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Motivation



Spectral graph theory

Spectral graph theory is concerned with the study of matrices related to graphs.

Applications:
I Visualization.
I Combinatorial optimization.

I Coloring.
I Finding dense subgraphs.

I Clustering.
I Analysis of random walks.



Spectral graph theory

Signed graphs:

I Fundamental differences with respect to unsigned graphs.
E.g.:
I It can be hard to find shortest paths.
I It can be hard to find densest subgraphs.
I Graph Laplacians can be non-singular.

I Currently a hot-topic. Some applications:
I Conflict in social networks.
I User-item ratings.
I Protein interactions.
I Geopolitics.



Spectral graph theory

Consider a symmetric matrix A ∈ Rn×n.

An eigenvector v ∈ Rn of A satisfies Av = λv for some λ ∈ R.

λ is an eigenvalue of A.

Eigenvalue decomposition: for every real symmetric matrix A we can write

A = V ΛV−1,

where

I V is orthogonal (i.e. VV T = V T V = I),
I the columns of V are eigenvectors of A,
I Λ is diagonal and the elements in its main diagonal are eigenvalues of A.
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Review of spectral graph theory



Spectral graph theory

We consider simple undirected graphs with no loops.

G = (V ,E),E ⊆ {(i , j) : i , j ∈ V}, (i , j) = (j , i).

Adjacency matrix: Aij =

{
1 if (i , j) ∈ E

0 otherwise

7→

 0 1 1
1 0 1
1 1 0





Spectral graph theory

Graph Laplacian: L = D − A.

Degree matrix: Dij =

{
di if i = j (di is the degree of vertex i)

0 otherwise

7→

 2 −1 −1
−1 2 −1
−1 −1 2





Spectral graph theory

Can you think of an eigenvector of L?
v = (

1,1,1

)T .
Reminder
Av = λv for some λ ∈ R. 2 −1 −1

−1 2 −1
−1 −1 2




1
1
1

 =



0
0
0



= 0v

For any graph, v = (1,1, . . . ,1)T is always an eigenvector of L, with eigenvalue 0.
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Spectral graph theory

Another graph (2 connected components):



2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2





1 0
1 0
1 0
0 1
0 1
0 1


=



0 0
0 0
0 0
0 0
0 0
0 0



Reminder
If v1, v2 satisfy
Lv1 = λv1,
Lv2 = λv2, then
u = αv1 + βv2

satisfies Lu = λu.

The multiplicity of eigenvalue 0 in L is equal to the number of connected
components.

v1 = (1,1,1,0,0,0)T and v2 = (0,0,0,1,1,1)T are eigenvectors with eigenvalues
λ1 = λ2 = 0.
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Spectral graph theory

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



Spectrum: (−2,0,0,2)

Eigenvectors:


−1 0 1 −1
1 1 −0 −1
−1 −0 −1 −1
1 −1 0 −1
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If Av = λv , then (αA + βI)v = (αλ+ β)v .
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−1 2 −1 0
0 −1 2 −1
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Spectrum: (0,2,2,4)

Eigenvectors: Reminder
If Av = λv , then (αA + βI)v = (αλ+ β)v .
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Spectral graph theory

Fiedler vector, v2, corresponding to the second smallest eigenvalue, λ2, of the
Laplacian.
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Fiedler vector, v2, corresponding to the second smallest eigenvalue, λ2, of the
Laplacian.
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Fiedler vector, v2, corresponding to the second smallest eigenvalue, λ2, of the
Laplacian.
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Spectral graph theory

Fiedler vector, v2, corresponding to the second smallest eigenvalue, λ2, of the
Laplacian.
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Spectral graph theory

Fiedler vector, v2, corresponding to the second smallest eigenvalue, λ2, of the
Laplacian.
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Spectral graph theory

Fiedler vector, v2, corresponding to the second smallest eigenvalue, λ2, of the
Laplacian.
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Spectral graph theory

Application: clustering.
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Spectral graph theory

L =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


Some properties of the Laplacian matrix:

I L is positive semidefinite (P.S.D.), i.e. xT Lx ≥ 0 for all x ∈ Rn. Equivalently,
λi ≥ 0 for all i .

I The multiplicity of the eigenvalue 0 equals the number of connected
components.



Spectral graph theory

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Some properties of the adjacency matrix:
I λmax ? davg .

I λmax dmax .
I Is A P.S.D.?
I The leading eigenvector vmax is non-negative and
λmax ≥ |λmin| (Perron-Frobenius).

Reminder
Tr(A) =

∑
i λi .



Spectral graph theory

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Some properties of the adjacency matrix:
I λmax ≥ davg .

I λmax ? dmax .
I Is A P.S.D.?
I The leading eigenvector vmax is non-negative and
λmax ≥ |λmin| (Perron-Frobenius).

Reminder
Tr(A) =

∑
i λi .



Spectral graph theory

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Some properties of the adjacency matrix:
I λmax ≥ davg .
I λmax ? dmax .

I Is A P.S.D.?
I The leading eigenvector vmax is non-negative and
λmax ≥ |λmin| (Perron-Frobenius).

Reminder
Tr(A) =

∑
i λi .



Spectral graph theory

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Some properties of the adjacency matrix:
I λmax ≥ davg .
I λmax ≤ dmax .

I Is A P.S.D.?
I The leading eigenvector vmax is non-negative and
λmax ≥ |λmin| (Perron-Frobenius).

Reminder
Tr(A) =

∑
i λi .



Spectral graph theory

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Some properties of the adjacency matrix:
I λmax ≥ davg .
I λmax ≤ dmax .
I Is A P.S.D.?

I The leading eigenvector vmax is non-negative and
λmax ≥ |λmin| (Perron-Frobenius).

Reminder
Tr(A) =

∑
i λi .



Spectral graph theory

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Some properties of the adjacency matrix:
I λmax ≥ davg .
I λmax ≤ dmax .
I Is A P.S.D.? No.

I The leading eigenvector vmax is non-negative and
λmax ≥ |λmin| (Perron-Frobenius).

Reminder
Tr(A) =

∑
i λi .



Spectral graph theory

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Some properties of the adjacency matrix:
I λmax ≥ davg .
I λmax ≤ dmax .
I Is A P.S.D.? No.
I The leading eigenvector vmax is non-negative and
λmax ≥ |λmin| (Perron-Frobenius).

Reminder
Tr(A) =

∑
i λi .



Spectral graph theory

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Some properties of the adjacency matrix:
I λmax ≥ davg .
I λmax ≤ dmax .
I Is A P.S.D.? No.
I The leading eigenvector vmax is non-negative and
λmax ≥ |λmin| (Perron-Frobenius).

Reminder
Tr(A) =

∑
i λi .



Spectral graph theory

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


Spectrum: (−2,0,0,2)

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Spectrum: ?

Reminder
‖A‖2F =

∑
i
∑

j a2
ij =

∑
i λ

2
i .
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Spectral graph theory

Take-aways from this lecture:

I Adjacency matrix and some of its properties.
I Graph Laplacian and some of its properties.
I Fiedler vectors.
I Linear algebra concepts:

I The eigenvalue decomposition of a matrix.
I Eigenvectors and eigenvalues: Av = λv for some λ ∈ R.
I If v1, v2 satisfy Lv1 = λv1, Lv2 = λv2, then u = αv1 + βv2 satisfies Lu = λu.
I If Av = λv , then (αA + βI)v = (αλ+ β)v .
I Tr(A) =

∑
i λi .

I ‖A‖2
F =

∑
i
∑

j a2
ij =

∑
i λ

2
i .
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