
The Determinant

Consider a n × n square matrix A. If n = 1, define the determinant as
detA = a11. For a general n × n matrix A and remove row i and and
column j to get an (n− 1)× (n− 1) matrix Aij . Define the minors of A as:

Mij := detAij.

The ijth cofactor Cij of A is defined as:

Cij := (−1)i+jMij.

The determinant of A is defined recursively as:

detA := Σn
j=1 (−1)(i+j) aijCij.

Notice that the recursive element in the definition comes from the fact
that in order to compute Mij , you need to evaluate the determinant of
the smaller (n− 1)× (n− 1) matrix Aij . To evaluate that determinant, you
need to evaluate the determinant of a yet smaller (n− 2)× (n− 2) matrix
etc.

The determinant can also be computed by expanding similarly along a
column:

detA = Σn
i=1 (−1)(i+j) aijCij.

Examples:

1.

A =

 2 3 1
0 2 1
1 0 1

 .

detA = 2 det

(
2 1
0 1

)
− 0 det

(
3 1
0 1

)
+1 det

(
3 1
2 1

)
= 4 + 1 = 5.

2.

det

 a11 · · · a1n

0
. . . ...

0 0 ann

 = a11 · a22 · . . . · ann.
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3. The following observations regarding the determinant are clear from
the definition of the determinant:

i) If Aλ
i is obtained from A by a multiplying row i ∈ {1, ..., n} by a

real number λ, then
det Aλ

i = λdet A.

ii) If two rows of matrix A are equal, then detA = 0.

iii) Adding (scalar multiples) of one row to another row does not
change the determinant.

iv) Swapping two rows i and j in A reverses the sign of the determi-
nant.

Why are these facts true?

i) Follows by expanding the determinant along row i.

ii) Let rows i and j coincide. Claim ii) follows by expanding along
k 6= i, j and observing that 2× 2 matrices with identical rows have a
zero determinant.

iii) When adding a multiple by λ of row j to row i, the result is a new
matrix A′, where a′ik = aik + λajk. Expanding along the ith row, you
get

det A′ = det A + λdet A′′,

where A′′ has identical rows i and j so the claim follows by ii).

iv) Follows from i) and iii) by going over the following steps: 1. Add
row j to i This leaves the determinant unchanged by iii). 2. Subtract
row i of the new matrix from row j. Again the determinant is un-
changed by iii). 3. Multiply row j in this new matrix by -1. By i),
this reverses the sign of the determinant. 4. Add the row j of the
new matrix to row i. By iii), the determinant is unchanged and the
resulting matrix is A with rows i and j swapped.

Since Gaussian elimination performs the elementary row operations
iii) and iv) repeatedly, we see that the determinant of a matrix is zero
if and only if the determinant of its row echelon form is zero, i.e. if
and only if the matrix does not have full rank.
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4. Rules for computing the determinant:

detA> = detA.

detAB = detA detB,

detA−1 =
1

detA
,

det(A + B) 6= detA + detB in general.

Cramer’s rule
Assume that A has full rank and therefore detA 6= 0. The system of

equations
Ax = b

has then a unique solution x with components:

xi =
detBi

detA
,

where Bi is the matrix obtained by replacing the ith column of A by the
column vector b.

Example:  2 3 1
0 2 1
1 0 1

 x1

x2

x3

 =

 2
1
0

 .

x1 =

det

 2 3 1
1 2 1
0 0 1


det

 2 3 1
0 2 1
1 0 1

 =
1

5
,

x2 =

det

 2 2 1
0 1 1
1 0 1


5

=
3

5
,

x3 =

det

 2 3 2
0 2 1
1 0 0


5

=
−1

5
,
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Inverting a matrix
Cofactor matrix of A is given by:

C = (Cij) ,

where the Cij are as above. The transpose of C is called the adjoint of A
adj (A) :

adj (A) = C>.

Then:
A−1 =

1

detA
· adj (A) .

Example: compute adj(A), for

A =

 2 3 1
0 2 1
1 0 1

 .

C11 = 2, C12 = 1 , C13 = −2,

C21 = −3, C22 = 1, C23 = 3,

C31 = 1, C32 = −1, C33 = 4.

adj (A) =

 2 −3 1
1 1 −2
−2 3 4

 ,

Therefore

A−1 =
1

detA
·

 2 −3 1
1 1 −2
−2 3 4

 ,

which corresponds to what we computed with Gaussian elimination since
detA = 5.

Elementary row operations as matrix multiplication (extra material)
A permutation matrix is a matrix with zeros and ones as elements.

Each row and each column has a single one. Permutation matrices are
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obtained from the unit matrix by interchanging (permuting) rows. For
example with n = 3 we get

E23 =

 1 0 0
0 0 1
0 1 0


by permuting the last two rows of the identity matrix.

Elementary row operations can be represented as results of matrix mul-
tiplication as follows. Let Eij be a permutation matrix where rows i and j
have been permuted. Permuting the rows i and j of A can be written as
matrix product:

EijA.

LetEi (r) be the matrix obtained by multiplying row i of the unit matrix
by scalar r.

E2 (r) =

 1 0 0
0 r 0
0 0 1


Multiplying the ith row of A by r corresponds to the product

Ei (r)A.

Let Eij (r) be a matrix obtained by adding to the unit matrix a matrix
whose element ji is r and all other elements are zeros.

E23 (r) =

 1 0 0
0 1 0
0 r 1

 .

Adding row i multiplied by r to row j in matrix A is given by the
matrix multiplication:

Eij (r)A.

Hence we have shown that the elementary operations can be performed
as matrix multiplications by elementary matrices Eij, Ei(r), Eij(r).

Since the determinants of all elementary row operations are non-zero
(for r 6= 0), we see by the product rule for computing the determinant that
the determinant is non-zero if and only if the square matrix has full rank.
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A somewhat challenging exercise is to prove the product rule for de-
terminants using a representation of the Gaussian elimination via prod-
ucts of elementary matrices. Using only Eij, Eij(r), any matrix A can be
transformed to an upper triangular matrix. The determinant of an upper
triangular matrix is the product of its diagonal elements. Premultiplying a
matrix AEij changes the sign of the determinant, premultiplying byEij(r)
leaves the determinant unchanged. Also the determinant of the product
of an upper triangular matrix and a lower triangular matrix is the product
of their determinants.

Consider now premultiplying AB by the sequence of elementary ma-
trices that transform A to an upper triangular matrix A∆. (Use E(AB) =
(EA)B repeatedly to see that the resulting product is indeed A∆B

Use det(C) = det(C>), to consider the transpose B>A>∆ of the resulting
matrix and premultiply next by the elementary matrices transforming B>

to a an upper triangular matrix B>∆. This gives you the result.
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