CS-E4075 - Special Course in Machine Learning, Data Science and Artificial Intelligence D: Signed graphs: spectral theory and applications

### Correlation clustering

Bruno Ordozgoiti

Aalto University 2021

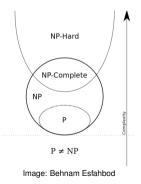
An informal introduction to computational complexity and approximation algorithms Introduction to correlation clustering

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Correlation clustering: algorithm analysis

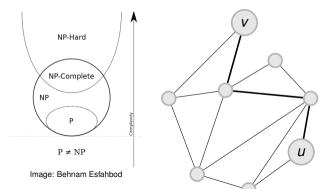
An informal introduction to computational complexity and approximation algorithms

▲□▶▲□▶▲□▶▲□▶ □ の000



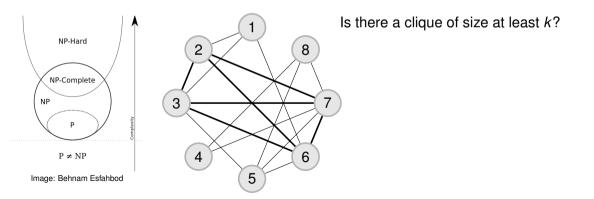
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Problems in P: can be solved in polynomial time ( $O(n^c)$ ) for some constant *c*).

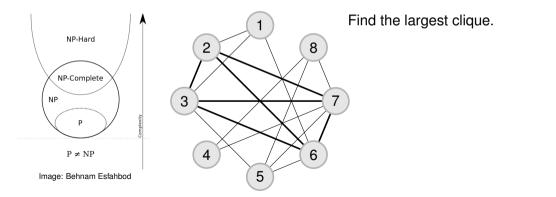


Is there a path of length at most *k* between *u* and *v*? Can be answered computing shortest paths in  $O(n^2)$ .

- ▶ Problems in P: can be solved in polynomial time ( $\mathcal{O}(n^c)$ ) for some constant *c*).
- Problems in NP: given a solution, we can verify it in polynomial time.



- ▶ Problems in P: can be solved in polynomial time ( $O(n^c)$ ) for some constant *c*).
- Problems in NP: given a solution, we can verify it in polynomial time.
- Problems in NP-hard: at least as hard as any problem in NP.
  - Working assumption: no polynomial-time algorithm exists.



▲□▶▲□▶▲□▶▲□▶ □ のQ@

For problems in NP-hard, we know we cannot hope to find the opimal solution in polynomial time.

<sup>1</sup>For minimization problems, a *c*-approximation algorithm satisfies  $ALG \leq c \cdot OBT$ . (B) (C)  $C = c \cdot CBT$ .

For problems in NP-hard, we know we cannot hope to find the opimal solution in polynomial time.

But can we find a solution close to the optimum?

<sup>&</sup>lt;sup>1</sup>For minimization problems, a *c*-approximation algorithm satisfies  $ALG \leq c \cdot OBT$ . (B) (C)  $C = c \cdot CBT$ .

For problems in NP-hard, we know we cannot hope to find the opimal solution in polynomial time.

But can we find a solution close to the optimum?

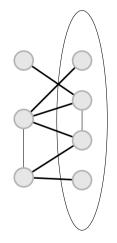
#### Definition

Consider a maximization<sup>1</sup> problem  $\Pi$  with optimal solution of value *OPT*. We say that an algorithm is a *c*-approximation algorithm for  $\Pi$  if it outputs a solution of value *ALG* that satisfies

 $ALG \geq c \cdot OPT.$ 

<sup>&</sup>lt;sup>1</sup>For minimization problems, a *c*-approximation algorithm satisfies  $ALG \leq c \circ OBT$ .  $c \equiv b \in C \to CBT$ .

Example: MAXCUT

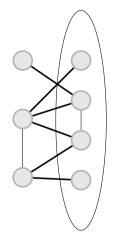


Goal: partition the vertices in two sets to maximize the number of cut edges.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

NP-hard problem.

Example: MAXCUT



Goal: partition the vertices in two sets to maximize the number of cut edges.

NP-hard problem. However, there is a polynomial time algorithm achieving

 $ALG \ge c \cdot OPT$ ,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where  $c \approx 0.878$ .

Consider an NP-hard problem  $\Pi$ . Assume there is an algorithm that runs in  $\mathcal{O}(n^2)$  and satisfies  $ALG \ge \frac{1}{2}OPT = (1 - \frac{1}{2}) OPT$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Consider an NP-hard problem  $\Pi$ . Assume there is an algorithm that runs in  $\mathcal{O}(n^2)$  and satisfies  $ALG \ge \frac{1}{2}OPT = (1 - \frac{1}{2}) OPT$ .

Perhaps it is possible to improve the quality of the solution by using more time, say run for  $\mathcal{O}(n^3)$  and get  $ALG \ge (1 - \frac{1}{3}) OPT$ .

Consider an NP-hard problem  $\Pi$ . Assume there is an algorithm that runs in  $\mathcal{O}(n^2)$  and satisfies  $ALG \ge \frac{1}{2}OPT = (1 - \frac{1}{2}) OPT$ .

Perhaps it is possible to improve the quality of the solution by using more time, say run for  $\mathcal{O}(n^3)$  and get  $ALG \ge (1 - \frac{1}{3}) OPT$ .

Or run for  $\mathcal{O}(n^4)$  and get  $ALG \ge (1 - \frac{1}{4}) \ OPT$ ; run for  $\mathcal{O}(n^5)$  and get  $ALG \ge (1 - \frac{1}{5}) \ OPT$ ...

Consider an NP-hard problem  $\Pi$ . Assume there is an algorithm that runs in  $\mathcal{O}(n^2)$  and satisfies  $ALG \ge \frac{1}{2}OPT = (1 - \frac{1}{2}) OPT$ .

Perhaps it is possible to improve the quality of the solution by using more time, say run for  $\mathcal{O}(n^3)$  and get  $ALG \ge (1 - \frac{1}{3}) OPT$ .

Or run for  $\mathcal{O}(n^4)$  and get  $ALG \ge (1 - \frac{1}{4}) \ OPT$ ; run for  $\mathcal{O}(n^5)$  and get  $ALG \ge (1 - \frac{1}{5}) \ OPT$ ...

In general, maybe we can run for  $\mathcal{O}(n^{1/\epsilon})$  and get  $ALG \ge (1 - \epsilon) OPT$ .

Consider an NP-hard problem  $\Pi$ . Assume there is an algorithm that runs in  $\mathcal{O}(n^2)$  and satisfies  $ALG \ge \frac{1}{2}OPT = (1 - \frac{1}{2}) OPT$ .

Perhaps it is possible to improve the quality of the solution by using more time, say run for  $\mathcal{O}(n^3)$  and get  $ALG \ge (1 - \frac{1}{3}) OPT$ .

Or run for  $\mathcal{O}(n^4)$  and get  $ALG \ge (1 - \frac{1}{4}) \ OPT$ ; run for  $\mathcal{O}(n^5)$  and get  $ALG \ge (1 - \frac{1}{5}) \ OPT$ ...

In general, maybe we can run for  $\mathcal{O}(n^{1/\epsilon})$  and get  $ALG \ge (1 - \epsilon) OPT$ .

#### **PTAS**

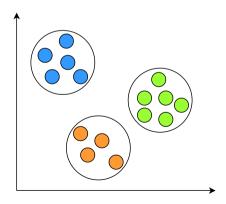
This is called a Polynomial-Time Approximation Scheme (PTAS). Requisite: for fixed  $\epsilon$ , the algorithm gives a  $(1 - \epsilon)$ -approximation and runs in time polynomial in *n*. Not always possible!

### Introduction to correlation clustering

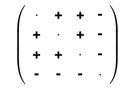
(ロ) (型) (主) (主) (三) のへで

*k*-means clustering. Input:  $X = \{x_i : i = 1, ..., n\}$ .

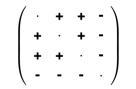
Objective: Find *k*-partition of *X* to minimize  $\sum_i d(x_i, c(x_i))$ .

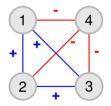


Input: are x and y similar or dissimilar?

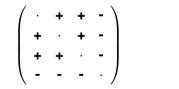


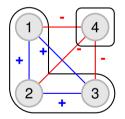
Input: are x and y similar or dissimilar?

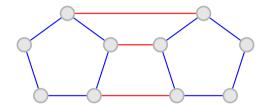




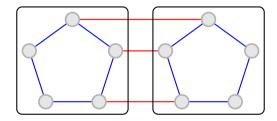
Input: are x and y similar or dissimilar?



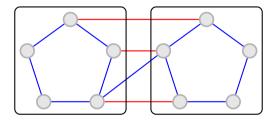




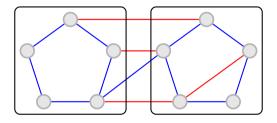
◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○



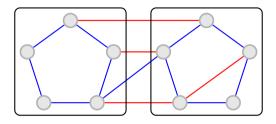
<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○



13 correct, 1 mistake.



13 correct, 2 mistakes.



13 correct, 2 mistakes.

The goal of correlation clustering is to partition a signed graph so as to

- minimize the number of mistakes (MINDISAGREE),
- or maximize the number of correct edges (MAXAGREE).

Correlation clustering variants:

- Is the input graph complete?
- Is the graph weighted?
- Maximize agreements or minimize disagreements?
- Is the number of clusters fixed?

All these variants are different in terms of hardness of approximation.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Correlation clustering does not require the number of clusters as input.

The optimal value could be any number between 1 and *n*.

Consider MINDISAGREE (complete graph, minimize mistakes).

When is it 1?

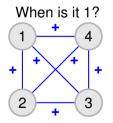
When is it n?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Correlation clustering does not require the number of clusters as input.

The optimal value could be any number between 1 and *n*.

Consider MINDISAGREE (complete graph, minimize mistakes).

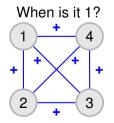


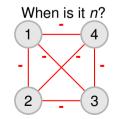


Correlation clustering does not require the number of clusters as input.

The optimal value could be any number between 1 and *n*.

Consider MINDISAGREE (complete graph, minimize mistakes).





We know when a graph has a perfect 2-correlation-clustering (partition into 2 sets with no mistakes).

We know when a graph has a perfect 2-correlation-clustering (partition into 2 sets with no mistakes).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

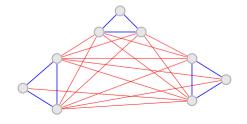
When does a graph have a perfect k-correlation-clustering, for any k?

We know when a graph has a perfect 2-correlation-clustering (partition into 2 sets with no mistakes).

When does a graph have a perfect k-correlation-clustering, for any k?

#### Theorem

A signed graph G has a k-correlation-clustering with no mistakes if and only if G contains no cycle with exactly 1 negative edge.



### Correlation clustering: algorithm analysis

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Algorithm analysis

We are going to analyze a few algorithms for correlation clustering:

▲□▶▲□▶▲□▶▲□▶ □ の000

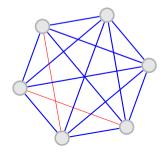
- ► A 2-approximation for MAXAGREE.
- ► A 3-approximation for 2-MINDISAGREE.
- ► A PTAS for MAXAGREE (incomplete analysis).

A 2-approximation algorithm for MAXAGREE

Given a complete signed graph G, we seek a clustering maximizing agreements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

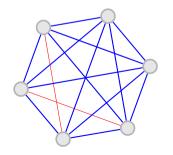
Algorithm:



A 2-approximation algorithm for MAXAGREE

Given a complete signed graph G, we seek a clustering maximizing agreements.

Algorithm:



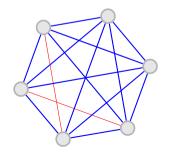
Upper-bounding OPT:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A 2-approximation algorithm for MAXAGREE

Given a complete signed graph G, we seek a clustering maximizing agreements.

Algorithm:



Upper-bounding *OPT*:  $\binom{n}{2} \ge OPT$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A 2-approximation algorithm for MAXAGREE

Given a complete signed graph G, we seek a clustering maximizing agreements.

Algorithm:

- ▶ If *G* has more + edges than edges, put all vertices in the same cluster.
- Otherwise, put each vertex in a singleton cluster.



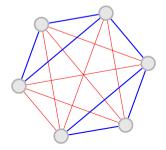
Upper-bounding *OPT*:  $\binom{n}{2} \ge OPT$ .

A 2-approximation algorithm for MAXAGREE

Given a complete signed graph G, we seek a clustering maximizing agreements.

Algorithm:

- ▶ If *G* has more + edges than edges, put all vertices in the same cluster.
- Otherwise, put each vertex in a singleton cluster.



Upper-bounding *OPT*:  $\binom{n}{2} \ge OPT$ .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

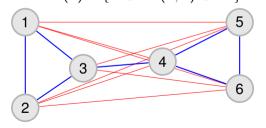
We achieve a 1/2-approximation.

Algorithms for 2-MINDISAGREE

Given a complete signed graph  $G = (V, E^+, E^-)$ , we seek two clusters,  $C_1, C_2$ .

Algorithm: consider all clusterings  $C_1 = N^+(v)$ ,  $C_2 = N^-(v)$  for all  $v \in V$ , where

▶ 
$$N^+(v) = \{v\} \cup \{u \in V : (v, u) \in E^+\},$$
  
▶  $N^-(v) = \{u \in V : (v, u) \in E^-\}.$ 

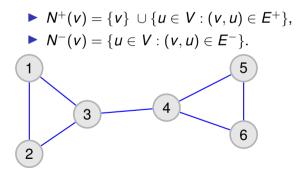


Note: in complete graphs the unsigned problem is equivalent, with missing edges playing the part of negative edges.

Algorithms for 2-MINDISAGREE

Given a complete signed graph  $G = (V, E^+, E^-)$ , we seek two clusters,  $C_1, C_2$ .

Algorithm: consider all clusterings  $C_1 = N^+(v)$ ,  $C_2 = N^-(v)$  for all  $v \in V$ , where

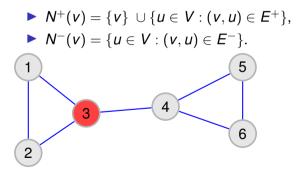


Note: in complete graphs the unsigned problem is equivalent, with missing edges playing the part of negative edges.

Algorithms for 2-MINDISAGREE

Given a complete signed graph  $G = (V, E^+, E^-)$ , we seek two clusters,  $C_1, C_2$ .

Algorithm: consider all clusterings  $C_1 = N^+(v)$ ,  $C_2 = N^-(v)$  for all  $v \in V$ , where



Algorithms for 2-MINDISAGREE

Given a complete signed graph  $G = (V, E^+, E^-)$ , we seek two clusters,  $C_1, C_2$ .

Algorithm: consider all clusterings  $C_1 = N^+(v)$ ,  $C_2 = N^-(v)$  for all  $v \in V$ , where

▶ 
$$N^+(v) = \{v\} \cup \{u \in V : (v, u) \in E^+\},$$
  
▶  $N^-(v) = \{u \in V : (v, u) \in E^-\}.$ 

Algorithms for 2-MINDISAGREE

Given a complete signed graph  $G = (V, E^+, E^-)$ , we seek two clusters,  $C_1, C_2$ .

Algorithm: consider all clusterings  $C_1 = N^+(v)$ ,  $C_2 = N^-(v)$  for all  $v \in V$ , where

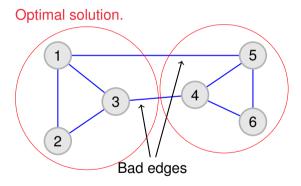
▶ 
$$N^+(v) = \{v\} \cup \{u \in V : (v, u) \in E^+\},$$
  
▶  $N^-(v) = \{u \in V : (v, u) \in E^-\}.$ 

Claim: this algorithm makes at most *3OPT* mistakes.

Algorithms for 2-MINDISAGREE

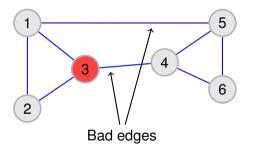
#### $ALG \leq 3OPT$ . Analysis:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで



Algorithms for 2-MINDISAGREE

 $ALG \leq 3OPT$ . Analysis:



・ロト・西ト・ヨト・日・ シック

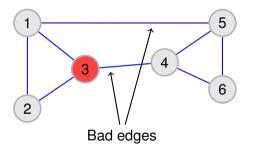
Algorithms for 2-MINDISAGREE

1 3 4 6 Bad edges  $ALG \leq 3OPT$ . Analysis:

 We make some of the mistakes of OPT (pessimistically, *all* of them).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の��

Algorithms for 2-MINDISAGREE



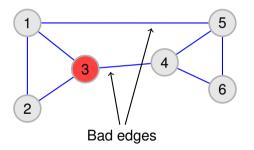
 $ALG \leq 3OPT$ . Analysis:

 We make some of the mistakes of OPT (pessimistically, all of them).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Let d be the "bad" degree of v.
  - ▶ *v* = 3, *d* = 1.

Algorithms for 2-MINDISAGREE



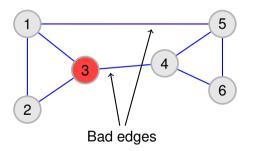
 $ALG \leq 3OPT$ . Analysis:

- We make some of the mistakes of OPT (pessimistically, all of them).
- Let d be the "bad" degree of v.

▶ *v* = 3, *d* = 1.

 Each of the *d* "bad" neighbors induces less than *n* mistakes: *nd* mistakes at most (pessimistic).

Algorithms for 2-MINDISAGREE



 $ALG \leq 3OPT$ . Analysis:

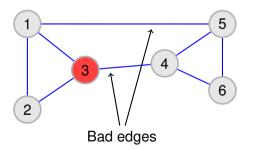
- We make some of the mistakes of OPT (pessimistically, all of them).
- Let *d* be the "bad" degree of *v*.

▶ *v* = 3, *d* = 1.

- Each of the *d* "bad" neighbors induces less than *n* mistakes: *nd* mistakes at most (pessimistic).
- Suppose *d* is minimal over all *v*. Then  $OPT \ge nd/2$ .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Algorithms for 2-MINDISAGREE



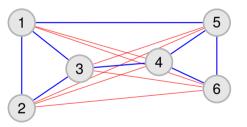
 $ALG \leq 3OPT$ . Analysis:

- We make some of the mistakes of OPT (pessimistically, all of them).
- Let *d* be the "bad" degree of *v*.

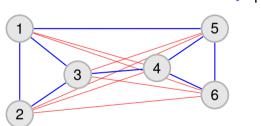
▶ *v* = 3, *d* = 1.

- Each of the *d* "bad" neighbors induces less than *n* mistakes: *nd* mistakes at most (pessimistic).
- Suppose *d* is minimal over all *v*. Then  $OPT \ge nd/2$ .
- So we make at most OPT + nd ≤ OPT + 2OPT ≤ 3OPT mistakes!

PTAS for MAXAGREE



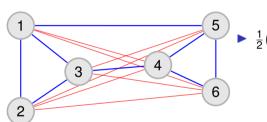
PTAS for MAXAGREE



#### • Remember: $OPT \ge \frac{1}{2} \binom{n}{2}$ . • More + or - edges?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

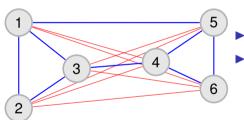
PTAS for MAXAGREE



Remember: 
$$OPT \ge \frac{1}{2} \binom{n}{2}$$
.  
More + or - edges?  
 $\frac{1}{2} \binom{n}{2} = n(n-1)/4 = \frac{n^2}{4} - \frac{n}{4} = \Omega(n^2)$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

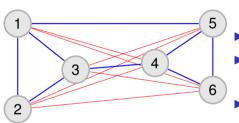
PTAS for MAXAGREE



Remember: OPT ≥ 1/2 (n/2).
More + or - edges?
1/2 (n/2) = n(n-1)/4 = n<sup>2</sup>/4 - n/4 = Ω(n<sup>2</sup>).
So it is enough to find a clustering OPT - εn<sup>2</sup> correct edges.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

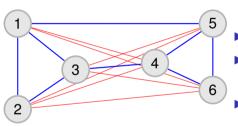
PTAS for MAXAGREE



Remember: OPT ≥ ½(<sup>n</sup>/<sub>2</sub>).
More + or - edges?
½(<sup>n</sup>/<sub>2</sub>) = n(n-1)/4 = <sup>n<sup>2</sup></sup>/<sub>4</sub> - <sup>n</sup>/<sub>4</sub> = Ω(n<sup>2</sup>).
So it is enough to find a clustering OPT - εn<sup>2</sup> correct edges.

Rest of the analysis: reduction to General Partitioning and use as black box.

PTAS for MAXAGREE



Remember: OPT ≥ ½(<sup>n</sup>/<sub>2</sub>).
More + or - edges?
½(<sup>n</sup>/<sub>2</sub>) = n(n-1)/4 = n<sup>2</sup>/<sub>4</sub> - n/<sub>4</sub> = Ω(n<sup>2</sup>).
So it is enough to find a clustering OPT - εn<sup>2</sup> correct edges.

- Rest of the analysis: reduction to General Partitioning and use as black box.
- Total running time:  $e^{O((1/\epsilon)^{1/\epsilon})} poly(n)$ .

The spectral connection

Consider a correlation clustering instance  $G = (V, E^-, E^+)$ , and a clustering  $V = C_1 \cup C_2$ .

Let A be the adjacency matrix of G.

Let *x* be the partition indicator vector, i.e.

$$x_i = \begin{cases} 1 & \text{if } v_i \in C_1 \\ -1 & \text{if } v_i \in C_2 \end{cases}$$

Then  $x^T A x$  = agreements – disagreements.

Take-aways from this lecture:

- Basics of computational complexity.
- Basics of approximation algorithms.
- Correlation clustering.
  - ▶ Differences with respect to conventional clustering (e.g. *k*-means).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Perfect k-way partitioning.
- Analyses of some approximation algorithms.