Aalto University

ELEC-E7861

Lecture 11: Scientific Writing

2021

Antti Oulasvirta
Aalto University userinterfaces.aalto.fi

Schedule

Jan 14: Introduction
Jan 21: Computational modeling
Jan 28: Analytical methods
Feb 4: User research
Feb 11: Literature review
Feb 18: Research strategy
Feb 25: No meeting
Mar 4: Research planning
Mar 11: Guest lecture

Mar 18: Modeling clinic
Mar 25: No meeting
Apr 1: Modeling clinic
April 8: Scientific writing
Apr 15: Scientific presentation
Independent study period
May 14: Submission of paper (PDF)
May 15: Dress rehearsal
May 16: Final presentations

A warm up question

- What aspect of writing have you struggled with in this course?

Status with research

Anything you want to bring up?

If you get stuck:

1) Consult yourself, talk with a peer
2) Consult your coach
3) Email Antti

Preparation for this lecture

1. Pen and paper: Checklist of things you can improve
2. Your current manuscript

Aalto University

Scientific Writing

Q: Why do we learn to write in this course?

Writing communicates your work
Writing makes it scrutinable by others
Writing is research
Writing is a skill

- You can develop it
- It is deceptively easy to read a well-written paper
Writing also teaches you how to read

Writing in HCl poses some special requirements

Learning objectives

1. Understand scientific writing

- Beyond "reporting"
- Communication, argumentation, appeal

2. Understand basic structures and techniques in an HCI paper
3. Enhance the value of your research
4. Learn tips and avoid common pitfalls

Evaluation form for your coach

Usefulness of outcomes (1-5)
"These results make a significant contribution toward solving the original problem"

Validity of methodology (1-5)
"The methodology followed is valid. I have high confidence in the obtained results."

Process (1-5)
"I am happy with how the research project was managed by the student."

Overall grade (1-5)

Free comments

Scientific Writing for HCI

Scope: HCI papers

grammar, style, scientific writing in general

Aalto University

Objectives for Writing in HCl

Four objectives for writing

Communication

- Get your reader to 1) attend to your point, 2) understand it, and 3) be able to act upon it

Scrutinability and replicability

- After reading this, will I be able to understand how you exactly did it and replicate it?
Follows tradition
- Follows the tradition in HCI in paper writing

Appeal

- Am I convinced that you have done this according to the highest standards of quality? Does this work excite me?

Grading: Demonstrate your acquired competences in...

1. Formulation of research problems
2. User research methods
3. Representations of user research data
4. Understanding the design space and tasks
5. Computational approaches
6. Research planning
7. Research strategy
8. Empirical methods
9. Data analysis and visualization
10. Scientific reporting and presentations

Typical fallacies in student writing

Complicated writing

- Too many things are said. \rightarrow Focus on one main problem

Chronological writing

- Reporting things in the order they occurred \rightarrow Scientific argumentation is more important

Argumentative flow broken

- Sections don't flow well from one to another
- Argumentative elements missing

Depersonalized writing

- Not clear what the student did \rightarrow Explicate your own contribution Inefficient writing
- Lots of space is wasted for less important points \rightarrow Dedicate space according to importance

"The CHI Style"

Making Waves, Combining Strengths

Type: Late Breaking Paper at CHI

Minimum length 6 pages - excluding Appendices and References. Maximum 10 apges

"A Late-Breaking Work submission is a concise report of recent findings or other types of innovative or thought-provoking work relevant to the CHI community. Late-Breaking Work submissions represent work that has not reached a level of completion or maturity that would warrant the full refereed selection process.

Appropriate submissions should make a contribution to the body of HCl knowledge, whether realized or promised. [..] Examples of work sought by this submission category include: emergent technologies, designs, empirical findings or theoretical contributions, preliminary studies, and ongoing work."

CHI author guidelines

1. Making a Significant Contribution
2. Offering Benefit to the Reader
3. Ensuring Results are Valid
4. Gaining Credit for Originality
5. Replicability
6. Describing the Work Clearly and Concisely

Aalto University

First page, Abstract, \& Introduction

It's simple

You can follow a template

- It pays attention to the description of the practical problem and research problem

Use the beginning to communicate the main points

What interests readers is not what interests authors

Components of primary interest	Readers	Introduction
	Authors	
Readers	Body	
	Authors	Conclusion

Abstract: What's in it?

Topic and problem
Motivation

- "Who cares about this problem and why?"

Inadequacy of existing solutions

- "Why could we not solve this straight away?"

Research problem
Your core concept/method/solution/knowledge
-"How did you solve this? Why does it work?"

Evidence for the solution

-"Why should I believe this?"
Benefit or "gain in problem-solving capacity"

- "So what?"

Example: Spotlights (CHI'16)

Aalto University

How to construct a Nature summary paragraph

Annotated example taken from Nature 435, 114-118 (5 May 2005).

Two or three sentences explaining what the main result reveals in direct comparison to what was thought to be the case previously, or how the main result adds to previous knowledge.

One or two sentences to put the results into a more general context.

Two or three sentences to provide a broader perspective, readily comprehensible to a scientist in any discipline, may be included in the first paragraph if the editor considers that the accessibility of the paper is significantly enhanced by their inclusion. Under these circumstances, the length of the paragraph can be up to 300 words. (This example is 190 words without the final section, and 250 words with it).

During cell division, mitotic spindles are assembled by microtubulebased motor proteins ${ }^{1,2}$. The bipolar organization of spindles is essential for proper segregation of chromosomes, and requires plus-end-directed homotetrameric motor proteins of the widely conserved kinesin-5 (BimC) family ${ }^{3}$. Hypotheses for bipolar spindle formation include the 'push-pull mitotic muscle' model, in which kinesin-5 and opposing motor proteins act between overlapping microtubules ${ }^{2,45}$. However, the precise roles of kinesin- 5 during this process are unknown. Here we show that the vertebrate kinesin- 5 Eg 5 drives the sliding of microtubules depending on their relative orientation. We found in controlled in vitro assays that Eg5 has the remarkable capability of simultaneously moving at $\sim 20 \mathrm{~nm} \mathrm{~s}^{-1}$ towards the plusends of each of the two microtubules it crosslinks. For anti-parallel microtubules, this results in relative sliding at $\sim 40 \mathrm{~nm} \mathrm{~s}^{-1}$, comparable to spindle pole separation rates in vivo ${ }^{6}$. Furthermore, we found that Eg5 can tether microtubule plus-ends, suggesting an additional microtubule-binding mode for Eg5. Our results demonstrate how members of the kinesin- 5 family are likely to function in mitosis, pushing apart interpolar microtubules as well as recruiting microtubules into bundles that are subsequently polarized by relative sliding. We anticipate our assay to be a starting point for more sophisticated in vitro models of mitotic spindles. For example, the individual and combined action of multiple mitotic motors could be tested, including minus-end-directed motors opposing Eg5 motility. Furthermore, Eg5 inhibition is a major target of anti-cancer drug development, and a well-defined and quantitative assay for motor function will be relevant for such developments.

Spotlights, a paper at CHI 2016

The paper contributes a novel technique that can improve user performance in skim reading. Users typically use a continuous-rate-based scrolling technique to skim works such as longer Web pages, e-books, and PDF files. However, visual attention is compromised at higher scrolling rates because of motion blur and extraneous objects with overly brief exposure times. In response, we present Spotlights. It complements the regular continuous technique at high speeds (2-20 pages/s). We present a novel design rule informed by theories of the human visual system for dynamically selecting objects and placing them on transparent overlays on top of the viewer. This improves the quality of visual processing at high scrolling rates by 1) limiting the number of objects, 2) ensuring minimal processing time per object, and 3) keeping objects static to avoid motion blur and facilitate gaze deployment. Comprehension levels for long documents were comparable with those in continuous-rate-based scrolling, but Spotlights showed significantly better scrolling speed, gaze deariblonixmestryt, recall, lookup performance, and user-rated comprehension.

Spotlights, a paper at CHI 2016

Topic statement

The paper contributes a novel technique that can improve user performance in skim reading. Users typically use a continuous-rate-based scrolling technique to skim works such as longer Web pages, e-books, and PDF files. However, visual attention is compromised at higher scrolling rates because of motion blur and extraneous objects with overly brief exposure times. In response, we present Spotlights. It complements the regular continuous technique at high speeds (2-20 pages/s). We present a novel design rule informed by theories of the human visual system for dynamically selecting objects and placing them on transparent overlays on top of the viewer. This improves the quality of visual processing
\section*{Problem statement}
\section*{Contribution statement} Benefit statement at high scrolling rates by 1) limiting the number of objects, 2) ensuring minimal processing time per object, and 3) keeping objects static to avoid motion blur and facilitate gaze deployment. Comprehension levels for long documents were comparable with those in continuous-rate-based scrolling, but
Evidence statement Spotlights showed significantly better scrolling speed, gaze deployment, recall, lookup performance, and user-rated comprehension.

Introduction: Objectives

PROBLEM

What is the problem in terms of design / engineering / scientific knowledge?

MOTIVATION

What do we lose when the problem remains unsolved? What should we achieve? INADEQUACY OF EXISTING SOLUTIONS

What have previous solutions achieved / failed to achieve?

YOUR SOLUTION/RESULT

How does it improve over state-of-the-art?

EVIDENCE FOR THE SOLUTION

What evidence decreases uncertainty over the your solution's capability?
CONTRIBUTION \& BENEFIT
What is known now that was not known before
How is the reader now better able to solve the original problem?

Introduction: Exercise (8 mins)

PROBLEM

What is the problem in terms of design / engineering / scientific knowledge?

MOTIVATION

What do we lose when the problem remains unsolved? What should we achieve?
INADEQUACY OF EXISTING SOLUTIONS
What have previous solutions achieved / failed to achieve?

SOLUTION/RESULT

How does it improve over state-of-the-art?

EVIDENCE

What evidence decreases uncertainty over the your solution's capability?
CONTRIBUTION \& BENEFIT
What new knowledge is produced?
How is the reader now better able to solve the original problem?

1. Two-person rooms in

 Zoom2. Provide your paper to the pair
3. Circle these elements from the Introduction

- Do you find them?
- Are they well expressed?

4. Report back after 8 mins

Aalto University

Communicating structure \& argument

Title communicates the topic, objective or outcome of your work

Abstract provides an overview of the whole argument and contribution

Figure 1 (teaser; optional) shows the main outcome or approach
Redundancy: The same thing is said many times but increasing level of detail
tablet placed on a surface [15], 44 wpm with तntylus [22], and 60 wpm with two thumbs on a physical mini-QWERTY We study the design of split keyboards for fast text entry and $\begin{aligned} & \text { and } \\ & \text { weyboard [4]. With such rates, two-thumb text entry on }\end{aligned}$
 should grip a device with two hands. We then assigned let- of messac, addresses, calendar events, and names [2] ers apping. KALQ minimizes thumb travel distance and maximzes alternation between thumbs. An error-correction algolim was added to help address linguistic and motor errors. error rate) after a training program.

Author Keywords
Soft keyboards; keyboard optimization; two-thumb text entry; touchscreen devices; bimanual performance
ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCl):

INTRODUCTION
Tablet computers and large smartphones with touchscreens
are commonly interacted with using two thumbs has an intuitive appeal: the two thumbs. Use of the ports typing while walking, sitting, or lying down. Despite these advantages, the low rate of text entry is a recognized problem. Reported rates (in words per minute, wpm) for two-thumb typing on a touchscreen range from 14 wpm
$[24]$ to $31 \mathrm{wpm}[8]$. Compare this range to other input techniques with mobile devices: 55 wpm with 8-10 fingers on a

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profitior commercial advantage and chat copies
bear this notice and the full citaion on the first page. To copy otherwise, bear this notice and the full citation on the frrst page. To copy otherwise,
or repubbish, to post on servers of to redistribute to lo lists, requires prior specific permission and/or a fee.
CHI 2013. Apri $27-$ May 2,2013 ,

Our goal is to investigate the upper-limit of typing perfor-
mance via methods known to improve typing performance mance via methods known to improve typing penformance. We address two major issues. First, no convention exists informs how to hold the device or how to move the thumbs. Touchscreens offer poor tactile feedback for keypresses, and the touch sensor does not allow the thumb to rest on its next target while the other thumb is moving, a technique known to boost rates with physical buttons [5]. Moreover asers may grip the device in ways that are detrimental to
performance. Second, it is not known whether the QWERTY layout, traditionally used such that both thumbs are responsible for a single key, is efficient when the thumbs do all the presses.
The design of KALQ, shown in Figure 1, is informed by a series of studies that shed light on these open questions:
. Button size, keyboard shape, and position are informed by a study of symmetric two-hand grips $(N=6)$. 2. Letter-to-key assignment is resolved computationally, informed by a model of two-thumb performance acquired from a bimanual tapping task ($N=20$).
Online error correction is based on a large corpus of mobile text and by model
To evaluate KALQ we trained users ($N=6$) longitudinally in the new layout using a number of performance-enhancing
strategies. Users reached 37 wpm upon completion of the training. We conclude by discussing performance gains brought about by each design decision.

Figure 1. KALQ (pronounced as in "calculated") is a soft keyboard designed to improve two-thumb text entry on tablet devices. Its design considers grip, coordinated performance of the two thumbs, and linguistic and motor errors.

ABSTRACT

We study the design of split keyboards for fast text entry with two thumbs on mobile touchscreen devices. The layout of KALQ was determined through first studying how users should grip a device with two hands. We then assigned ters to keys computationally, using a model of two-thumb tapping. KALQ minimizes thumb travel distance and maximizes alternation between thumbs. An error-correction algorithm was added to help address linguistic and motor errors. Users reached a rate of 37 words per minute (with a 5% error rate) after a training program.
Author Keywords
Soff keyboards; keyboard optimization; two-thumb text entry; touchscreen devices; bimanual performance
ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):

INTRODUCTION
Tablet computers and large smartphones with touchscreens
are commonly interacted with using two the are commonly interacted with using two thumbs. Use of the
thumbs has an intuitive appeal: the grip is stable ad ports typing while walking, sitting, or lying down. Despite these advantages, the low rate of text entry is a recognized problem. Reported rates (in words per minute, wpm) for two-thumb typing on a touchscreen range from 14 wpm
$[24]$ to $31 \mathrm{wpm}[8]$. Compare this range to other input techniques with mobile devices: 55 wpm with 8-10 fingers on a

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for rofifitor commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

CH1 2013, April 27-May 2, 2013 Paris, France.
Copyright © 2013 ACM $978-1-4503-1899-011 / 04$. . 515.00 .
tablet placed on a surface [15], 44 wpm with a stylus [22], anc 60 wpm with two thumbs on a physical mini-QWERTY touchscreens may be limited to simple tasks such as entry of messages, addresses, calendar events, and names [2].

Our goal is to investigate the upper limit of typing performance via methods known to improve typing performance. comparable to touch typing with physical keyboards that informs how to hold the device or how to move the thumbs. Touchscreens offer poor tactile feedback for keypresses, and the touch sensor does not allow the thumb to rest on its next target while the other thumb is moving, a technique known to boost rates with physical buttons [5]. Moreover
users may grip the device in ways that are detrimental to users may grip the device in ways that are detrimental to
performance. Second, it is not known whether the QWERTY layout, traditionally used such that both thumbs are responsible for a single key, is efficient when the thumbs do all the presses.
The design of KALQ, shown in Figure 1, is informed by a series of studies that shed light on these open questions:
. Button size, keyboard shape, and position are informed by a study of symmetric two-hand grips ($N=6$) 2. Letter-to-key assignment is resolved computationally, informed by a model of two-thumb performance ac quired from a bimanual tapping task ($N=20$). Online error correction is based on a large corpus of mobile text and by modeling tap inaccuracies.
To evaluate KALQ we trained users ($N=6$) longitudinally in the new layout using a number of performance-enhancing
strategies. Users reached 37 wpm upon completion of the training. We conclude by discussing performance gains brought about by each design decision.

Expressing your work

Use clear statements and active voice ("we", "I") to describe recognizable elements of your research

"Our goal is to ..."
"The design of X is informed by ..."
"To evaluate X, we ..."
"We cast the problem of ... as ..."
"Our design process consists of..."

Use figures \& tables to convey the story

Example: How we type (CHI'16)
MAIN TOPIC AND PROBLEM

Figure 1. Four users showing different typing behaviours involving different numbers of fingers and movement strategies. This paper reports typing rates, gaze and movement strategies for everyday typists, including both professionally trained and self-taught typists. We explain how untrained typists are able to type at very high rates, which were previously attributed only to the touch typing system that enforces the use of all 10 fingers.

Figure 2. Experimental setup: The typing process of 30 participants was captured using a motion capture system and eye tracking glasses. In
addition, keypress timings were logged and a reference video recorded.

PREVIOUS SETUP

 WORK

PARTICIPANTS

	${ }_{\text {so }}^{\text {sp }}$
Age	
Peror	
- Ran	
Emorate	
Exo	$0.99{ }^{120} 0.98$
Vistalaten	$\begin{array}{llll}0.20 & 0.27 & 0.41\end{array}$
Reight Kend	
	llit
- -k,	
cticke	
Ser	(10,05
Letere (eemelion (\%)	
Hand dal benefit (ms)	(10,
- : Significant difference $\quad \bigcirc$: No significant differenceTable 2. Overview of results, comparing touch- and non-touch typists.Statistical significance is tested at the 5% level using the Mann-Whitney	

RESULTS OVERVIEW

RESULTS DETAIL

Clear Visual Design of Figures

Use figures and tables to support quick absorption of your main message.
You can skim the paper just by looking at them

Informative Headers

Use brief, recognizable section/subsection headers

CLUSTERING OF MOVEMENT STRATEGIES

To identify similarities among typists, we performed hierarchical clustering on the finger-to-key mappings of each user. Clustering in this space groups users with similar mappings, revealing the input strategies used by multiple users. As described above, we found notable differences in behaviour between the left and right hands - the right hand has higher global movement, while the left hand typically has more active fingers, independent of the handedness of the participant. Given these differences, we decided to cluster the finger-to-key mappings for each hand separately to uncover subtle withinhand effects that might be masked in a joint analysis.

Input Data and Clustering Method

For each user, the feature vector consisted of 10 entries per key, giving the proportion of total presses by each finger. We performed Hierarchical Clustering [16] since it is powerful, flexible and makes no assumptions about the distribution of the data. We used a Euclidean distance measure and Ward's linkage criterion [33] to create compact clusters with minimum internal variance.

Aalto University

"Paper gestalt"

Paper gestalt refers to the visual flow and layout of elements.
Figures and tables on top / bottom

No orphans / widows

Aalto University

Middle part

Approach \& Results

OVERVIEW OF APPROACH

This section describes your approach to solving the problem. It describes only the highest-level choices and justifies them if needed. Most of this content will come from your research plan and research strategy (latter part of the course). This section is optional. Suggested length: 2-4 paragraphs.

METHOD/PROTOTYPE/MODELING/...

This section describes the core of your research work, whether it is an empirical study (method), design (prototype), or model (modeling). Subsections should follow the conventions of the corresponding paper type. Suggested length: $20-40 \%$ of total paper length.

RESULTS/EVALUATION

This section describes the obtained results or evaluation of the final result. Again, subsections should follow the conventions of the corresponding paper type. Suggested length: $20-40 \%$ of total paper length.

Aalto University

Specific to the type of work

See assignments from first weeks where we identified example papers for you.

Aalto University

Ending

Discussion \& Conclusion

DISCUSSION

This section discusses how well you achieved the original objectives. It should first summarize the main outcome. It should then assess its pros and cons. Discuss benefits to practitioners. Finally, it should discuss limitations. Limitations can be phrased as challenges for future work. Be clear about what you learned. Suggested length: 2-4 paragraphs.

CONCLUSION

A one paragraph summary of what you conclude based on the study. This should go beyond what was said in the beginning.

"Hourglass structure"

A paper starts with broad ambitions, narrows down to the particularities of its study, only to become back to the broadest issues in the end

Other goals

Balanced sections

- Do not need to be equally long, but ensure there is a balance between the importance of a section and its length
Use Appendices for materials that are not necessary for your argumentation
- This does not count for total page count

Find 2-3 well-written papers and learn from them

Aalto University

Process

Process writing

"There is no perfect writing, only perfect rewriting"

Aalto University
http://www.bcsc.k12.in.us/cms/lib/IN01000842/Centricity/Domain/1072/Writing-Process_05-219rszm.jpg

Tips

Write daily

Set explicit goals for writing outcomes

- E.g., "Tomorrow I'll write Method"

Accept imperfection \& and embrace iteration

- Do not expect high quality writing during the first pass

Allow enough time for polishing, getting feedback etc.

Aim at having first full version of your manuscript ready 1 week before the deadline

Assignment 11

Assignment 11

I will send 5 points to focus on in this round Based on the lecture

Upload PDF by Wed 14 March

