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An informal introduction to computational complexity
and approximation algorithms



I Problems in P: can be solved in polynomial time (O(nc) for some constant c).
I Problems in NP: given a solution, we can verify it in polynomial time.
I Problems in NP-hard: at least as hard as any problem in NP.

I Working assumption: no polynomial-time algorithm exists.
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Approximation algorithms

For problems in NP-hard, we know we cannot hope to find the opimal solution in
polynomial time.

But can we find a solution close to the optimum?

Definition
Consider a maximization1 problem Π with optimal solution of value OPT . We say
that an algorithm is a c-approximation algorithm for Π if it outputs a solution of
value ALG that satisfies

ALG ≥ c ·OPT .

1For minimization problems, a c-approximation algorithm satisfies ALG ≤ c · OPT .
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Approximation algorithms
Example: MAXCUT

Goal: partition the vertices in two sets to
maximize the number of cut edges.

NP-hard problem.

However, there is a polynomial time
algorithm achieving

ALG ≥ c ·OPT ,

where c ≈ 0.878.
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Approximation algorithms
PTAS

Consider an NP-hard problem Π. Assume there is an algorithm that runs in O(n2)

and satisfies ALG ≥ 1
2OPT =

(
1− 1

2

)
OPT .

Perhaps it is possible to improve the quality of the solution by using more time, say
run for O(n3) and get ALG ≥

(
1− 1

3

)
OPT .

Or run for O(n4) and get ALG ≥
(
1− 1

4

)
OPT ; run for O(n5) and get

ALG ≥
(
1− 1

5

)
OPT ...

In general, maybe we can run for O(n1/ε) and get ALG ≥ (1− ε) OPT .

PTAS
This is called a Polynomial-Time Approximation Scheme (PTAS).
Requisite: for fixed ε, the algorithm gives a (1− ε)-approximation and runs in time
polynomial in n. Not always possible!
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Introduction to correlation clustering



Correlation clustering

k -means clustering. Input: X = {xi : i = 1, . . . ,n}.

Objective: Find k -partition of X to minimize
∑

i d(xi , c(xi)).



Correlation clustering
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Correlation clustering

The goal of correlation clustering is to partition a signed graph so as to

I minimize the number of mistakes (MINDISAGREE),
I or maximize the number of correct edges (MAXAGREE).
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13 correct, 2 mistakes.
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I minimize the number of mistakes (MINDISAGREE),
I or maximize the number of correct edges (MAXAGREE).
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The goal of correlation clustering is to partition a signed graph so as to
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Correlation clustering

Correlation clustering variants:

I Is the input graph complete?
I Is the graph weighted?
I Maximize agreements or minimize disagreements?
I Is the number of clusters fixed?

All these variants are different in terms of hardness of approximation.



Correlation clustering

Correlation clustering does not require the number of clusters as input.

The optimal value could be any number between 1 and n.

Consider MINDISAGREE (complete graph, minimize mistakes).
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Correlation clustering

We know when a graph has a perfect 2-correlation-clustering (partition into 2 sets
with no mistakes).

When does a graph have a perfect k -correlation-clustering, for any k?

Theorem
A signed graph G has a k -correlation-clustering with no mistakes if and only if G
contains no cycle with exactly 1 negative edge.
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Correlation clustering
Algorithm analysis

We are going to analyze a few algorithms for correlation clustering:

I A 2-approximation for MAXAGREE.
I A 3-approximation for 2-MINDISAGREE.
I A PTAS for MAXAGREE (incomplete analysis).



Correlation clustering
A 2-approximation algorithm for MAXAGREE

Given a complete signed graph G, we seek a clustering maximizing agreements.

Algorithm:

I If G has more + edges than - edges, put all vertices in the same cluster.
I Otherwise, put each vertex in a singleton cluster.

Upper-bounding OPT :

(n
2

)
≥ OPT .

We achieve a 1/2-approximation.
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Correlation clustering
Algorithms for 2-MINDISAGREE

Given a complete signed graph G = (V ,E+,E−), we seek two clusters, C1,C2.

Algorithm: consider all clusterings C1 = N+(v),C2 = N−(v) for all v ∈ V , where

I N+(v) = {v} ∪ {u ∈ V : (v ,u) ∈ E+},
I N−(v) = {u ∈ V : (v ,u) ∈ E−}.

1

2

3 4

5

6

Claim: this algorithm makes at most
3OPT mistakes.

Note: in complete graphs the unsigned problem is equivalent, with missing edges playing the part of
negative edges.
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Correlation clustering
Algorithms for 2-MINDISAGREE

Optimal solution.

1

2

3 4

5

6

Bad edges

ALG ≤ 3OPT . Analysis:

I We make some of the mistakes of
OPT (pessimistically, all of them).

I Let d be the “bad” degree of v .
I v = 3, d = 1.

I Each of the d “bad” neighbors
induces less than n mistakes:
nd mistakes at most (pessimistic).

I Suppose d is minimal over all v .
Then OPT ≥ nd/2.

I So we make at most
OPT + nd ≤ OPT + 2OPT ≤ 3OPT
mistakes!
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Correlation clustering
PTAS for MAXAGREE
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I Remember: OPT ≥ 1
2

(n
2

)
.

I More + or - edges?

I 1
2

(n
2

)
= n(n − 1)/4 = n2

4 −
n
4 = Ω(n2).

I So it is enough to find a clustering OPT − εn2 correct
edges.

I Rest of the analysis: reduction to General
Partitioning and use as black box.

I Total running time: eO((1/ε)1/ε)poly(n).
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Correlation clustering
The spectral connection

Consider a correlation clustering instance G = (V ,E−,E+), and a clustering
V = C1 ∪ C2.

Let A be the adjacency matrix of G.

Let x be the partition indicator vector, i.e.

xi =

{
1 if vi ∈ C1

−1 if vi ∈ C2.

Then xT Ax = agreements − disagreements.



Take-aways from this lecture:

I Basics of computational complexity.
I Basics of approximation algorithms.
I Correlation clustering.

I Differences with respect to conventional clustering (e.g. k -means).
I Perfect k -way partitioning.

I Analyses of some approximation algorithms.
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