, Data Science and Arti�cial Intelligence D:

Signed graphs: spectral theory and applications

Problem set 1 - Model Solutions
2021

1

Mathematical exercises

Exercise 1
Credit: Yan Xia

1. For any vector x ∈ ℝn
, simple unsigned graph G = (V , E) and its graph Laplacian L,

xTLx =
n
∑
i=1

x2i Lii +
n
∑
i=1

n
∑
j=1
j≠i

xixjLij

=
n
∑
i=1

x2i di − 2
n
∑
i=1

n
∑
j=1
j>i

xixjAij

= ∑
(i,j)∈E
i<j

(x2i + x2j − 2xixj)

= ∑
(i,j)∈E
i<j

(xi − xj)2

≥ 0
thus L is positive semide�nite.

2. For any vector x ∈ ℝn
, simple signed graph G = (V , E+, E−) and its signed Laplacian L,

xTLx =
n
∑
i=1

x2i Lii +
n
∑
i=1

n
∑
j=1
j≠i

xixjLij

=
n
∑
i=1

x2i di − 2
n
∑
i=1

n
∑
j=1
j>i

xixjAij

= ∑
(i,j)∈E+
i<j

(x2i + x2j − 2xixj) + ∑
(i,j)∈E−
i<j

(x2i + x2j + 2xixj)

= ∑
(i,j)∈E+
i<j

(xi − xj)2 + ∑
(i,j)∈E−
i<j

(xi + xj)2

≥ 0
thus L is positive semide�nite.

Exercise 2
Credit: Ameet Gadekar

The Laplacian ′
of star graph G with �rst vertex as the center and only second vertex having

negative edge looks like

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n − 1 1 −1 ⋯ ⋯ −1
1 1 0 ⋯ ⋯ 0
−1 0 1 0 ⋯ 0
⋮ ⋱
−1 0 ⋯ ⋯ ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Since the graph is balanced (as there are no cycles), we know that the spectrum of this signed

star graph G is same as the spectrum of unsigned graph |G |. Hence, it is su�cient to calculate

2

all the eigenvalues of |G |. Let be the Laplacian of |G |. Let V = {v1,⋯ , vn} be eigen vectors

of corresponding to eigen values Λ = {�1,⋯ , �n} From the lecture, we know that all ones

vector 1⃗ is an eigen vector corresponding to eigen value 0 since 1⃗ = 01⃗. Hence, v1 = 1⃗ and

�1 = 0.
Next consider the vector vn = (−(n − 1), 1,⋯ , 1)T ,i.e, vn = −(n − 1)e1 + e2 +⋯ + en, where eis are

the standard basis vectors of ℝn
. Then,

vn =
⎡
⎢
⎢
⎢
⎣

−(n − 1)2 − (n − 1)
n
⋮
n

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−n(n − 1)
n
⋮
n

⎤
⎥
⎥
⎥
⎦

= n
⎡
⎢
⎢
⎢
⎣

−(n − 1)
1
⋮
1

⎤
⎥
⎥
⎥
⎦

= nvn

Thus, vn is an eigen vector corresponding to the eigen value �n = n. Now, we will show that

there are precisely (n − 2) linearly independent eigen vectors corresponding to the eigen value

1. This concludes the proof that has exactly 3 distinct eigen values.

Now eigen vectors corresponding to eigen value 1 are precisely the vectors in the null space of

A = − I , where I ∈ ℝn×n
is the identity matrix. But then, A has only two linearly independent

columns, the �rst column (n − 2, −1,⋯ , −1)T and the second column −e1, and the rest columns

are all −e1. Hence, Rank(A) = 2, which implies that dim(Nullspace(A)) = n − 2.

Exercise 3
Credit: Ameet Gadekar

1. Let A be the adjacency matrix of a graph G on n vertices. Let �max be the largest eigenvalue

of A. From Rayleigh quotient, we have

�max = maxx≠0
xTAx
xTx

Let davg ∶= ∑n
i=1 di
n , where di is the degree of itℎ vertex. In the above equation, we use x = 1√n 1⃗,

and noting xTx = 1/n ⋅ n = 1,

�max ≥
1√n 1⃗

TA 1√n 1⃗ =
1
n 1⃗

T
⎡
⎢
⎢
⎢
⎣

d1
d2
⋮
dn

⎤
⎥
⎥
⎥
⎦

= 1
n

n
∑
i=1

di = davg

2. Let G = (V , E) be the given graph. Let � refers to eigenvalue(s) of the adjacency matrix A,

and � refers to eigenvalue(s) of the Laplacian . Let k ∈ V be the maximum degree vertex,

and let dk = dmax . Now, consider the matrix

Dmax ∶= dmax I

where I ∈ Rn×n is the identity matrix. Let B ∈ ℝn×n
be such that

B ∶= Dmax − D

where D is the degree matrix of G. Note that,

Bii = dmax − di

3

and Bij = 0. Also, note that Bkk = 0. Let � be eigenvalue(s) of B. Then, observe that since B is a

diagonal matrix with Bkk = 0, we have

�min = 0

Further, we have that

A = D − = Dmax − B − .
Consider any y ≠ 0 ∈ ℝn

, then

yTy
yTy ≥ �min

using Rayleigh quotient. Now consider

yTAy
yTy = yTDmaxy

yTy − y
TBy
yTy − y

Ty
yTy

= dmax
yT I y
yTy − y

TBy
yTy − y

Ty
yTy

= dmax −
yTBy
yTy − y

Ty
yTy

≤ dmax − �min − �min
= dmax since �min = 0

Since the above holds for every non-zero y, it also holds for eigenvector z ∈ ℝn
of A corre-

sponding to �max . Hence,

�max =
zTAz
zTz ≤ dmax .

Exercise 4
Credit: Ameet Gadekar

⇒ Assume G = (V , E) has no negative cycles. We show an algorithm to �nd the partition

V = V1∪̇V2 such that every negative edge (i, j) ∈ E(V1, V2), and every positive edge (i, j) ∈ G[V1]
or (i, j) ∈ G[V2]. Assume G is connected (or else repeat the algorithm and argument for each

connected component).

1. Choose any vertex v ∈ V .

2. Put v in V1.
3. Do BFS from v and parallelly construct V1 and V2 as follows:

(a) if (vi , vj) is a negative edge, then put vj in di�erent partition than that of vi .
(b) if (vi , vj) is a positive edge, then put vj in the same partition of vi .

For correctness of the algorithm, we show two claims. Let T = (V , ET) be the BFS tree

discovered by the algorithm. Then, note that any edge e ∉ ET is either a same level edge or a

cross edge in the adjacent level, but never a backedge. Further, also observe that for e ∈ ET ,

the algorithm correctly classi�es e, i.e., if e is a negative edge, then e ∈ E(V1, V2), whereas if e
is a positive edge, then e ∈ G[V1] or e ∈ G[V2]. So, we have to prove the correctness for e ∉ ET .

Claim: There are no negative edges within the partitions.

Proof. Suppose there is a negative edge e = (vi , vj) ∈ E ⧵ ET in partition V1 (w.l.o.g.). Let vc be

the least common ancestor of vi and vj in T . Note that vc has to be di�erent than vi and vj . Let

4

Pi and Pj be the paths from vc to vi and vj respectively. Let ni and nj the number of negative

edges in the path Pi and Pj respectively. Now, if vc ∈ V1, then

ni mod 2 = nj mod 2 = 0.
Then, consider the cycle C = (vc , Pi , vi , vj , Pj , vc). C is a negative cycle since the number of

negative edges is odd because

ni mod 2 + nj mod 2 + 1 = 1
which is a contradiction. Now assume vc ∈ V2. Since, vi , vj ∈ V1, we have that

ni mod 2 = nj mod 2 = 1.
Hence, the cycle C = (vc , Pi , vi , vj , Pj) is negative because,

ni mod 2 + nj mod 2 + 1 = 1.

Claim: There are no positive edges crossing the partition.

Proof. Suppose there is a positive edge e = (vi , vj) ∈ E ⧵ ET crossing the partition. Let vc be the

lowest common ancestor of vi and vj . Note that vc has to be di�erent than vi and vj . Let ni be

the number of negative edges in the path Pi from vc to vi in T . Similarly, let nj be the number of

negative edges in the path Pj from vj to vc in T . Now consider the cycle C = (vc , Pi , vi , vj , Pj , vc)
in G. Since vi and vj are in di�erent partitions, we have that

ni mod 2 ≠ nj mod 2
This implies that ni + nj is odd. Since (vi , vj) is a positive edge, it means that C is a negative

cycle, which is a contradiction.

⇐ Assume there is a partition V = V1∪̇V2 such that every negative edge (i, j) ∈ E(V1, V2),
and every positive edge (i, j) ∈ G[V1] or (i, j) ∈ G[V2]. Then, consider any cycle C =
(v1, v2,⋯ , vk , v1). If C has no negative edges, then we are done since C is not a negative

cycle. Similarly, if C has even number of negative edges, then also C is not a negative cycle.

Suppose there are 2s + 1 negative edges for some positive integer s. Also, assume without

loss of generality that v1 ∈ V1. Now, we trace cycle C starting from v1, which is in V1. Then,

note that since all the negative edges are cut by the partition (V1, V2), every negative edge of C
makes us switch the partition. But then there are 2s + 1 negative edges in C , which implies

that v1 ∈ V2, which is a contradiction.

Exercise 5
Credit: Nidia Acosta Obscura

We show that when the graph is balanced, connected and regular, then the adjacency matrix

and the Laplacian have the same eigenvectors and we can obtain the same information from

the eigenvectors of the adjacency matrix. First, we can rewrite L = D − A, call this equation

1. Take any eigenvector vi of L and multiply it on the left by equation 1. This gives us

(vi)L = (vi)(D − A) = (vi)D − (vi)A. Rewriting and using the fact that vi is an eigenvector

with eigenvalue � for L we get: (vi)D − �(vi) = (vi)A. Now, since D is the degree matrix of a

regular graph, we can rewrite D = dI where d is the degree of the graph and I is the identity

matrix. Hence, (vi)D = (vi)(dI) = d(vi) and rewriting everything gives us (d − �)vi = (vi)A.

This implies that vi is also an eigenvector for A with eigenvalue d − �. Finally, in order to �nd

the sign-compliant partition we know that the smallest eigenvector vi in L is now going to be

the largest eigenvector in A as the eigenvalue changes from � to d − �.

5

Exercise 6
Credit: Nidia Acosta Obscura

Let us �rst note that switching a set of nodes S all at once gives us the same result as switching

each node one at a time. This is because whenever we switch an edge (s, t) where s ∈ S and

t ∉ S, we do this only once (when switching the node s, as we switch it only once and the other

endpoint t ∉ S never gets switched), and whenever we switch an edge (s1, s2) with s1, s2 ∈ S we

switch it always exactly two times (once when switching the node s1 and once when switching

the node s2). This implies that edges between the set S are switched twice and hence remained

unchanged and edges in the cut are switched exactly once, as we wanted.

Now, we can restrict ourselves to considering single node switching operations which would

look as follows: for switching node i, we need to change the sign of all the edges adjacent

to it, so in an adjacency matrix would correspond to changing the sign of all the entries in

row i and all the entries in column i (except for the diagonal which is zero). To do this, we

can simply multiply by the matrix P equal to the identity matrix with a −1 at position Ii,i , both

from the left (to switch the row i of A) and from the right (to switch the column i of A). Since

P is its own inverse, the above procedure would be to apply the similarity transformation of

PAP−1 = A′. By the hint, we know that A and A′ have the same spectra and hence applying

one node switching step does not change the eigenvalues of A. For L note that we can use

the same analysis, as the switching operation does not change the degrees of vertices and the

entry at the diagonal on row i is equal to the entry at the diagonal on column i so hence the

entry in L changes sign twice for PLP−1 and so it remains unchanged.

Exercise 7
Credit: Ameet Gadekar

1. Let and A be the Laplacian and adjacency matrix of Cn respectively, where n is even.

Then, letting D ∶= 2I ∈ ℝn×n
, we note that

 = D − A

Hence, and A has same set of eigenvectors. Suppose v is an eigenvector of corresponding

to eigenvalue �, then

�v = v = Dv − Av = (2 − �i)v
where � is the eigenvalue of A corresponding to eigenvector v. Hence has eigenvalue 4 if

and only if A has eigenvalue −2. So, now we show that A, in fact, has an eigenvalue −2.
Consider the following vector w ∈ ℝn

:

wi =
{
−1 if i is even

1 if i is odd

Let Aw = u. The following claim says that u = (−2)w, which implies Aw = (−2)w. Claim:
ui = −2wi .
Proof. Fix i ∈ [n]. Let Ai be the itℎ row of Ai . Since n is even, we have that the two neighbours

of i are
1

- (i − 1) and (i + 1). Hence, Ai,i−1 = Ai,i+1 = 1, and rest entries of Ai are zeroes. Suppose

1(i + 1) is de�ned as 1, when i = n. Similarly, (i − 1) is de�ned as n, when i = 1.

6

i is even. Then, note that wi = −1. Further, since (i − 1) and (i + 1) are odd, we have that

wi−1 = wi+1 = 1. Hence,

ui = Aiw = Ai,i−1wi−1 + Ai,i+1wi+1 = 1(1) + 1(1) = 2 = (−2)wi .
Now, when i is odd, we have that wi = 1. Also, since (i − 1) and (i + 1) is even, we have

wi−1 = wi+1 = −1. Thus,

ui = Aiw = Ai,i−1wi−1 + Ai,i+1wi+1 = 1(−1) + 1(−1) = −2 = (−2)wi .

2. From Gershgorin theorem, we know that every eigenvalue of lies within one of the

Gershgorin disc D(ii , Ri), where

Ri ∶=∑
j≠i

||ij ||

Note for cycle, ii = 2, for all i ∈ [n], and

Ri = 2
since each row has preciely two −1s corresponding to its two neighbours. So, Gershgorin

theorem says that all eigenvalues of lie in the disc D(2, 2). Hence,

�max ≤ 4.
So, �max = 4, when n is even.

Exercise 8
Credit: Ameet Gadekar

We show a combinatorial algorithm to �nd if G is balanced or not. The algorithm is same as

that we used in the �rst part of exercise 4.

1. Repeat for every connected component of G
(a) Choose any vertex v ∈ V in the connected component.

(b) Put v in V1.
(c) Do BFS from v and parallelly construct V1 and V2 as follows:

i. if (vi , vj) is a negative edge, then put vj in di�erent partition than that of vi .
ii. if (vi , vj) is a positive edge, then put vj in the same partition of vi .

2. For every edge e = (vi , vj) in G
• If e is a positive edge

– If vi and vj are in di�erent partition

∗ Return FAIL

• If e is a negative edge

– If vi and vj are in same partition

∗ Return FAIL

3. Return (V1, V2)

Running time: BFS runs in linear time in the number of edges. Further, the sanity check

Step 2 considers every edge, and �gures out the partitions of its endpoints, which is linear

in the number of vertices. Hence the total running time of the algorithm is cubic in the of

number of vertices.
2

2
Can be improved to quadratic by using array to store the partition.

7

Correctness: First, assume G is balanced. Then, by de�nition there are no negative cycles

in G. From the two claims in the solution to exercise 4, we note that the algorithm �nds a

partition such that every negative edge cuts the partition and every positive edge is within a

partition.

Assume V = V1∪̇V2 is the partition returned by the algorithm. Then, by sanity check of Step 2,

every negative edge cuts the partition and every positive edge is within a partition. Hence, by

de�nition, this implies that G is balanced.

Exercise 9
Credit: Yan Xia

Let us consider a 2-partitioning V = (V1, V2) of graph G that has the minimum number of

“incorrect edges", namely within-partition negative edges or cross-partition positive edges.

According to what we have proved in Exercise 4, the graph will be balanced after removing

those incorrect edges, and thus the number of incorrect edges under this partition is exactly

the edge frustration fe of G. Let Ei denote the set of incorrect edges, and Ec denote the set of

correct edges under this partition.

Then we de�ne a vector x ∈ ℝn
so that xi = 1 if vertex i ∈ V1, and xi = −1 if i ∈ V2. Then

xTLx
xTx =

∑n
i=1 x2i Lii +∑n

i=1∑n
j=1
j≠i
xixjLij

n

=
∑n

i=1 di −∑n
i=1∑n

j=1
j≠i
xixjAij

n

=
2|E| −∑n

i=1∑n
j=1
j≠i
xixjAij

n
We further observe that xixjAij = 1 if (i, j) is a “correct edge" (within-partition positive edge /

cross-partition negative edge), and xixjAij = −1 if (i, j) is an “incorrect edge" (within-partition

negative edge / cross-partition positive edge). Thus

xTLx
xTx = 2|E| − 2|Ec | + 2|Ei |n

= 4|Ei |n
= 4
nfe

Since we know
xT Lx
xT x takes minimum value �min,

4
nfe =

xTLx
xTx ≥ �min

�min ≤
n
4 fe

When n ≥ 4, it is clear that �min ≤ fe holds.

When n = 2, it is easy to see that fe = 0 and �min = 0 because the graph is always balanced, and

thus �min ≤ fe holds.

When n = 3, fe = 0, �min = 0 and �min ≤ fe obviously holds when the graph is balanced. When

it is not (i.e. when it contains a cycle of one negative edge and two positive edges, or a cycle of

three negative edges), through simple calculation it is easy to see that fe = 1 and �min = 1, thus

�min ≤ fe also holds.

8

Exercise 10
Credit: Ameet Gadekar

Given a signed graph G = (V , E), fe(G) is minimum number of edges to be removed from G to

make it balanced. Here is a brute force algorithm to �nd fe(G).
1. a ← 0.
2. For every subset F ⊆ E

(a) Let G′ = (V , E ⧵ F).
(b) If ISBALANCED(G′) == True

• If |F | < a
– a ← |F |

3. RETURN a
ISBALANCED subroutine is the algorithm of Exercise 8, which is modi�ed to return True in

Step 3, instead of returning the partition.

Running time: Let m ∶= |E| and n ∶= |V |. Since the algorithm goes over all the subsets

of E, Step 2 is repeated 2m times. Step 2a takes polynomial time in m, and Step 2b also takes

polynomial time in m from Exercise 8. Hence the total running time is O(2mpoly(m)).

Correctness Let F ∗ ⊆ E be a edge set corresponding to the optimal value fe , i.e., |F ∗| = fe , and

G′′ = (V , E ⧵ F ∗) is balanced. Then, note that Step 2b is satis�ed since ISBALANCED(G′′) returns

true. Hence, a ≤ fe . Further, there is no set W ⊆ E such that |W | < fe and G′ = (V , E ⧵W) is

balanced, by de�nition of fe . Hence, a = fe .

Programming exercises

Exercise 11
Credit: Yan Xia

1. The visualization of the graph before the transformation is shown in Figure 1.

Figure 1: Visualization of the graph before the transformation.

2. To spread out the vertex positions, we take the square root of the coordinates (for

negative values, take the negative square root of the absolute value). The visualization

of the graph after the transformation is shown in Figure 2.

9

Figure 2: Visualization of the graph after the transformation.

Exercise 12
Credit: Yan Xia

The algorithm proceeds as in Algorithm 1. It runs in O(|V |(|V | + |E|)) time.

Algorithm 1 The MaximalBalancedSubgraph algorithm.

Input: Signed graph G = (V , E+, E−). Function Subgraph(G, S) that returns the subgraph of

G induced by vertex set S. Function CheckBalanced(G) as described in Algorithm ??.

Output: The maximal balanced subgraph of G.

1: S ← ∅
2: for v in V do
3: S′ ← S ∪ {v}
4: H ← Subgraph(G, S′)
5: if CheckBalanced(H) = True then
6: S ← S′
7: end if
8: end for
9: return Subgraph(G, S)

The vertices corresponding to the located balanced subgraph are:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,

91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,

114, 115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,

135, 136, 137, 138, 139, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157,

158, 159, 160, 161, 162, 163, 164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,

179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,

199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218]

10

