Cellulose: dissolution

CHEM-E2140
Advanced Biomaterial Chemistry and Technology

Eero Kontturi

5th November 2015
Outline

(1) Background:
 - Why to dissolve cellulose?
 - Challenges in cellulose dissolution
 - Basic concepts

(2) Generic treatise on polymer dissolution and swelling of cellulose

(3) Properties of some cellulose solvents

(4) Properties of widely used, important modern solvents:
 - Dimethylacetamide / LiCl
 - Urea / NaOH / water
 - N-methylmorpholine N-oxide (NMMO) / water
 - Ionic liquids
Why to dissolve cellulose?

- To prepare regenerated cellulose from dissolved cellulose
 - fibres (e.g., cellulose II is suitable for textiles)
 - films (e.g., packaging purposes)

- To chemically modify cellulose in a **homogeneous** environment
 - Most solvents cannot penetrate inside crystalline cellulose
 → heterogeneous modification is restricted only to the surface of crystalline cellulose

- To degrade cellulose more efficiently
 - Cellulose is degraded much more efficiently in a homogeneous environment than in a heterogeneous one
Cellulose dissolution: challenges

The hydrogen bonding network in crystalline cellulose is exceptionally strong.
Cellulose dissolution: challenges

Cellulose crystal is exceptionally recalcitrant to dissolution.
Cellulose dissolution: challenges

NOTE: Hydrogen bonding does not automatically imply difficult solubility
 • Most hydrogen bonded substances dissolve in water because H-bonding between water and the compound is stronger than between the compound molecules themselves

FOR EXAMPLE:
Glucose dissolves in water although it is hydrogen bonded and crystalline in solid state.

NOTE: Crystallinity itself does not imply difficult solubility
 • Many crystalline systems dissolve in water
 • In case of cellulose, also amorphous cellulose is insoluble in common solvents
Cellulose dissolution: challenges

- Cellulose is amphiphilic: it contains both hydrophilic and hydrophobic sites

Interesting recent account on amphiphilicity and insolubility of cellulose: Medronho et al. *Cellulose* 2012, 19, 581.
Cellulose dissolution: basic concepts

Derivatizing solvent:
• A solvent which induces covalent modifications on the cellulose backbone
• The modification must be easily removable

Non-derivatizing solvent:
• A solvent which truly separates the individual cellulose chains from each other without chemical modification

Here, we will deal exclusively with non-derivatizing solvents.
Cellulose dissolution: basic concepts

Tricomponent solvents
• For example, NH$_3$/SO$_2$/DMSO

Bicomponent solvents
• For example, dimethylacetamide/LiCl, NMNO/H$_2$O, Cu/ethylenediamine

Unicomponent solvents
• Ionic liquids
Generic treatise on polymer dissolution and swelling of cellulose
Dissolution of polymers in general

Polymers do not dissolve like small molecular compounds

(1) First, the solvent swells them
(2) If the dissolving power is great enough, individual chains separate from each other, causing a dissolved state
Dissolution of polymers in general

Second law of thermodynamics:
\[\Delta G = \Delta H - T \Delta S \]

In dissolution:
- \(\Delta G \) – Gibbs free energy
- \(\Delta H \) – enthalpy of mixing
- \(T \) – absolute temperature
- \(\Delta S \) – entropy of mixing

- \(\Delta G \) must be negative for dissolution to occur
- Positive \(\Delta H \rightarrow \) polymer and solution are at their lower energy state
- Negative \(\Delta H \rightarrow \) polymer solution is at its lower energy state
Dissolution of polymers in general

Configurational enthalpy of mixing (Boltzmann equation):

\[\Delta H = k \ln W \]

where \(k \) is the Boltzmann constant and \(W \) is the number of possible arrangements within the lattice.
Dissolution of polymers in general

If segments 1 and 2 are connected (as they are in a polymer)

$\Delta H = k \ln W$ is immensely smaller than with small molecular compounds which are not connected to each other.

Dissolution of polymers in general

\[\Delta S_m = -k[n_1 \ln \phi_1 + n_2 \ln \phi_2] \]

\[\phi_1 = \frac{n_1}{n_1 + n_2 x} = \frac{N_1}{N_1 + N_2 x} \]

\[\phi_2 = \frac{n_1}{n_1 + n_2 x} = \frac{N_2 x}{N_1 + N_2 x} \]

where

- \(n \) - the number of molecules
- \(N \) - the mole fraction
- \(x \) - the degree of polymerization
 (Subscripts 1: solvent, 2: polymer)

→ Volume fraction (\(\phi_2 \)) increases with \(x \)
→ Entropy of mixing is large and is the dominant factor in dissolution

Dissolution of polymers in general

Entropy of dilution or the chemical potential of the solvent ($\Delta \mu_1$) is considered. This is related to osmotic pressure (π):

$$\pi = -\left(\frac{RT}{V_1}\right) \left[\ln(1 - \phi_2) + \left(1 - \frac{1}{\chi}\right)\phi_2 + \chi \phi_2^2 \right]$$

where V is the mole volume and χ is the interaction parameter (usually determined empirically).

Dissolution of polymers in general

NOTE 1: The Flory-Huggins theory does not take into account the accessibility of monomeric units by the solvent.

NOTE 2: The Flory-Huggins theory does not take into account the hydrophobic interactions in aqueous systems (common with biological macromolecules).
Swelling of cellulose

- Cellulosic substrates (usually fibres) swell extensively in many polar solvents, notably in water.
- Left, water vapour sorption of spruce sulfite pulp at different relative humidities.
Swelling of cellulose

Many common solvents are good swelling agents for cellulose but none of them manage to dissolve cellulose.

Table 2.2.4. Effect of swelling medium and polymer structure on the swelling of cellulose in organic liquids at 20 °C (Wagenknecht, 1976)

<table>
<thead>
<tr>
<th>Swelling medium</th>
<th>Equilibrium LRV (%)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cotton</td>
<td>Hydrol. linters</td>
<td>Spruce untreated</td>
<td>sulfite pulp decryst.</td>
<td>mercerized Rayon staple</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>106</td>
<td>71</td>
<td>163</td>
<td>189</td>
<td>192</td>
</tr>
<tr>
<td>DMSO</td>
<td>90</td>
<td>72</td>
<td>121</td>
<td>168</td>
<td>170</td>
</tr>
<tr>
<td>Formamide</td>
<td>71</td>
<td>58</td>
<td>88</td>
<td>158</td>
<td>106</td>
</tr>
<tr>
<td>Water</td>
<td>51</td>
<td>45</td>
<td>63</td>
<td>87</td>
<td>82</td>
</tr>
<tr>
<td>DMF</td>
<td>49</td>
<td>25</td>
<td>63</td>
<td>113</td>
<td>–</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>36</td>
<td>13</td>
<td>45</td>
<td>92</td>
<td>33</td>
</tr>
<tr>
<td>Ethanol</td>
<td>21</td>
<td>14</td>
<td>32</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>(n)-Hexane</td>
<td>12</td>
<td>7</td>
<td>15</td>
<td>–</td>
<td>14</td>
</tr>
</tbody>
</table>

\(^a\)After 2 months.
DMF, \(N,N\)-dimethylformamide; LRV, liquid retention value.

General considerations on cellulose swelling prior to dissolution

<table>
<thead>
<tr>
<th>Content of water</th>
<th>< 17%</th>
<th>19 – 24%</th>
<th>25 – 35%</th>
<th>> 35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swelling and dissolution mechanism</td>
<td>Dissolution by disintegration in spindle (Mode 1)</td>
<td>Swelling by ballooning, dissolution (Mode 2)</td>
<td>Swelling by ballooning, no dissolution (Mode 3)</td>
<td>Homogeneous swelling, no dissolution (Mode 4)</td>
</tr>
<tr>
<td>10 μm</td>
<td>Wood fibre</td>
<td>Wood fibre</td>
<td>Wood fibre</td>
<td>Cotton fibre</td>
</tr>
</tbody>
</table>

Cuissinat and Navard *Macromol. Symp.* 2006, 244, 1.
Cellulose solvents:

NaOH / water
Phosphoric acid / water
Transition metal complexes
At strong NaOH concentrations (5-35%), the hydroxyl groups are dissociated.

Dissolution usually requires a freeze/thaw pretreatment and/or subzero temperature (e.g., -6°C) during dissolution.
Several semi-crystalline cellulose grades dissolve in 5-20% NaOH after proper pretreatments.

Some grades (e.g., native cotton) have limited solubility.

Amorphous cellulose has been shown to dissolve in 4% NaOH.
NaOH / water

- Chain degradation due to alkaline hydrolysis occurs upon dissolution
- OH-group dissociation does not fully explain cellulose dissolution in NaOH

Phosphoric acid / water

- Concentrated phosphoric acid (~80%) is a considerable swelling agent for cellulose

- Swelling in phosphoric acid changes the crystallinity: from crystalline to amorphous (Walseth *Tappi* 1952, 35, 228)

- Phosphoric acid swollen cellulose (PASC) is used to assess the activity of cellulose degrading enzymes (cellulases) because of its high accessibility
Enzymatic hydrolysis of phosphoric acid swollen cellulose:

- At ca. 83% H$_3$PO$_4$ concentration, cellulose dissolves completely

Phosphoric acid / water

- Considerable chain degradation during dissolution
- Minor formation of phosphate esters during dissolution

RAC – regenerated amorphous cellulose
Acivel – hydrolyzed cellulose I grade with high crystallinity

Transition metal complexes

Transition metal complexes that dissolve cellulose include:

- Copper complex with ammonia (Cuoxam): first known solvent for cellulose (1857)
- Copper complex with ethylenediamine (Cuen): still used for simple molecular weight determination of cellulose by viscometry
- Cadmium complex with ethylenediamine (Cadoxen)
- Ferric tartraic acid complex in alkaline solution (FeTNa)

Despite the viscosity determination by Cuen, these solvents are not very popular at present.
Cuoxam

- Aqueous ammonia solution of copper(II) hydroxide
- Also known as Schweizer’s reagent
- Hydroxyl groups of cellulose are deprotonated (OH→O⁻) in the presence of Cu(II) ions and form chelate complexes

Properties of widely used, important modern solvents:

- Dimethylacetamide / LiCl
- NaOH / urea / water
- N-methylmorpholine oxide (NMMO) / water
- Ionic liquids
Dimethylacetamide / LiCl

• The most common laboratory solvent for cellulose

• Generally, 8.47 w% LiCl in DMAc is used (saturation concentration); the dissolution requires activation by solvent exchange

• Effortless and reliable: negligible chain degradation of cellulose within the span of several months

Used for:
• Laboratory-scale chemical modification of cellulose in homogeneous environment
• Measuring the molecular weight distribution of cellulose with gel permeation chromatography (GPC)
• Quantification of carbonyl (C=O) groups in cellulose by fluorescent labelling
Dimethylacetamide / LiCl

- Dissolution mechanism is based on hydrogen bond complexation in cellulose by DMAc/LiCl complex

Dawsey and McCormick
Dimethylacetamide / LiCl

Phase diagrams of LiCl/DMAc/Cellulose

- Biphasic samples (incl. non-dissolved cellulose or liquid crystals)
- Isotropic points

Dimethylacetamide / LiCl

Time dependency of dissolution time of cellulose from different plant fibres

Gel permeation chromatograms:

Henniges et al. *Biomacromolecules* 2011, 12, 871.
Dimethylacetamide / LiCl

Time dependency of dissolution time of cellulose from different plant fibres

Gel permeation chromatograms:

→ Annual plants take longer to dissolve than wood-based fibres

Henniges et al. *Biomacromolecules* 2011, 12, 871.
Dimethylacetamide / LiCl – practical aspects

Preparation of the solvent (DMAc/LiCl)
- heat DMAc into ~100°C
- add 8.47% (w/w) LiCl (saturation concentration)
- filtration

Dissolution in practice:
(1) Solvent exchange:
 - 3×methanol
 - 2×dimethylacetamide
(2) Slow addition of solvent exchanged cellulose in DMAc/LiCl
(3) Dissolution for at least overnight before the solution is ready to use
Dimethylacetamide / LiCl – practical aspects

(1) The water content of the used DMAc should be below 0.9 wt%

(2) Sufficient time of dissolution (overnight) is necessary

(3) The higher the LiCl amount, the longer the possible storage time before aggregation sets in
Urea / NaOH / water

- Among the most recently introduced cellulose solvents (Introduced in 2000 by Lina Zhang)

- Dissolution with 7 wt% NaOH and 12 wt% urea at -12°C

- Solvent is particularly used for preparation of “high-end” cellulose materials:
 - photoluminescent films
 - fluorescent cellulose hydrogels with quantum dots
 - superabsorbent hydrogels with controlled delivery
 - Fe$_3$O$_4$/cellulose microspheres with magnetic-induced protein delivery
 - etc.
Urea / NaOH / water

Mechanism:
• Hydrogen bonding networks of urea/NaOH/water clusters form new hydrogen bonding networks at low temperatures
• Cellulose forms wormlike inclusion complexes with these clusters
• Quick dissolution is attributed to dynamic self-assembly leading to the inclusion complex

NOTE: Urea / NaOH / water is probably the fastest solvent for cellulose with dissolution occurring in less than 2 minutes.
Urea / NaOH / water

Temperature dependence

\[S_a = \frac{(W_0 - W_i)}{W_0} \]

where \(W_0 \) is weight of original cellulose, and \(W_i \) is weight of the undissolved fractions.

Note: -12.6°C is the critical point for the solvent

Urea / NaOH / water

Temperature dependence

Activation energy of dissolution ($E_{a,s}$) from Arrhenius equation:

$$\ln S_a = \ln A - \frac{E_{a,s}}{RT}$$

→ $E_{a,s} = -101$ kJ/mol

→ Negative enthalpy implies that cellulose dissolution with urea/NaOH/water is an entropy-driven process
NMMO

3 possible formulae of \(N\text{-methylmorpholine-N-oxide} \)

Predominant feature of NMMO is the highly dipolar N-O bond

- The only industrial solvent for cellulose
- Used in the Lyocell process
NMMO

Predominant feature of NMMO is the highly dipolar N-O bond

Properties of NMMO:
- Pronounced tendency to form hydrogen bonds
- Strong oxidant (N-O bond is easily broken)
- Slightly basic ($pK_b=9.25$)
- Thermally labile
NMMO

Hydrate formation with water

NMMO and NMMO hydrates

- The N-O bond is able to form 1 or two hydrogen bonds with two partners containing hydroxyl groups (e.g., water or cellulose)
- Cellulose dissolution occurs generally between 4-17% water content
- When the water content exceeds monohydrate concentration, the ability to cellulose severely decreases (no hydrogen bonding ability left)
NMMO

Cellulose dissolution

- N-O bond forms strong hydrogen bonds with cellulose, capable of breaking its hydrogen bonding network
- Produces isotropic solutions of cellulose up to ~21% concentration in the temperature interval 72-120°C
NMMO

Phase diagram of NMMO/water/cellulose

NMMO

Qualitative factors influencing cellulose dissolution in NMMO

<table>
<thead>
<tr>
<th>Influencing parameter</th>
<th>Dissolution of cellulose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution temperature</td>
<td>↑</td>
</tr>
<tr>
<td>Water content of the mixture</td>
<td>↓</td>
</tr>
<tr>
<td>Concentration of the cellulose</td>
<td>↓</td>
</tr>
<tr>
<td>Molecular weight (DP) of the pulp</td>
<td>↓</td>
</tr>
<tr>
<td>Input of mechanical energy</td>
<td>↑</td>
</tr>
</tbody>
</table>

↑ = increased ↓ = decreased

Ionic liquids

• Ionic liquid is a salt that melts below 100°C
• Very low vapour pressure
• High thermal stability
• High solvation ability
• Can be easily modified by changing the structure of the cations or anions
Ionic liquids

Structures for ionic liquids with 1-alkyl-3-methylimidazolium cation, typical cellulose solvents

\[
\begin{align*}
R=\text{CH}_3: & \quad [\text{C}_1\text{mim}]^+ \\
R=\text{CH}_3\text{CH}_2: & \quad [\text{C}_2\text{mim}]^+ \\
R=\text{CH}_3\text{CH}_2\text{CH}_2: & \quad [\text{C}_3\text{mim}]^+ \\
R=(\text{CH}_3)_2\text{CH}: & \quad [\text{C}_3\text{mim}]^+ \\
R=\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2: & \quad [\text{C}_4\text{mim}]^+ \\
R=\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2: & \quad [\text{C}_6\text{mim}]^+ \\
R=\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2: & \quad [\text{C}_8\text{mim}]^+ \\
R=\text{CH}_2=\text{CHCH}_2: & \quad [\text{Amim}]^+
\end{align*}
\]

- The charges are distant from each other because of the bulky "shell" around the cations formed by neutral atoms
- The shell reduces the energy of electrostatic interactions between the ions
- The electrostatic energy becomes less than the energy of thermal motion of the ions at low temperatures
 \[\rightarrow \text{Crystallization is prevented and the substance is fluid} \]
Ionic liquids

Examples of diverse ionic liquid structures

[Image of various ionic liquid structures]

N-alkyl pyridine cation

alkyl quaternary ammonium cation

N, N-2-alkyl imidazole cation

alkyl quaternary phosphonium cation

[Admin]^+ [HEmin]

PF$_6^-$: hexafluorophosphate BF$_4^-$: tetrafluoroborate

Cl$^-$, I$: halides CF$_3COO^-$: trifluoroacetate(TA.)
Ionic liquids

Dissolution of cellulose by ionic liquids

• Ability to dissolve cellulose (with 1-butyl-3-methyl imidiazole) first reported in 2002 (Swatloski et al. J. Am. Chem. Soc. 2002, 124, 4974)

• Nowadays an extremely viable research area

Used for:
 • Chemical modification of cellulose
 • Degradation of cellulose
 • Preparing various regenerated grades

Note: No industrial applications as of yet.
Ionic liquids

Mechanism of cellulose dissolution

• The anions interact directly with cellulose hydroxyl groups (simple anions: acetate, formiate, Cl⁻ etc.)

• The anions must be good hydrogen bond acceptors

• Excess of anions is required: 1.5-2.5 anions / hydroxyl group for dissolution

• There is no evidence of the interactions between cations (in ionics liquids) and cellulose

Ionic liquids

Parameters for cellulose dissolution

Anions

• Cellulose cannot be dissolved in ionic liquids with non-coordinating anions (e.g., BF$_4^-$ or PF$_6^-$)

• The higher the hydrogen bond basicity and dipolarity, the greater the ability of salts of that anion to dissolve cellulose

• For example, a larger amount of cellulose can be dissolved in 1-allyl-3-methylimidazolium formate than the corresponding chloride (hydrogen bonding basicity of formate is 1.2 fold higher than that of chloride)

Solubility increases with increasing hydrogen bond accepting ability: OAc$^- >$ HSCH$_2$COO$^- >$ HCOO$^- >$ (C$_6$H$_5$)COO$^- >$ HOCH$_2$COO$^- >$ CH$_3$CHOHCOO$^-$

Ionic liquids

Parameters for cellulose dissolution

Cations

• Although cations are probably not directly involved in the interactions with cellulose, they play a major role in the dissolution

• When the alkyl chain length in the cation is increased, the solvent power of ionic liquids is generally decreased (speculatively attributed to reduced effective chloride concentration)

• However, cellulose is more soluble in 1-alkyl-3-imidazolium-based ionic liquids with even-numbered alkyl chains compared with odd-numbered ones (below six carbon units)

NOTE: The role of cations is controversial in the light of current research.

Ionic liquids

Parameters for cellulose dissolution

Viscosity

<table>
<thead>
<tr>
<th>IL</th>
<th>Viscosity (mPa·s)a</th>
<th>Solubility of Cellulose (wt.%)b</th>
<th>Solubility of Cellulose (g mol$^{-1}$ IL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C$_4$ mim] Cl</td>
<td>147 (80 °C)72</td>
<td>20 (100 °C)</td>
<td>34.9</td>
</tr>
<tr>
<td>[C$_2$ mim] Cl</td>
<td>62 (80 °C)104</td>
<td>14 (100 °C)</td>
<td>20.5</td>
</tr>
<tr>
<td>[C$_2$ mim] OAc</td>
<td>10 (80 °C)72</td>
<td>>20 (NM)c</td>
<td>>34.0</td>
</tr>
<tr>
<td>[C$_4$ mim] OAc</td>
<td>26 (80 °C)105</td>
<td>15.5 (70 °C)</td>
<td>30.7</td>
</tr>
<tr>
<td>[C$_2$ mim] (MeO) HPO$_2$</td>
<td>107 (25 °C)18</td>
<td>10 (45 °C)</td>
<td>20.6</td>
</tr>
<tr>
<td>[C$_2$ mim] (MeO) MePO$_2$</td>
<td>510 (25 °C)18</td>
<td>10 (55 °C)</td>
<td>22.0</td>
</tr>
<tr>
<td>[C$_2$ mim] (MeO)$_2$ PO$_2$</td>
<td>265 (25 °C)18</td>
<td>10 (65 °C)</td>
<td>23.6</td>
</tr>
<tr>
<td>[Amim] HCOO</td>
<td>66 (25 °C)17</td>
<td>~22 (85 °C)</td>
<td>~37.0</td>
</tr>
</tbody>
</table>

a The numbers in brackets correspond to temperatures at which the viscosity is measured.

b The numbers in brackets correspond to temperatures at which the solubility is measured.

c NM: not mentioned.

- Viscosity does not have a significant role in dissolution of cellulose by ionic liquids

Ionic liquids

Parameters for cellulose dissolution

Microwave irradiation

- Microwave irradiation can vastly increase the amount of cellulosic substrate that can be dissolved in ionic liquids
- For example, the solubility of cellulose in 1 mole of [C$_4$ mim]Cl increased to 43.7 g with microwave heating compared with 17.5 g with conventional heating

Ionic liquids

Parameters for cellulose dissolution

Cellulose source

<table>
<thead>
<tr>
<th>Cellulose type</th>
<th>Temperature</th>
<th>Solubility (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
<td>NMa</td>
<td>> 20</td>
</tr>
<tr>
<td>Eucalyptus pre-hydrolysis sulfate pulp (569)</td>
<td>NM</td>
<td>19.6</td>
</tr>
<tr>
<td>Avicel</td>
<td>100 °C</td>
<td>15</td>
</tr>
<tr>
<td>Avicel</td>
<td>100 °C</td>
<td>8</td>
</tr>
<tr>
<td>α-Cellulose</td>
<td>90 °C</td>
<td>> 5</td>
</tr>
</tbody>
</table>

a NM: not mentioned.

- Highly crystalline cellulose samples appear to be less soluble

Ionic liquids

NOTE: Dissolution of cellulose in ionic liquids, its modification therein, and the regeneration thereof is one of the most active research areas with renewable materials at present.

Many fundamental details on cellulose dissolution in ionic liquids remain elusive and further research is bound to clarify them.

Some recent literature reviews:
Feng and Chen *J. Mol. Liq.* **2008**, *142*, 1.
General considerations on cellulose dissolution

On solvent
- No general theory exists on why a certain compound is a cellulose solvent

On the cellulose substrate
- At present, the consensus is that neither molecular weight nor the crystallinity of cellulose determines fully the solubility of cellulose in its solvents
- Some reports discuss the hierarchical fibre morphology as a possible determining factor for solubility (long-range interactions, see, e.g., Le Moigne and Navard Cellulose 2010, 17, 31.)