CS-E4075 - Special Course in Machine Learning, Data Science and Artificial Intelligence D: Signed graphs: spectral theory and applications

Introduction to signed graphs

Bruno Ordozgoiti

Aalto University 2021

Signed graphs: each edge labeled + or -.

Definitions:

$$ightharpoonup G = (V, E^+, E^-),$$

Signed graphs: each edge labeled + or -.

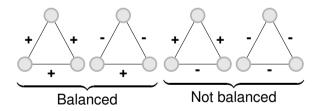
Definitions:

$$ightharpoonup G = (V, E^+, E^-),$$

$$G = (V, E, \sigma), \sigma : E \to \{-, +\}.$$

Motivation: balance in social networks.

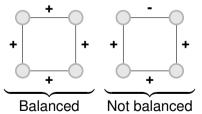
"The friend of a friend is a friend" (or "the enemy of a friend is an enemy").



The four possible non-isomorphic signed triangles.

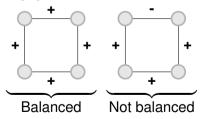
Balance applies to cycles of any length.

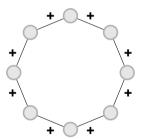
"The friend of a friend of a friend is a friend".



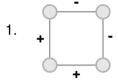
Balance applies to cycles of any length.

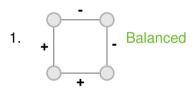
"The friend of a friend of a friend is a friend".

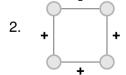


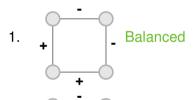


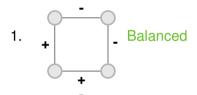
"The friend of a friend is a friend".

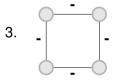


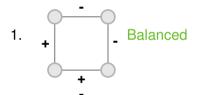


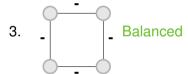


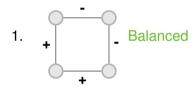


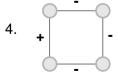


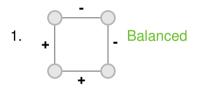


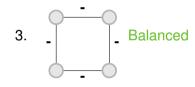


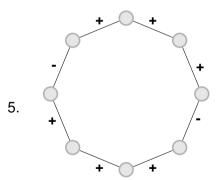




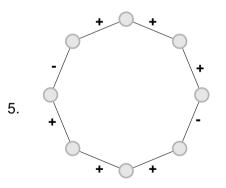








Balanced or not balanced?

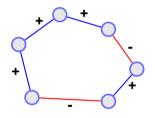


Balanced

Motivation

Definition of balanced cycle

A cycle is balanced if the product of its signs is positive.

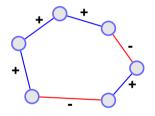


$$\mathbf{+}\times\mathbf{-}\times\mathbf{+}\times\mathbf{-}\times\mathbf{+}\times\mathbf{+}=\mathbf{+}.$$

Motivation

Definition of balanced cycle

A cycle is balanced if the product of its signs is positive.



$$+ \times - \times + \times - \times + \times + = +.$$

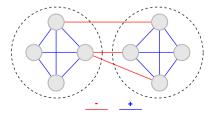
Definition of balanced graph

A graph is balanced if it contains no unbalanced (negative) cycles.

Characterizations of balance

G is balanced iff

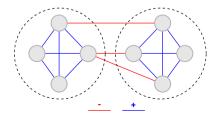
► There are no negative (unbalanced) cycles.



Characterizations of balance

G is balanced iff

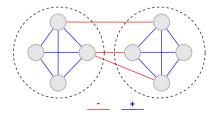
- ► There are no negative (unbalanced) cycles.
- ▶ There exists a sign-compliant partition $V = V_1 \cup V_2$.
 - **within** V_1 , V_2 , every edge is +;
 - **between** V_1 , V_2 , every edge is -.



Characterizations of balance

G is balanced iff

- ► There are no negative (unbalanced) cycles.
- ▶ There exists a sign-compliant partition $V = V_1 \cup V_2$.
 - **within** V_1 , V_2 , every edge is +;
 - **between** V_1 , V_2 , every edge is -.
- \triangleright All paths between any pair u, v have the same sign.



1.

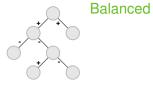
1.

Balanced

1

Balanced

1.



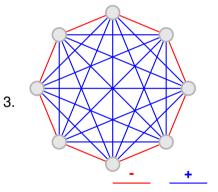
2. Balanced

1.

Balanced

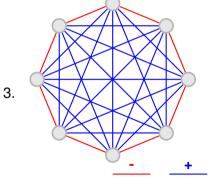
2.

Balanced



1. Balanced

Balanced



Not balanced

Spectral implications of negative weights

Signed graphs: spectral theory

Signed adjacency matrix: $A = A_{E^+} - A_{E^-}$

Signed Laplacian: L = D - A. Degree matrix:

$$ar{D}_{ij} = egin{cases} d_i = \sum_k |A_{ik}| & ext{if } i = j \ 0 & ext{otherwise} \end{cases}$$

$$+ + \mapsto L = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$

$$L = \left(\begin{array}{c} \end{array} \right.$$

$$L = \left(\right), V = \left(\right), \lambda : \left(\right)$$

$$L = \left(\begin{array}{c} \end{array} \right.$$

$$L = \left(\right), V = \left(\right), \lambda : \left(\right)$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \lambda : (1)$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : ()$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \left(\right), V = \left(\right), \lambda : \left(\right)$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} & & \\ & & \end{pmatrix}, \lambda : (&)$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

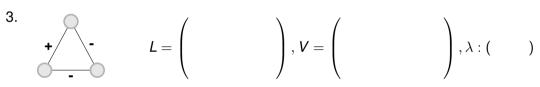
$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : ()$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

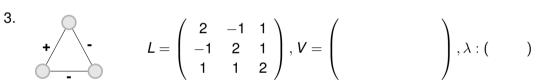
$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$



$$\prime = \left(\begin{array}{c} \\ \end{array} \right.$$

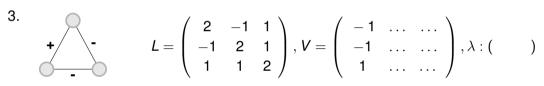
$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$



$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$



$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

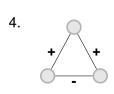
$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$

3.
$$L = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, V = \begin{pmatrix} -1 & \dots & \dots \\ -1 & \dots & \dots \\ 1 & \dots & \dots \end{pmatrix}, \lambda : (0,3,3)$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$

3.
$$L = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, V = \begin{pmatrix} -1 & \dots & \dots \\ -1 & \dots & \dots \\ 1 & \dots & \dots \end{pmatrix}, \lambda : (0,3,3)$$

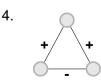


$$L = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}, V = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}, \lambda : ()$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$

3.
$$L = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, V = \begin{pmatrix} -1 & \dots & \dots \\ -1 & \dots & \dots \\ 1 & \dots & \dots \end{pmatrix}, \lambda : (0,3,3)$$

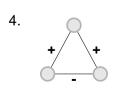


$$L = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}, V = \begin{pmatrix} \\ \\ \end{pmatrix}, \lambda : ()$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$

3.
$$L = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, V = \begin{pmatrix} -1 & \dots & \dots \\ -1 & \dots & \dots \\ 1 & \dots & \dots \end{pmatrix}, \lambda : (0,3,3)$$



$$L = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}, V = \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}, \lambda : ()$$

$$L = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \lambda : (0,2)$$

$$L = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \lambda : (0,2)$$

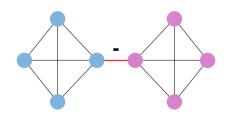
3.
$$L = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, V = \begin{pmatrix} -1 & \dots & \dots \\ -1 & \dots & \dots \\ 1 & \dots & \dots \end{pmatrix}, \lambda : (0,3,3)$$

$$L = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}, V = \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}, \lambda : (1, 1, 4)$$

Signed graphs: spectral theory

Spectral characterization of balance

1. A connected signed graph is balanced if and only if $\lambda_1(L_G) = 0$.

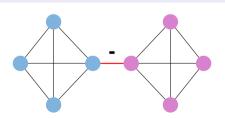


$$v_1 = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \lambda_1(L) = 0.$$

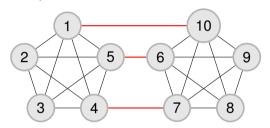
Signed graphs: spectral theory

Spectral characterization of balance

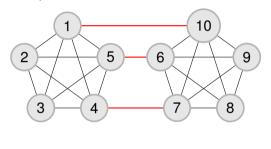
- 1. A connected signed graph is balanced if and only if $\lambda_1(L_G) = 0$.
- 2. A signed graph is balanced if and only if its Laplacian has 0 as an eigenvalue with multiplicity equal to the number of connected components.

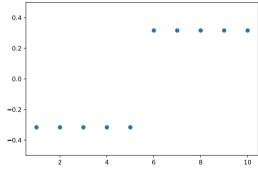


$$v_1 = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \lambda_1(L) = 0.$$



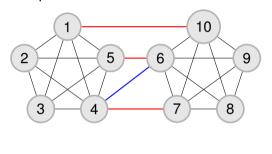
$$v_1 =$$

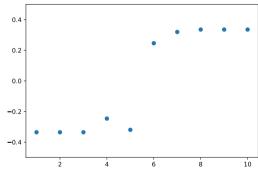




$$v_1 = (-0.316, -0.316, -0.316, -0.316, -0.316, 0.316, 0.316, 0.316, 0.316, 0.316)$$

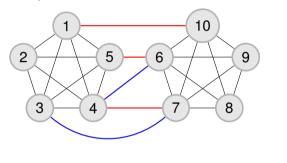
 $\lambda_1 = 0$

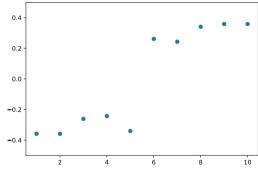




$$v_1 = (-0.335, -0.335, -0.335, -0.246, -0.32, 0.246, 0.32, 0.335, 0.335, 0.335)$$

 $\lambda_1 \approx 0.313$





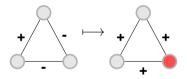
$$v_1 = (-0.359, -0.359, -0.261, -0.243, -0.34, 0.261, 0.243, 0.34, 0.359, 0.359)$$

 $\lambda_1 \approx 0.645$

Switching

Switching

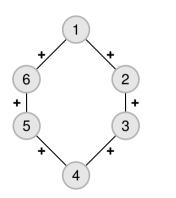
Switch $S \subset V$: flip signs of edges between S and $V \setminus S$.



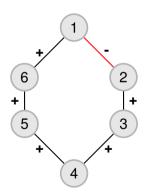
The spectrum of both *A* and *L* is invariant w.r.t. switching.

$$L = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, V : \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{pmatrix}, \lambda : (0,3,3)$$

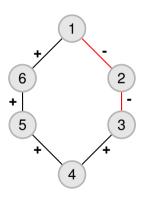
$$L = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}, V : \begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}, \lambda : (0,3,3)$$



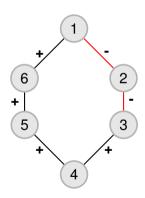
- ► Spectrum: (0, 1, 1, 3, 3, 4)



- ► Spectrum: (0, 1, 1, 3, 3, 4)
- ► Spectrum: (0.27, 0.27, 2, 2, 3.73, 3.73)



- ► Spectrum: (0, 1, 1, 3, 3, 4)
- ► Spectrum: (0.27, 0.27, 2, 2, 3.73, 3.73)
- Spectrum:

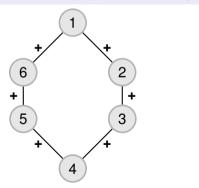


- ► Spectrum: (0, 1, 1, 3, 3, 4)
- ► Spectrum: (0.27, 0.27, 2, 2, 3.73, 3.73)
- ► Spectrum: (0, 1, 1, 3, 3, 4)

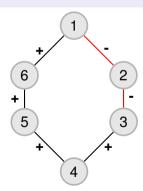
Switching

Other spectral characterizations of balance

- 1. Spectrum (A or L) of G = spectrum of |G| (underlying graph).
- 2. Switching equivalent to all-positive.



 $\underset{\longmapsto}{\text{switch}}\{\textit{v}_2\}$



Vertex frustration f_{ν} : N. of vertices that need to be removed to achieve balance.

Edge frustration f_e : N. of edges that need to be removed to achieve balance.

1

2.

Vertex frustration f_{ν} : N. of vertices that need to be removed to achieve balance.

Edge frustration f_e : N. of edges that need to be removed to achieve balance.

1

2.

Vertex frustration f_{ν} : N. of vertices that need to be removed to achieve balance.

Edge frustration f_e : N. of edges that need to be removed to achieve balance.

1.

2.

Vertex frustration f_{ν} : N. of vertices that need to be removed to achieve balance.

Edge frustration f_e : N. of edges that need to be removed to achieve balance.

1.

2.

Vertex frustration f_v : N. of vertices that need to be removed to achieve balance.

Edge frustration f_e : N. of edges that need to be removed to achieve balance.

1.

2.

Vertex frustration f_V : N. of vertices that need to be removed to achieve balance.

Edge frustration f_e : N. of edges that need to be removed to achieve balance.

1.

2.

Vertex frustration f_v : N. of vertices that need to be removed to achieve balance.

Edge frustration f_e : N. of edges that need to be removed to achieve balance.

1.

2.

 f_e : 1 f_v :

Vertex frustration f_v : N. of vertices that need to be removed to achieve balance.

Edge frustration f_e : N. of edges that need to be removed to achieve balance.

1.

2.

 $f_e:0\ f_v:0$

 f_e : 1 f_v : 1

 $f_e: f_v$

 $f_e: 2 \; f_v:$

 $f_e: 2 \ f_v: 2$

 $f_e: 2 f_V: 2$

Finding the edge frustration is NP-hard (MAXCUT).

Spectral frustration inequalities

The spectral connection

$$\lambda_{min}(L) \leq f_e$$
.

Spectral frustration inequalities

The spectral connection

$$\lambda_{min}(L) \leq f_e$$
.

Try $\mathbf{1}_{\pm}^{T} L \mathbf{1}_{\pm}$, where $\mathbf{1}_{\pm} = \text{partition indicator}$.

Spectral graph theory

Take-aways from this lecture:

- Balance theory.
- Characterizations of balance.
- Spectral characterizations of balance.
- Fiedler vector in signed graphs.
- Switching.
- Frustration.