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Sign-symmetric graphs



Sign-symmetric graphs

Theorem
A graph is bipartite if and only if its adjacency spectrum is symmetric with respect
to the origin.

Bipartite signed graphs have an interesting property: they are switching equivalent
to their negation. (G, σ) ∼ (G,−σ).

−→

This property is known as sign-symmetry.



Sign-symmetric graphs

Definition
A signed graph Γ = (G, σ) is said to be sign-symmetric if it is switching equivalent
to its negation −Γ = (G,−σ).

This property is not exclusive to bipartite graphs:

Let Γ be sign-symmetric. Is its adjacency spectrum symmetric? Recall that the
spectrum is invariant under switching...

Theorem
Let Γ be a sign-symmetric graph. Then its adjacency spectrum is symmetric with
respect to the origin.
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Sign-symmetric graphs
Question
Are there signed graphs whose spectrum is symmetric with respect to the origin
but are not sign-symmetric?

Seidel matrix: S(G) = J − I − 2A.

Example from (Et-Taoui and Fruchard, 2018)
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Sign-symmetric graphs

Problem
Are there non-complete connected signed graphs whose spectrum is symmetric
with respect to the origin but are not sign-symmetric?

Solved: (Ghorbani et al., 2020)
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The number of distinct eigenvalues



The number of distinct eigenvalues

Counting cycles in unsigned graphs:

A =


0 1 0 0 0
1 0 1 1 0
0 1 0 1 1
0 1 1 0 1
0 0 1 1 0



, A2 =


1 0 1 1 0
0 3 1 1 2
1 1 3 2 1
1 1 2 3 1
0 2 1 1 2

 , A3 =


0 3 1 1 2
3 2 6 6 2
1 6 4 5 5
1 6 5 4 5
2 2 5 5 2



1 2

3

4

5

Ak
ii = 2×#(k -cycles adjacent to vertex i).
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The number of distinct eigenvalues

Counting cycles in signed graphs:
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
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0 −1 0 1 1
0 1 1 0 1
0 0 1 1 0
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3

4

5

-

A3
ii = 2× (#balanced 3-cycles−#unbalanced 3-cyles).

Thus,

Tr(A3) + Tr(|A|3)

2Tr(|A|3)
= fraction of balanced triangles.

Note: |A| is the adj. matrix of the underlying (unsigned) graph.
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The number of distinct eigenvalues
Definition
The diameter of a graph is the maximum distance between two vertices.

Theorem
Let G have a diameter of d. The number of distinct adjacency eigenvalues of G is
at least d + 1.

Proof sketch1: A0,A1,A2, . . . ,Ad are linearly independent, and the degree of the
minimal polynomial is the number of distinct eigenvalues.

Question
What is the only unsigned graph with exactly two distinct eigenvalues?

Kn

1www.math.caltech.edu/~2014-15/2term/ma006b/22%20spectral%202.pdf
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The number of distinct eigenvalues

In signed graphs, it is not true in general that # of distinct eigenvalues > diameter.
A counterexample, with diameter b k

2c, two distinct eigenvalues:

(McKee and Smyth, 2007)



The number of distinct eigenvalues

Therefore, the answer to the next question is not easy for signed graphs:

Problem
Characterize all connected signed graphs whose spectrum consists of two distinct
eigenvalues.

Definition
Two vertices are at signed distance k if they are at distance k and the difference
between the numbers of positive and negative walks of length k among them is
nonzero. Otherwise the signed distance is set to 0. The maximum signed distance
is the signed diameter diam±(Γ).



The number of distinct eigenvalues

Theorem
Let Γ be a connected signed graph with m distinct eigenvalues. Then
m ≥ diam±(Γ) + 1.

Finally...

Question for you
Can you think of other signed graphs with exactly two distinct eigenvalues?

I ±Kn

I Huang’s hypercube for the Sensitivity Conjecture! (Huang, 2019)



The number of distinct eigenvalues

Theorem
Let Γ be a connected signed graph with m distinct eigenvalues. Then
m ≥ diam±(Γ) + 1.

Finally...

Question for you
Can you think of other signed graphs with exactly two distinct eigenvalues?

I ±Kn

I Huang’s hypercube for the Sensitivity Conjecture! (Huang, 2019)



The number of distinct eigenvalues

Theorem
Let Γ be a connected signed graph with m distinct eigenvalues. Then
m ≥ diam±(Γ) + 1.

Finally...

Question for you
Can you think of other signed graphs with exactly two distinct eigenvalues?

I ±Kn

I Huang’s hypercube for the Sensitivity Conjecture! (Huang, 2019)



The number of distinct eigenvalues

Theorem
Let Γ be a connected signed graph with m distinct eigenvalues. Then
m ≥ diam±(Γ) + 1.

Finally...

Question for you
Can you think of other signed graphs with exactly two distinct eigenvalues?

I ±Kn

I Huang’s hypercube for the Sensitivity Conjecture! (Huang, 2019)



Signature minimizing the spectral radius



Signature minimizing the spectral radius

Theorem
Perron-Frobenius: Let G be a graph with adjacency matrix A. Let
λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A. Then λ1 ≥ |λi |, for all i .

This does not hold for signed graphs.



Signature minimizing the spectral radius

Let ρ(Γ) = maxi{|λi(Γ)|}.

Problem
Let Γ be a simple and connected unsigned graph. Determine the signature σ̄ such
that for any signature σ of Γ, we have ρ(Γ, σ̄) ≤ ρ(Γ, σ).

This problem is very important! Let’s see why.

Definition
A d-regular graph G is a Ramanujan graph if max{|λ2|, |λn|} ≤ 2

√
d − 1.



Signature minimizing the spectral radius
Definition
Consider a signed graph Γ. The 2-lift of Γ is an unsigned graph
Γ′ = (V × {+1,−1},E) where (x , s) is adjacent to (y , sσ(xy)), for s = ±1.

7→ 7→

Theorem
Let G be the underlying graph of Γ. The spectrum of Γ′ is the union of the spectra
of G and Γ.

Proof: The adjacency matrix of Γ′ is AΓ′ =

(
A1 A2

A2 A1

)
, where A1 (resp. A2) is the

adjacency matrix of (V , s)× (V , s) (resp. (V , s)× (V ,−s)), where s = ±1.
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Signature minimizing the spectral radius

Recall. Ramanujan: λ1 = d ,max{|λ2|, |λn|} ≤ 2
√

d − 1.

Theorem
Every connected d-regular graph has a signing with spectral radius at most

c
√

d log3 d, where c > 0 is some absolute constant. (Bilu and Linial, 2006)

Conjecture
Every connected d-regular graph has a signing with spectral radius at most
2
√

d − 1. (Bilu and Linial, 2006)

Theorem
Let G be a connected d-regular graph. Then there exists a signature σ of G such
that the largest eigenvalue of Aσ is at most 2

√
d − 1. (Marcus et al., 2013)
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Signature minimizing the spectral radius

Problem
Let Γ be a simple and connected unsigned graph. Determine the signature σ̄ such
that for any signature σ of Γ, we have ρ(Γ, σ̄) ≤ ρ(Γ, σ).

“As an amusing exercise, we challenge the readers to solve this problem by finding
a signature of the Petersen graph or of their favorite graph that minimizes the
spectral radius.” (Belardo et al., 2019)



Spectral determination



Spectral determination

Question
Are unsigned graphs determined by their spectrum (up to isomorphism)?

No Van Dam and Haemers (2003)
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Spectral determination

Some are, such as the path Pn and the cycle Cn.

But of course, not the case for signed graphs (Akbari et al., 2018a,b).

Theorem
The signed path Pn is determined by its spectrum if and only if n ≡ 0,1,2 (mod 4)

unless n ∈ {8,13,14,17,29}, or n = 3.

Theorem
I Odd signed cycles C+

2n+1,C
−
2n+1 and C−4 are determined by their spectrum.

I Even signed cycles C+
2n,C

−
2n except C−4 are not determined by their spectrum.
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Spectral determination

Proposition
From the eigenvalues of a signed graph Γ we obtain the following invariants:
I number of vertices and edges
I the difference between the number of positive and negative triangles: 1

6
∑

i λ
3
i ;

I the difference between the number of positive and negative closed walks of
length p:

∑
i λ

p
i .



References I

Akbari, S., Belardo, F., Dodongeh, E., and Nematollahi, M. A. (2018a). Spectral
characterizations of signed cycles. Linear Algebra and its Applications,
553:307–327.

Akbari, S., Haemers, W. H., Maimani, H. R., and Majd, L. P. (2018b). Signed
graphs cospectral with the path. Linear Algebra and its Applications,
553:104–116.
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