Introduction to spectral graph theory

Bruno Ordozgoiti

Aalto 2021

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Motivation

Review of spectral graph theory

Motivation

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectral graph theory is concerned with the study of matrices related to graphs.

Applications:

- Visualization.
- Combinatorial optimization.
 - Coloring.
 - Finding dense subgraphs.
- Clustering.
- Analysis of random walks.

Signed graphs:

- Fundamental differences with respect to unsigned graphs. E.g.:
 - It can be hard to find shortest paths.
 - It can be hard to find densest subgraphs.
 - Graph Laplacians can be non-singular.
- Currently a hot-topic. Some applications:
 - Conflict in social networks.
 - User-item ratings.
 - Protein interactions.
 - Geopolitics.


```
Consider a symmetric matrix A \in \mathbb{R}^{n \times n}.
```

```
An eigenvector v \in \mathbb{R}^n of A satisfies Av = \lambda v for some \lambda \in \mathbb{R}.
```

 λ is an eigenvalue of *A*.

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$.

An eigenvector $v \in \mathbb{R}^n$ of *A* satisfies $Av = \lambda v$ for some $\lambda \in \mathbb{R}$.

 λ is an eigenvalue of *A*.

Eigenvalue decomposition: for every real symmetric matrix A we can write

 $A = V \Lambda V^{-1},$

where

• V is orthogonal (i.e. $VV^T = V^T V = I$),

the columns of V are eigenvectors of A,

• A is diagonal and the elements in its main diagonal are eigenvalues of A.

Review of spectral graph theory

We consider simple undirected graphs with no loops.

$$G = (V, E), E \subseteq \{(i, j) : i, j \in V\}, (i, j) = (j, i).$$

Adjacency matrix: $A_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$

$$\mapsto \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

<□> <圖> < E> < E> E のQ@

Graph Laplacian: L = D - A.

Degree matrix:
$$D_{ij} = \begin{cases} d_i & \text{if } i = j \ (d_i \text{ is the degree of vertex } i) \\ 0 & \text{otherwise} \end{cases}$$

$$\mapsto \left(\begin{array}{rrrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right)$$

Can you think of an eigenvector of *L*? v = ()^{*T*}.

Reminder $Av = \lambda v$ for some $\lambda \in \mathbb{R}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

$$\left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right) \left(\begin{array}{r} \\ \\ \end{array}\right) = \left(\begin{array}{r} \\ \\ \\ \end{array}\right)$$

Can you think of an eigenvector of *L*? v = ()^{*T*}.

Reminder $Av = \lambda v$ for some $\lambda \in \mathbb{R}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

$$\left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right) \left(\begin{array}{r} \\ \\ \end{array}\right) = \left(\begin{array}{r} 0 \\ 0 \\ 0 \\ \end{array}\right)$$

Can you think of an eigenvector of *L*? $v = (1, 1, 1)^{T}$.

Reminder $Av = \lambda v$ for some $\lambda \in \mathbb{R}$.

$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0v$$

For any graph, $v = (1, 1, ..., 1)^T$ is always an eigenvector of *L*, with eigenvalue 0.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Another graph (2 connected components):

(2	-1	-1	0	0	0 \			(
	-1	2	-1	0	0	0					
	-1	-1	2	0	0	0					
	0	0	0	2	-1	-1		=			
	0	0	0	-1	2	-1					
	0	0	0	-1	-1	2 /))	

Another graph (2 connected components):

(2	-1	-1	0	0	0 \	/ 1	0 \		(0	0 \	
	-1	2	-1	0	0	0	1	0		0	0	
	-1	-1	2	0	0	0	1	0		0	0	
	0	0	0	2	-1	-1	0	1	=	0	0	
	0	0	0	-1	2	-1	0	1		0	0	
	0	0	0	-1	-1	2 /	0 /	1 /		0	0 /	

Another graph (2 connected components): $\begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

The multiplicity of eigenvalue 0 in L is equal to the number of connected components.

 $v_1 = (1, 1, 1, 0, 0, 0)^T$ and $v_2 = (0, 0, 0, 1, 1, 1)^T$ are eigenvectors with eigenvalues $\lambda_1 = \lambda_2 = 0.$

The multiplicity of eigenvalue 0 in L is equal to the number of connected components.

 $v_1 = (1, 1, 1, 0, 0, 0)^T$ and $v_2 = (0, 0, 0, 1, 1, 1)^T$ are eigenvectors with eigenvalues $\lambda_1 = \lambda_2 = 0.$

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Spectrum: (-2, 0, 0, 2)

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Spectrum: (-2, 0, 0, 2)

Eigenvectors:
$$\begin{pmatrix} -1 & 0 & 1 & -1 \\ 1 & 1 & -0 & -1 \\ -1 & -0 & -1 & -1 \\ 1 & -1 & 0 & -1 \end{pmatrix}$$

$$L = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → ○ < ○

$$L = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

Spectrum: ?

$$L = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

Spectrum: (0, 2, 2, 4)

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

$$L = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

Spectrum: (0, 2, 2, 4)

Eigenvectors:?

$$L = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

Spectrum:
$$(0, 2, 2, 4)$$

Eigenvectors:
$$\begin{pmatrix} -1 & 0 & 1 & -1 \\ 1 & 1 & -0 & -1 \\ -1 & -0 & -1 & -1 \\ 1 & -1 & 0 & -1 \end{pmatrix}$$

$$L = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

Spectrum:
$$(0, 2, 2, 4)$$

Eigenvectors: $\begin{pmatrix} -1 & 0 & 1 & -1 \\ 1 & 1 & -0 & -1 \\ -1 & -0 & -1 & -1 \\ 1 & -1 & 0 & -1 \end{pmatrix}$

Reminder
If
$$A\mathbf{v} = \lambda \mathbf{v}$$
, then $(\alpha \mathbf{A} + \beta \mathbf{I})\mathbf{v} = (\alpha \lambda + \beta)\mathbf{v}$.

Fiedler vector, v_2 , corresponding to the second smallest eigenvalue, λ_2 , of the Laplacian.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $V_2 =$

Application: clustering.

Points in \mathbb{R} .

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○

Application: clustering.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Points in \mathbb{R} .

 $v_2 = (-0.334, -0.334, -0.334, -0.334, -0.234, 0.234, 0.334, 0.334, 0.334, 0.334)$

$$L = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

Some properties of the Laplacian matrix:

- ▶ *L* is positive semidefinite (P.S.D.), i.e. $x^T L x \ge 0$ for all $x \in \mathbb{R}^n$. Equivalently, $\lambda_i \ge 0$ for all *i*.
- The multiplicity of the eigenvalue 0 equals the number of connected components.

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Some properties of the adjacency matrix:

$$\triangleright$$
 λ_{max} ? d_{avg} .

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Some properties of the adjacency matrix:

$$\triangleright \ \lambda_{max} \geq d_{avg}.$$

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Some properties of the adjacency matrix:

$$\blacktriangleright \lambda_{max} \geq d_{avg}$$

 \triangleright λ_{max} ? d_{max} .

$$\mathcal{A} = \left(\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right)$$

Some properties of the adjacency matrix:

$$\blacktriangleright \lambda_{max} \geq d_{avg}$$

► $\lambda_{max} \leq d_{max}$.

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Some properties of the adjacency matrix:

- $\triangleright \lambda_{max} \geq d_{avg}.$
- ► $\lambda_{max} \leq d_{max}$.
- ▶ Is A P.S.D.?

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Some properties of the adjacency matrix:

- $\triangleright \lambda_{max} \geq d_{avg}.$
- $\triangleright \lambda_{max} \leq d_{max}.$
- ▶ Is A P.S.D.? No.

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Some properties of the adjacency matrix:

- $\triangleright \ \lambda_{max} \geq d_{avg}.$
- $\triangleright \lambda_{max} \leq d_{max}.$
- Is A P.S.D.? No.
- ► The leading eigenvector v_{max} is non-negative and $\lambda_{max} \ge |\lambda_{min}|$ (Perron-Frobenius).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$A = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Some properties of the adjacency matrix:

- $\triangleright \ \lambda_{max} \geq d_{avg}.$
- $\triangleright \lambda_{max} \leq d_{max}.$
- Is A P.S.D.? No.
- ► The leading eigenvector v_{max} is non-negative and $\lambda_{max} \ge |\lambda_{min}|$ (Perron-Frobenius).

Reminder $Tr(A) = \sum_{i} \lambda_{i}.$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Spectrum: (-2, 0, 0, 2)
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

Spectrum: ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ��や

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
Spectrum: (-2,0,0,2)

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
Spectrum: (-1.562, -1, 0, 2.562)

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
Spectrum: (-2, 0, 0, 2)

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
Spectrum: (-1.562, -1, 0, 2.562)

Reminder

$$\|\mathbf{A}\|_F^2 = \sum_i \sum_j a_{ij}^2 = \sum_i \lambda_i^2$$

Take-aways from this lecture:

- Adjacency matrix and some of its properties.
- Graph Laplacian and some of its properties.
- Fiedler vectors.
- Linear algebra concepts:
 - The eigenvalue decomposition of a matrix.
 - Eigenvectors and eigenvalues: $Av = \lambda v$ for some $\lambda \in \mathbb{R}$.
 - If v1, v2 satisfy $Lv_1 = \lambda v_1$, $Lv_2 = \lambda v_2$, then $u = \alpha v_1 + \beta v_2$ satisfies $Lu = \lambda u$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• If $Av = \lambda v$, then $(\alpha A + \beta I)v = (\alpha \lambda + \beta)v$.

$$\mathbf{r}(\mathbf{A}) = \sum_i \lambda_i.$$

 $||\mathbf{A}||_F^2 = \sum_i \sum_j a_{ij}^2 = \sum_i \lambda_i^2.$