
CS-E4075 - Special Course in Machine Learning, Data Science and Artificial
Intelligence D: Signed graphs: spectral theory and applications

Spectral clustering

Bruno Ordozgoiti

Aalto University 2021

Algorithms for k -means will do well on
these data.

2.5 0.0 2.5 5.0 7.5
6

4

2

0

2

4

6

8

But how about this?

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

The results:

2.5 0.0 2.5 5.0 7.5
6

4

2

0

2

4

6

8

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Let’s talk about spectral clustering.

2.5 0.0 2.5 5.0 7.5
6

4

2

0

2

4

6

8

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Derivation

Let us try to cluster the graph on the right. There are two
“obvious” clusters, but can we use a clustering algorithm
to discover them?
We will try to represent the graph vertices in a way that is
suitable for an algorithm such as k -means.

We will consider the adjacency matrix:

W =


0 1 1 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1 1 0


wij is the weight of the edge connecting vi and vj .

Let us try to cluster the graph on the right. There are two
“obvious” clusters, but can we use a clustering algorithm
to discover them?
We will try to represent the graph vertices in a way that is
suitable for an algorithm such as k -means.
We will consider the adjacency matrix:

W =


0 1 1 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1 1 0


wij is the weight of the edge connecting vi and vj .

One way to make sure we can use k -means is by:

I being able to compute distances between vertices: d(vi , vj),
I being able to compute the mean of a cluster of vertices: µj .

One way to accomplish this is to assign a real number yi to each vertex vi , so that

I d(vi , vj) = |yi − yj | and
I µj =

1
|Cj |
∑

i∈Cj
yj .

Thus, our goal is to find a mapping of each vertex vi 7→ yi ∈ R so that (intuitively)
similar vertices are in the same cluster and different vertices are in different
clusters.

One way to make sure we can use k -means is by:

I being able to compute distances between vertices: d(vi , vj),
I being able to compute the mean of a cluster of vertices: µj .

One way to accomplish this is to assign a real number yi to each vertex vi , so that

I d(vi , vj) = |yi − yj | and
I µj =

1
|Cj |
∑

i∈Cj
yj .

Thus, our goal is to find a mapping of each vertex vi 7→ yi ∈ R so that (intuitively)
similar vertices are in the same cluster and different vertices are in different
clusters.

In order to ensure that connected vertices are close, we can try to choose the yi ’s
so that the following is small:

cost(y) =
n∑

i=1

n∑
j=1

wij(yi − yj)
2.

cost(y) =
n∑

i=1

n∑
j=1

wij(yi − yj)
2 = 2

n∑
i=1

y2
i

n∑
j=1

wij − 2
n∑

i=1

n∑
j=1

wijyiyj .

Note:
∑n

j=1 wij = di is the degree of vertex vi , and Dii =
∑n

j=1 wij .

Let y = (y1, . . . , yn)
T . Note that cost(y) = 2yT Dy − 2yT Wy = 2yT Ly .

cost(y) =
n∑

i=1

n∑
j=1

wij(yi − yj)
2 = 2

n∑
i=1

y2
i

n∑
j=1

wij − 2
n∑

i=1

n∑
j=1

wijyiyj .

Note:
∑n

j=1 wij = di is the degree of vertex vi , and Dii =
∑n

j=1 wij .

Let y = (y1, . . . , yn)
T . Note that cost(y) = 2yT Dy − 2yT Wy = 2yT Ly .

cost(y) =
n∑

i=1

n∑
j=1

wij(yi − yj)
2 = 2

n∑
i=1

y2
i

n∑
j=1

wij − 2
n∑

i=1

n∑
j=1

wijyiyj .

Note:
∑n

j=1 wij = di is the degree of vertex vi , and Dii =
∑n

j=1 wij .

Let y = (y1, . . . , yn)
T . Note that cost(y) = 2yT Dy − 2yT Wy = 2yT Ly .

Let’s summarize:

I We want to cluster the vertices of a graph using k -means.
I We assign a real number yi to every vertex so that we can compute distances

and means.
I Choosing y = (y1, . . . , yn)

T to minimize
∑n

i=1
∑n

j=1 wij(yi − yj)
2 seems like a

good idea.
I We define L = D −W and show that minimizing yT Ly is equivalent.

Let’s summarize:

I We want to cluster the vertices of a graph using k -means.

I We assign a real number yi to every vertex so that we can compute distances
and means.

I Choosing y = (y1, . . . , yn)
T to minimize

∑n
i=1
∑n

j=1 wij(yi − yj)
2 seems like a

good idea.
I We define L = D −W and show that minimizing yT Ly is equivalent.

Let’s summarize:

I We want to cluster the vertices of a graph using k -means.
I We assign a real number yi to every vertex so that we can compute distances

and means.

I Choosing y = (y1, . . . , yn)
T to minimize

∑n
i=1
∑n

j=1 wij(yi − yj)
2 seems like a

good idea.
I We define L = D −W and show that minimizing yT Ly is equivalent.

Let’s summarize:

I We want to cluster the vertices of a graph using k -means.
I We assign a real number yi to every vertex so that we can compute distances

and means.
I Choosing y = (y1, . . . , yn)

T to minimize
∑n

i=1
∑n

j=1 wij(yi − yj)
2 seems like a

good idea.

I We define L = D −W and show that minimizing yT Ly is equivalent.

Let’s summarize:

I We want to cluster the vertices of a graph using k -means.
I We assign a real number yi to every vertex so that we can compute distances

and means.
I Choosing y = (y1, . . . , yn)

T to minimize
∑n

i=1
∑n

j=1 wij(yi − yj)
2 seems like a

good idea.
I We define L = D −W and show that minimizing yT Ly is equivalent.

Some properties of the Laplacian

1. L is symmetric and positive semidefinite (all eigenvalues are real and ≥ 0).

2. 0 is an eigenvalue of L.

3. If the graph is connected, (1,1, . . . ,1)T is an eigenvector with eigenvalue 0.

4. The multiplicity of the eigenvalue 0 equals the number of connected
components.

Remember we want to minimize yT Ly .

I By property 1, the minimum is at least 0. y = (0,0 . . . ,0)T is a trivial solution,
so we impose the constraint yT y = 1.

I If the graph is connected, the vector 1 = (1,1, . . . ,1)T is a solution with
1T L1 = 0. We impose the constraint yT 1 = 0.

Some properties of the Laplacian

1. L is symmetric and positive semidefinite (all eigenvalues are real and ≥ 0).

2. 0 is an eigenvalue of L.

3. If the graph is connected, (1,1, . . . ,1)T is an eigenvector with eigenvalue 0.

4. The multiplicity of the eigenvalue 0 equals the number of connected
components.

Remember we want to minimize yT Ly .

I By property 1, the minimum is at least 0. y = (0,0 . . . ,0)T is a trivial solution,
so we impose the constraint yT y = 1.

I If the graph is connected, the vector 1 = (1,1, . . . ,1)T is a solution with
1T L1 = 0. We impose the constraint yT 1 = 0.

Some properties of the Laplacian

1. L is symmetric and positive semidefinite (all eigenvalues are real and ≥ 0).

2. 0 is an eigenvalue of L.

3. If the graph is connected, (1,1, . . . ,1)T is an eigenvector with eigenvalue 0.

4. The multiplicity of the eigenvalue 0 equals the number of connected
components.

Remember we want to minimize yT Ly .

I By property 1, the minimum is at least 0. y = (0,0 . . . ,0)T is a trivial solution,
so we impose the constraint yT y = 1.

I If the graph is connected, the vector 1 = (1,1, . . . ,1)T is a solution with
1T L1 = 0. We impose the constraint yT 1 = 0.

Some properties of the Laplacian

1. L is symmetric and positive semidefinite (all eigenvalues are real and ≥ 0).

2. 0 is an eigenvalue of L.

3. If the graph is connected, (1,1, . . . ,1)T is an eigenvector with eigenvalue 0.

4. The multiplicity of the eigenvalue 0 equals the number of connected
components.

Remember we want to minimize yT Ly .

I By property 1, the minimum is at least 0. y = (0,0 . . . ,0)T is a trivial solution,
so we impose the constraint yT y = 1.

I If the graph is connected, the vector 1 = (1,1, . . . ,1)T is a solution with
1T L1 = 0. We impose the constraint yT 1 = 0.

Some properties of the Laplacian

1. L is symmetric and positive semidefinite (all eigenvalues are real and ≥ 0).

2. 0 is an eigenvalue of L.

3. If the graph is connected, (1,1, . . . ,1)T is an eigenvector with eigenvalue 0.

4. The multiplicity of the eigenvalue 0 equals the number of connected
components.

Remember we want to minimize yT Ly .

I By property 1, the minimum is at least 0. y = (0,0 . . . ,0)T is a trivial solution,
so we impose the constraint yT y = 1.

I If the graph is connected, the vector 1 = (1,1, . . . ,1)T is a solution with
1T L1 = 0. We impose the constraint yT 1 = 0.

Some properties of the Laplacian

1. L is symmetric and positive semidefinite (all eigenvalues are real and ≥ 0).

2. 0 is an eigenvalue of L.

3. If the graph is connected, (1,1, . . . ,1)T is an eigenvector with eigenvalue 0.

4. The multiplicity of the eigenvalue 0 equals the number of connected
components.

Remember we want to minimize yT Ly .

I By property 1, the minimum is at least 0. y = (0,0 . . . ,0)T is a trivial solution,
so we impose the constraint yT y = 1.

I If the graph is connected, the vector 1 = (1,1, . . . ,1)T is a solution with
1T L1 = 0. We impose the constraint yT 1 = 0.

Objective

min
y

yT Ly

subject to yT y = 1

yT 1 = 0

Since the vector 1 = (1,1, . . . ,1)T is an eigenvector corresponding to the smallest
eigenvalue, the above is solved (in a connected graph) by the eigenvector
corresponding to the second smallest eigenvalue.

Spectral clustering protoalgorithm for 2-way connected graph partitioning.
Input: Graph G = (V ,E) with adjacency matrix W .

1. Compute the Laplacian L = D −W .

2. Compute y , the eigenvector of L corresponding to the second smallest
eigenvalue.

3. Run k -means treating the entries of y as one-dimensional data points.

Let’s try to cluster our graph.

W =


0 1 1 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1 1 0

 ,L =


4 −1 −1 −1 −1 0 0 0 0 0
−1 4 −1 −1 −1 0 0 0 0 0
−1 −1 4 −1 −1 0 0 0 0 0
−1 −1 −1 4 −1 0 0 0 0 0
−1 −1 −1 −1 5 −1 0 0 0 0
0 0 0 0 −1 5 −1 −1 −1 −1
0 0 0 0 0 −1 4 −1 −1 −1
0 0 0 0 0 −1 −1 4 −1 −1
0 0 0 0 0 −1 −1 −1 4 −1
0 0 0 0 0 −1 −1 −1 −1 4



Eigenvalues: (0,∼ 0.3, 5, 5, 5, 5, 5, 5, 5,∼ 6.7).

Second smallest eigenvector: (0.33, 0.33, 0.33, 0.33, 0.23,−0.23,−0.33,−0.33,−0.33,−0.33)T .

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

←−We can cluster this with k -means.

Let’s try to cluster our graph.

W =


0 1 1 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1 1 0

 ,

L =


4 −1 −1 −1 −1 0 0 0 0 0
−1 4 −1 −1 −1 0 0 0 0 0
−1 −1 4 −1 −1 0 0 0 0 0
−1 −1 −1 4 −1 0 0 0 0 0
−1 −1 −1 −1 5 −1 0 0 0 0
0 0 0 0 −1 5 −1 −1 −1 −1
0 0 0 0 0 −1 4 −1 −1 −1
0 0 0 0 0 −1 −1 4 −1 −1
0 0 0 0 0 −1 −1 −1 4 −1
0 0 0 0 0 −1 −1 −1 −1 4



Eigenvalues: (0,∼ 0.3, 5, 5, 5, 5, 5, 5, 5,∼ 6.7).

Second smallest eigenvector: (0.33, 0.33, 0.33, 0.33, 0.23,−0.23,−0.33,−0.33,−0.33,−0.33)T .

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

←−We can cluster this with k -means.

Let’s try to cluster our graph.

W =


0 1 1 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1 1 0

 ,L =


4 −1 −1 −1 −1 0 0 0 0 0
−1 4 −1 −1 −1 0 0 0 0 0
−1 −1 4 −1 −1 0 0 0 0 0
−1 −1 −1 4 −1 0 0 0 0 0
−1 −1 −1 −1 5 −1 0 0 0 0
0 0 0 0 −1 5 −1 −1 −1 −1
0 0 0 0 0 −1 4 −1 −1 −1
0 0 0 0 0 −1 −1 4 −1 −1
0 0 0 0 0 −1 −1 −1 4 −1
0 0 0 0 0 −1 −1 −1 −1 4



Eigenvalues: (0,∼ 0.3, 5, 5, 5, 5, 5, 5, 5,∼ 6.7).

Second smallest eigenvector: (0.33, 0.33, 0.33, 0.33, 0.23,−0.23,−0.33,−0.33,−0.33,−0.33)T .

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

←−We can cluster this with k -means.

Let’s try to cluster our graph.

W =


0 1 1 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1 1 0

 ,L =


4 −1 −1 −1 −1 0 0 0 0 0
−1 4 −1 −1 −1 0 0 0 0 0
−1 −1 4 −1 −1 0 0 0 0 0
−1 −1 −1 4 −1 0 0 0 0 0
−1 −1 −1 −1 5 −1 0 0 0 0
0 0 0 0 −1 5 −1 −1 −1 −1
0 0 0 0 0 −1 4 −1 −1 −1
0 0 0 0 0 −1 −1 4 −1 −1
0 0 0 0 0 −1 −1 −1 4 −1
0 0 0 0 0 −1 −1 −1 −1 4



Eigenvalues: (0,∼ 0.3, 5, 5, 5, 5, 5, 5, 5,∼ 6.7).

Second smallest eigenvector: (0.33, 0.33, 0.33, 0.33, 0.23,−0.23,−0.33,−0.33,−0.33,−0.33)T .

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

←−We can cluster this with k -means.

Let’s try to cluster our graph.

W =


0 1 1 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1 1 0

 ,L =


4 −1 −1 −1 −1 0 0 0 0 0
−1 4 −1 −1 −1 0 0 0 0 0
−1 −1 4 −1 −1 0 0 0 0 0
−1 −1 −1 4 −1 0 0 0 0 0
−1 −1 −1 −1 5 −1 0 0 0 0
0 0 0 0 −1 5 −1 −1 −1 −1
0 0 0 0 0 −1 4 −1 −1 −1
0 0 0 0 0 −1 −1 4 −1 −1
0 0 0 0 0 −1 −1 −1 4 −1
0 0 0 0 0 −1 −1 −1 −1 4



Eigenvalues: (0,∼ 0.3, 5, 5, 5, 5, 5, 5, 5,∼ 6.7).

Second smallest eigenvector: (0.33, 0.33, 0.33, 0.33, 0.23,−0.23,−0.33,−0.33,−0.33,−0.33)T .

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

←−We can cluster this with k -means.

Another example

Fully connected weighted graph.
Eigenvector:
(0.32, 0.34, 0.28, 0.34, 0.29,−0.32,−0.27,−0.31,−0.36,−0.31)T

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Optimizing graph cuts

Clustering with cuts

Given a graph G = (V ,E), and a vertex subset S ⊆ V , with adjacency matrix A,

cut(S,S) = E(S,S) =
∑

i∈S,j∈S

Aij .

Clustering with cuts

Given a graph G = (V ,E), and a vertex subset S ⊆ V , with adjacency matrix A,

cut(S,S) = E(S,S) =
∑

i∈S,j∈S

Aij .

Clustering with cuts

Given a graph G = (V ,E), and a vertex subset S ⊆ V , with adjacency matrix A,

RatioCut(S,S) =

(
1
|S|

+
1
|S|

)
cut(S,S)

Clustering with cuts

Given a graph G = (V ,E), and a vertex subset S ⊆ V , with adjacency matrix A,

RatioCut(S,S) =

(
1
|S|

+
1
|S|

)
cut(S,S)

Clustering with cuts
Optimizing RatioCut

RatioCut(S,S) =

(
1
|S|

+
1
|S|

)
cut(S,S).

Define a vector x as

xi =


√
|S|/|S| if vi ∈ S,

−
√
|S|/|S| if vi ∈ S.

We have
I xT Lx = |V | · RatioCut(S),
I xT 1 = 0,
I ‖x‖2 =

√
|V |.

Objective:

min
x

xT Lx

subject to xT 1 = 0,

‖x‖2 =
√
|V |,

xi as defined above.

Clustering with cuts
Optimizing RatioCut

RatioCut(S,S) =

(
1
|S|

+
1
|S|

)
cut(S,S).

Define a vector x as

xi =


√
|S|/|S| if vi ∈ S,

−
√
|S|/|S| if vi ∈ S.

We have
I xT Lx = |V | · RatioCut(S),
I xT 1 = 0,
I ‖x‖2 =

√
|V |.

Objective:

min
x

xT Lx

subject to xT 1 = 0,

‖x‖2 =
√
|V |,

xi as defined above.

Clustering with cuts
Optimizing RatioCut

RatioCut(S,S) =

(
1
|S|

+
1
|S|

)
cut(S,S).

Define a vector x as

xi =


√
|S|/|S| if vi ∈ S,

−
√
|S|/|S| if vi ∈ S.

We have
I xT Lx = |V | · RatioCut(S),
I xT 1 = 0,
I ‖x‖2 =

√
|V |.

Objective:

min
x

xT Lx

subject to xT 1 = 0,

‖x‖2 =
√
|V |,

xi as defined above.

Clustering with cuts
Optimizing RatioCut

RatioCut(S,S) =

(
1
|S|

+
1
|S|

)
cut(S,S).

Define a vector x as

xi =


√
|S|/|S| if vi ∈ S,

−
√
|S|/|S| if vi ∈ S.

We have
I xT Lx = |V | · RatioCut(S),
I xT 1 = 0,
I ‖x‖2 =

√
|V |.

Objective:

min
x

xT Lx

subject to xT 1 = 0,

‖x‖2 =
√
|V |,

xi as defined above.

Clustering with cuts
Optimizing RatioCut

k clusters:

RatioCut(S1, . . . ,Sk) =
k∑

i=1

cut(Si ,Si)

|Si |
.

Define k vectors (x1, . . . , xk) as

xij =


1√
|Si |

if vj ∈ Si ,

0 if vj ∈ Si .

We have
I xT

i Lxi =
cut(Si ,Si)
|Si | ,

I
∑

i xT
i Lxi =

∑
i

cut(Si ,Si)
|Si | ,

I xT
i xj = 0, i 6= j ,

I ‖xi‖2 = 1.

Objective:

min
X

Tr(X T LX)

subject to X T X = I,

Xij = xij as defined above.

Clustering with cuts
Optimizing RatioCut

k clusters:

RatioCut(S1, . . . ,Sk) =
k∑

i=1

cut(Si ,Si)

|Si |
.

Define k vectors (x1, . . . , xk) as

xij =


1√
|Si |

if vj ∈ Si ,

0 if vj ∈ Si .

We have
I xT

i Lxi =
cut(Si ,Si)
|Si | ,

I
∑

i xT
i Lxi =

∑
i

cut(Si ,Si)
|Si | ,

I xT
i xj = 0, i 6= j ,

I ‖xi‖2 = 1.

Objective:

min
X

Tr(X T LX)

subject to X T X = I,

Xij = xij as defined above.

Clustering with cuts
Optimizing RatioCut

k clusters:

RatioCut(S1, . . . ,Sk) =
k∑

i=1

cut(Si ,Si)

|Si |
.

Define k vectors (x1, . . . , xk) as

xij =


1√
|Si |

if vj ∈ Si ,

0 if vj ∈ Si .

We have
I xT

i Lxi =
cut(Si ,Si)
|Si | ,

I
∑

i xT
i Lxi =

∑
i

cut(Si ,Si)
|Si | ,

I xT
i xj = 0, i 6= j ,

I ‖xi‖2 = 1.

Objective:

min
X

Tr(X T LX)

subject to X T X = I,

Xij = xij as defined above.

Clustering with cuts
Optimizing RatioCut

k clusters:

RatioCut(S1, . . . ,Sk) =
k∑

i=1

cut(Si ,Si)

|Si |
.

Define k vectors (x1, . . . , xk) as

xij =


1√
|Si |

if vj ∈ Si ,

0 if vj ∈ Si .

We have
I xT

i Lxi =
cut(Si ,Si)
|Si | ,

I
∑

i xT
i Lxi =

∑
i

cut(Si ,Si)
|Si | ,

I xT
i xj = 0, i 6= j ,

I ‖xi‖2 = 1.

Objective:

min
X

Tr(X T LX)

subject to X T X = I,

Xij = xij as defined above.

Clustering with cuts
Optimizing NCut

NCut(S,S) =

(
1

vol(S)
+

1
vol(S)

)
cut(S,S).

vol(S) =
∑

v∈S d(v).

Define a vector x as

xi =


√

vol(S)/vol(S) if vi ∈ S,

−
√

vol(S)/vol(S) if vi ∈ S.

We have
I xT Lx = vol(V) · NCut(S),
I (Dx)T 1 = 0,
I xT Dx = vol(V).

Objective:

min
x

xT D−1/2LD−1/2x

subject to (D1/2x)T 1 = 0,

xT Dx = vol(V),

xi as defined above.

Note: D−1/2LD−1/2 is known as the normalized Laplacian.

Clustering with cuts
Optimizing NCut

NCut(S,S) =

(
1

vol(S)
+

1
vol(S)

)
cut(S,S).

vol(S) =
∑

v∈S d(v).

Define a vector x as

xi =


√

vol(S)/vol(S) if vi ∈ S,

−
√

vol(S)/vol(S) if vi ∈ S.

We have
I xT Lx = vol(V) · NCut(S),
I (Dx)T 1 = 0,
I xT Dx = vol(V).

Objective:

min
x

xT D−1/2LD−1/2x

subject to (D1/2x)T 1 = 0,

xT Dx = vol(V),

xi as defined above.

Note: D−1/2LD−1/2 is known as the normalized Laplacian.

Clustering with cuts
Optimizing NCut

NCut(S,S) =

(
1

vol(S)
+

1
vol(S)

)
cut(S,S).

vol(S) =
∑

v∈S d(v).

Define a vector x as

xi =


√

vol(S)/vol(S) if vi ∈ S,

−
√

vol(S)/vol(S) if vi ∈ S.

We have
I xT Lx = vol(V) · NCut(S),
I (Dx)T 1 = 0,
I xT Dx = vol(V).

Objective:

min
x

xT D−1/2LD−1/2x

subject to (D1/2x)T 1 = 0,

xT Dx = vol(V),

xi as defined above.

Note: D−1/2LD−1/2 is known as the normalized Laplacian.

Clustering with cuts
Optimizing NCut

NCut(S,S) =

(
1

vol(S)
+

1
vol(S)

)
cut(S,S).

vol(S) =
∑

v∈S d(v).

Define a vector x as

xi =


√

vol(S)/vol(S) if vi ∈ S,

−
√

vol(S)/vol(S) if vi ∈ S.

We have
I xT Lx = vol(V) · NCut(S),
I (Dx)T 1 = 0,
I xT Dx = vol(V).

Objective:

min
x

xT D−1/2LD−1/2x

subject to (D1/2x)T 1 = 0,

xT Dx = vol(V),

xi as defined above.

Note: D−1/2LD−1/2 is known as the normalized Laplacian.

Clustering with cuts
Optimizing NCut

k clusters:

NCut(S1, . . . ,Sk) =
k∑

i=1

cut(Si ,Si)

vol(Si)
.

Define k vectors (x1, . . . , xk) as

xij =


1√

vol(Si)
if vj ∈ Si ,

0 if vj ∈ Si .

We have
I xT

i Lxi =
cut(Si ,Si)

vol(Si)
,

I
∑

i xT
i Lxi =

∑
i

cut(Si ,Si)
vol(Si)

,

I xT
i xj = 0, i 6= j ,

I xT
i Dxi = 1.

Objective:

min
X

Tr(X T D−1/2LD−1/2X)

subject to X T X = I,

Xij = xij as defined above.

Clustering with cuts
Optimizing NCut

k clusters:

NCut(S1, . . . ,Sk) =
k∑

i=1

cut(Si ,Si)

vol(Si)
.

Define k vectors (x1, . . . , xk) as

xij =


1√

vol(Si)
if vj ∈ Si ,

0 if vj ∈ Si .

We have
I xT

i Lxi =
cut(Si ,Si)

vol(Si)
,

I
∑

i xT
i Lxi =

∑
i

cut(Si ,Si)
vol(Si)

,

I xT
i xj = 0, i 6= j ,

I xT
i Dxi = 1.

Objective:

min
X

Tr(X T D−1/2LD−1/2X)

subject to X T X = I,

Xij = xij as defined above.

Clustering with cuts
Optimizing NCut

k clusters:

NCut(S1, . . . ,Sk) =
k∑

i=1

cut(Si ,Si)

vol(Si)
.

Define k vectors (x1, . . . , xk) as

xij =


1√

vol(Si)
if vj ∈ Si ,

0 if vj ∈ Si .

We have
I xT

i Lxi =
cut(Si ,Si)

vol(Si)
,

I
∑

i xT
i Lxi =

∑
i

cut(Si ,Si)
vol(Si)

,

I xT
i xj = 0, i 6= j ,

I xT
i Dxi = 1.

Objective:

min
X

Tr(X T D−1/2LD−1/2X)

subject to X T X = I,

Xij = xij as defined above.

Clustering with cuts
Optimizing NCut

k clusters:

NCut(S1, . . . ,Sk) =
k∑

i=1

cut(Si ,Si)

vol(Si)
.

Define k vectors (x1, . . . , xk) as

xij =


1√

vol(Si)
if vj ∈ Si ,

0 if vj ∈ Si .

We have
I xT

i Lxi =
cut(Si ,Si)

vol(Si)
,

I
∑

i xT
i Lxi =

∑
i

cut(Si ,Si)
vol(Si)

,

I xT
i xj = 0, i 6= j ,

I xT
i Dxi = 1.

Objective:

min
X

Tr(X T D−1/2LD−1/2X)

subject to X T X = I,

Xij = xij as defined above.

Unnormalized spectral clustering .
Input: Graph G = (V ,E) with adjacency matrix W , number of clusters k .

1. Compute the Laplacian L = D −W .

2. Compute the eigenvectors v1, . . . , vk of L corresponding to the k smallest
eigenvalues.

3. Consider a matrix X whose columns are v1, . . . , vk .

4. Run k -means on X .

Normalized variants:

Spectral clustering using normalized Laplacian.
Input: Graph G = (V ,E) with adjacency matrix W , number of clusters k .

1. Compute the normalized Laplacian Lsym = D−1/2(D −W)D−1/2.

2. Compute the eigenvectors v1, . . . , vk of Lsym corresponding to the k smallest
eigenvalues.

3. Consider a matrix X whose columns are v1, . . . , vk . Normalize the rows of X
to unit norm.

4. Run k -means on X .

Note: Lsym = D−1/2LD−1/2 = I − D−1/2WD−1/2.

Further reading:

I Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007)

I Ng, Jordan, and Weiss. "On spectral clustering: Analysis and an algorithm." NIPS 2002.

Normalized variants:

Spectral clustering using random walk Laplacian.
Input: Graph G = (V ,E) with adjacency matrix W , number of clusters k .

1. Compute the random walk Laplacian Lrw = D−1(D −W).

2. Compute the right eigenvectors v1, . . . , vk of Lrw corresponding to the k
smallest eigenvalues.

3. Consider a matrix X whose columns are v1, . . . , vk . Normalize the rows of X
to unit norm.

4. Run k -means on X .

Note: Lrw = D−1L = I − D−1W . This is related to the random walk matrix.

Further reading:

I Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007)
I Dhillon, Inderjit S., Yuqiang Guan, and Brian Kulis. "Kernel k-means: spectral clustering and

normalized cuts." KDD 2004.

Recommended read: "A tutorial on spectral clustering." by Ulrike Von Luxburg.

As a rule of thumb, use the random walk variant.

Spectral clustering in practice

We have seen how to use spectral clustering on graphs.

But can we use it on any type of data? E.g. points in Rd .

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Example by Von Luxburg1.

We can create a graph based on these
data.

1Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007):
395-416.

Example by Von Luxburg1.

epsilon-graph: there is an edge between
x and y if and only if ‖x − y‖2 ≤ ε.

1Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007):
395-416.

Example by Von Luxburg1.

k -nearest-neighbours:
there is an edge between x and y
if and only if
x is one of the k nearest neighbours of y
or
y is one of the k nearest neighbours of x .

1Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007):
395-416.

Example by Von Luxburg1.

mutual k -nearest-neighbours:
there is an edge between x and y
if and only if
x is one of the k nearest neighbours of y
and
y is one of the k nearest neighbours of x .

1Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007):
395-416.

Alternatively, we can consider a fully-connected weighted graph, by using a
similarity function.

We will use the Gaussian (or RBF) kernel, defined as follows:

κ : Rd × Rd → R

x , y 7→ κ(x , y) = exp

(
−‖x − y‖22

2σ2

)
.

Recall density for
N (µ, σ) : f (x) = 1

σ
√

2π
exp

(
−(x−µ)2

2σ2

)
4 2 0 2 4

x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f(x
)

Alternatively, we can consider a fully-connected weighted graph, by using a
similarity function.

We will use the Gaussian (or RBF) kernel, defined as follows:

κ : Rd × Rd → R

x , y 7→ κ(x , y) = exp

(
−‖x − y‖22

2σ2

)
.

Recall density for
N (µ, σ) : f (x) = 1

σ
√

2π
exp

(
−(x−µ)2

2σ2

)
4 2 0 2 4

x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

f(x
)

κ(x , y) = exp
(
−‖x−y‖2

2
2σ2

)
We set x to be the red point and
compute the value of κ(x , y) for all y ,
with different values of σ. We plot each
point with opacity equal to κ(x , y).

I σ = 0.1
I σ = 0.2
I σ = 0.4
I σ = 0.8
I σ = 1.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Note: the matrix of a fully connected graph might be too large to store. Consider
thresholding or using nearest neighbours.

κ(x , y) = exp
(
−‖x−y‖2

2
2σ2

)
We set x to be the red point and
compute the value of κ(x , y) for all y ,
with different values of σ. We plot each
point with opacity equal to κ(x , y).
I σ = 0.1

I σ = 0.2
I σ = 0.4
I σ = 0.8
I σ = 1.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Note: the matrix of a fully connected graph might be too large to store. Consider
thresholding or using nearest neighbours.

κ(x , y) = exp
(
−‖x−y‖2

2
2σ2

)
We set x to be the red point and
compute the value of κ(x , y) for all y ,
with different values of σ. We plot each
point with opacity equal to κ(x , y).

I σ = 0.1

I σ = 0.2

I σ = 0.4
I σ = 0.8
I σ = 1.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Note: the matrix of a fully connected graph might be too large to store. Consider
thresholding or using nearest neighbours.

κ(x , y) = exp
(
−‖x−y‖2

2
2σ2

)
We set x to be the red point and
compute the value of κ(x , y) for all y ,
with different values of σ. We plot each
point with opacity equal to κ(x , y).

I σ = 0.1
I σ = 0.2

I σ = 0.4

I σ = 0.8
I σ = 1.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Note: the matrix of a fully connected graph might be too large to store. Consider
thresholding or using nearest neighbours.

κ(x , y) = exp
(
−‖x−y‖2

2
2σ2

)
We set x to be the red point and
compute the value of κ(x , y) for all y ,
with different values of σ. We plot each
point with opacity equal to κ(x , y).

I σ = 0.1
I σ = 0.2
I σ = 0.4

I σ = 0.8

I σ = 1.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Note: the matrix of a fully connected graph might be too large to store. Consider
thresholding or using nearest neighbours.

κ(x , y) = exp
(
−‖x−y‖2

2
2σ2

)
We set x to be the red point and
compute the value of κ(x , y) for all y ,
with different values of σ. We plot each
point with opacity equal to κ(x , y).

I σ = 0.1
I σ = 0.2
I σ = 0.4
I σ = 0.8

I σ = 1.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Note: the matrix of a fully connected graph might be too large to store. Consider
thresholding or using nearest neighbours.

κ(x , y) = exp
(
−‖x−y‖2

2
2σ2

)
We set x to be the red point and
compute the value of κ(x , y) for all y ,
with different values of σ. We plot each
point with opacity equal to κ(x , y).

I σ = 0.1
I σ = 0.2
I σ = 0.4
I σ = 0.8

I σ = 1.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Note: the matrix of a fully connected graph might be too large to store. Consider
thresholding or using nearest neighbours.

Practical considerations

Some recommendations:

I Scalability: the similarity (adjacency) matrix is of size n × n. Thus, spectral
clustering requires at least O(n2) computations just for the preliminary phase.
The spectral decomposition requires O(n3) work in general. Always use
sparse matrices if possible.

I Use a nearest neighbour graph to avoid storing the n × n matrix.
I Compute eigenvectors efficiently2

I Sample random subgraphs.
I Read more3

2https://en.wikipedia.org/wiki/LOBPCG
3Yan, Donghui, Ling Huang, and Michael I. Jordan. "Fast approximate spectral clustering." KDD

2009.

Practical considerations

Some recommendations:

I Scalability: the similarity (adjacency) matrix is of size n × n. Thus, spectral
clustering requires at least O(n2) computations just for the preliminary phase.
The spectral decomposition requires O(n3) work in general. Always use
sparse matrices if possible.

I Use a nearest neighbour graph to avoid storing the n × n matrix.

I Compute eigenvectors efficiently2

I Sample random subgraphs.
I Read more3

2https://en.wikipedia.org/wiki/LOBPCG
3Yan, Donghui, Ling Huang, and Michael I. Jordan. "Fast approximate spectral clustering." KDD

2009.

Practical considerations

Some recommendations:

I Scalability: the similarity (adjacency) matrix is of size n × n. Thus, spectral
clustering requires at least O(n2) computations just for the preliminary phase.
The spectral decomposition requires O(n3) work in general. Always use
sparse matrices if possible.

I Use a nearest neighbour graph to avoid storing the n × n matrix.
I Compute eigenvectors efficiently2

I Sample random subgraphs.
I Read more3

2https://en.wikipedia.org/wiki/LOBPCG
3Yan, Donghui, Ling Huang, and Michael I. Jordan. "Fast approximate spectral clustering." KDD

2009.

Practical considerations

Some recommendations:

I Scalability: the similarity (adjacency) matrix is of size n × n. Thus, spectral
clustering requires at least O(n2) computations just for the preliminary phase.
The spectral decomposition requires O(n3) work in general. Always use
sparse matrices if possible.

I Use a nearest neighbour graph to avoid storing the n × n matrix.
I Compute eigenvectors efficiently2

I Sample random subgraphs.

I Read more3

2https://en.wikipedia.org/wiki/LOBPCG
3Yan, Donghui, Ling Huang, and Michael I. Jordan. "Fast approximate spectral clustering." KDD

2009.

Practical considerations

Some recommendations:

I Scalability: the similarity (adjacency) matrix is of size n × n. Thus, spectral
clustering requires at least O(n2) computations just for the preliminary phase.
The spectral decomposition requires O(n3) work in general. Always use
sparse matrices if possible.

I Use a nearest neighbour graph to avoid storing the n × n matrix.
I Compute eigenvectors efficiently2

I Sample random subgraphs.
I Read more3

2https://en.wikipedia.org/wiki/LOBPCG
3Yan, Donghui, Ling Huang, and Michael I. Jordan. "Fast approximate spectral clustering." KDD

2009.

Take-aways from this lecture:

I Derivation of spectral clustering from first principles.
I Derivation of spectral clustering from cut objectives:

I RatioCut
I NCut

I Spectral clustering algorithms.
I Building a graph from vector data.
I Practical considerations.

