
Gaussian Elimination

Systems of linear equations

A single equation of the form:

ax = b,

has a solution for all b if a 6= 0. The situation is not as obvious if we have
many such equations in many real variables. Consider as a first example
the following pair of equations:

1x +2y +3z = 4,
2x +4y +6z = 6.

The equality of the left-hand side and the right-hand side of an equa-
tion is maintained if both sides are multiplied by the same number. Mul-
tiplying the first equation by 2, we get:

2x+ 4y + 6z = 8,

and this is inconsistent with the second equation. Hence we see that this
pair of equation has no solutions. If the constant on the right hand side
of the first equation is 3, the first equation holds if and only if the second
equation hold. As a result, and triple (x, y, z) = (3 − 2y − 3z, y, z) gives a
solution to the system.

Gaussian elimination provides a systematic approach to the number of
solutions to linear systems of equations. A system of m linear equations in
n real variables (x1, ..., xn) is written as:

a11x1 +a12x2 · · · +a1nxn = b1,
a21x1 +a22x2 · · · +a2nxn = b2,

...
... . . . ...

...
...

am1x1 +am2x2 · · · +amnxn = bm.

(1)

In matrix form this is:
Ax = b,
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where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 , x =


x1

x2
...
xn

 , b =


b1
b2
...
bm

 .

Write the equations in such an order that a11 6= 0. The first equation of
(??) gives:

x1 =
b1
a11
− a12x2

a11
− ...− a1nxn

a11
.

By substituting into the other (m− 1) equations, we get:

(a22 − a21
a12
a11

)x2 · · · +
(
a2n − a21

a1n
a11

)
xn = b2 − a21

b1
a11

,

... . . . ...
...

...
(am2 − am1

a12
a11

)x2 · · · +
(
amn − am1

a1n
a11

)
xn = bm − am1

b1
a11

.

(2)

An equivalent way of writing this set of equations is to add to the kth

row of A the first row of A multiplied by ak1
a11

and add to bk a21
b1
a11

to the
kth row of the column vector b. My construction, the first element on each
row k > 1 of the new matrix is zero and we can solve (x2, ..., xn) from the
new system with at most m− 1 equations in at most n− 1 variables.

If (ak2 − ak1
a12
a11

) 6= 0 for some k > 1, we can repeat the previous step
for system (??), i.e. solve x2 and substitute into the other equations. If
(ak2 − ak1

a12
a11

) = 0 for all k > 1, eliminate the variable xl where l is the
smallest index for which (akl− ak1

a1l
a11

) 6= 0 for some k > 1. Since after each
such step we are left with a system that has at least one fewer equation
than in the previous step, the process comes to an end in finitely many
steps.

The key to this elimination process relies on two basic facts of arith-
metics.

1. The solution to an equation is unchanged if both sides of the equa-
tion are multiplied by the same non-zero number.

2. If (x1, ..., xn) satisfies

a11x1 +a12x2 · · · +a1nxn = b1,

2



and
a21x1 +a22x2 · · · +a2nxn = b2,

then (x1, ..., xn) satisfies:

(a11 + a21)x1 + ...+ (a1n + a2n)xn = b1 + b2.

We call the two fundamental steps in this elimination process elemen-
tary row operations. They are:

i) Swapping equations in the system (i.e. swapping rows in the associ-
ated matrix).

ii) Summing multiples of an equation to another equation (ading a mul-
tiple of a row in the associated matrix to another row).

Solving systems of equations via elementary row operations

Homogenous systems

Consider the system of equations in matrix form

Ax = 0,

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn

 , x =


x1

x2
...
xm

 .

Since the right hand side of the equation is zero, this is called a homoge-
nous system. It has always a trivial solution x = (0, ..., 0), but we want to
know if it has other solutions.

Start by considering matrix A. If a11 = 0, swap row 1 with row k, where
ak1 6= 0. if no such row exists, the vector (z, 0, ..., 0) satisfies the system of
equations for all z and therefore the solution is not unique. In fact, x1 is
not really a variable in this system.

Assume next that for some k, ak1 6= 0 and swap rows 1 and k = 1 if
a11 = 0. Multiply the first row by 1

a11
and add this multiplied first row to
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each row k > 1 multiplied by −ak1
a11

. We get the following new matrix

A(1) =


a11 a12 · · · a1n
0 a22 − a21

a12
a11

· · · a2n − a21
a1n
a11

...
... . . . ...

0 am2 − am1
a12
a11
· · · amn − am1

a1n
a11



=


a
(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(1)
22 · · · a

(1)
2n

...
... . . . ...

0 a
(1)
m2 · · · a

(1)
mn

 .

If
a22 − a21

a12
a11
6= 0,

multiply the second row by

1

a22 − a21
a12
a11

,

and add the resulting second row multiplied by

−
ak2 − ak1

a12
a11

a22 − a21
a12
a11

to each row k > 2.
If

a22 − a21
a12
a11

= 0,

swap row 2 and k′′ such that

ak′′2 − ak′′1
a12
a11
6= 0

and proceed as before. If a(1)k2 = 0 for all k ≥ 2, multiply the second row of
A(1) by

1

a
(1)
23

.

(or swap the rows if a(1)23 = 0) and proceed as before.
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This results in a new matrix

A(2) =


a
(2)
11 a

(2)
12 · · · a

(2)
1n

0 a
(2)
22 · · · a

(2)
2n

...
... . . . ...

0 0 · · · a
(2)
nn

 .

By repeating the above steps, we get matrices A(3),A(4) etc. until after k
eliminations, we get e.g. for m = n = 5,

a
(5)
11 a

(5)
12 · · a

(5)
15

0 a
(5)
22 a

(5)
23 · a

(5)
25

0 0 a
(5)
33 a

(5)
34 a

(5)
35

0 0 0 a
(5)
44 a

(5)
45

0 0 0 0 a
(5)
55

 ,

or 
a
(4)
11 a

(4)
12 · · a

(4)
15

0 a
(4)
22 a

(4)
23 · a

(4)
25

0 0 0 a
(4)
34 a

(4)
35

0 0 0 0 a
(4)
45

0 0 0 0 0

 .

We say that a matrix A is in row echelon form if each row k has a larger
number of initial zero elements than row k− 1. Both of the matrices above
are in row echelon form. All matrices can be transformed into row echelon
form by elementary row operations.

The number of non-zero rows is the called the row rank of a matrix in
row echelon form. The top matrix above has row rank 5 and the one below
it has row rank 4.

Since each row in the row echelon form starts with more zeros than
the previous row, the row rank is always less than or equal to the number
of columns. If the row rank is equal to the number of columns, the only
solution is the trivial solution x = 0. If row rank is less than the number
of columns, the system has infinitely many solutions.

In the first case above, the trivial solution is the only solution to the
system. This can be seen as follows. The last row in the row echelon form
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implies that x5 = 0 in any solution. Using this, the second to last row
implies that x4 = 0 etc.

In the second case above, the variable x3 can be chosen freely. For each
choice of x3, the other variables are uniquely determined.

Non-homogenous systems

Consider next the system of n equations in n variables.

Ax = b.

We will perform elementary row operations to transform A to its row ech-
elon form. It is now useful to consider the augmented matrix:

(
A

...b
)

=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . . ...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
b1
b2
...
bn

 .

We perform the elementary row operations on the entire matrix
(
A

...b
)

to

keep track of the right hand side. Obviously this was not necessary in the
homogenous case where the right hand side is zero.

a
(2)
11 a

(k)
12 · · · a

(k)
1n

0 a
(k)
22 · · · a

(k)
2n

...
... . . . ...

0 0 · · · a
(k)
nn

∣∣∣∣∣∣∣∣∣
b
(k)
1

b
(k)
2
...

b
(k)
n

 .

If

rank
(
A

...b
)

= rank (A) ,

then the system has a solution.
If

rank
(
A

...b
)

> rank (A) ,

it has no solutions.

6



If

rank
(
A

...b
)

= rank (A) = n,

the solution is unique.
If

rank
(
A

...b
)

= rank (A) < n,

then the system has infinitely many solutions.
Examples of elementary row operations

• Finding the row echelon form

Let

A =

 2 1 −1
1 2 2
1 0 1


Multiply first row by −1

2
and add to second and third row: 2 1 −1

0 2− 1
2

2 + 1
2

0 0− 1
2

1 + 1
2

 =

 2 1 −1
0 3

2
5
2

0 −1
2

3
2


Multiply second row by1

3
and add to third row: 2 1 −1

0 3
2

5
2

0 0 3
2
+ 5

6

 =

 2 1 −1
0 3

2
5
2

0 0 7
3

 .

Since the row echelon form has rank 3, we know that the system

Ax = b

has a unique solution for all b.

Solving a system of equations
Consider a numerical example for the previous system:

2x1 +x2 −x3

x1 +2x2 +2x3

x1 +x3

=
2
1
0
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 2 1 −1
1 2 2
1 0 1

 x1

x2

x3

 =

 2
1
0

 .

The augmented matrix is now: 2 1 −1
1 2 2
1 0 1

∣∣∣∣∣∣
2
1
0

 .

Repeat the elementary row operations: 2 1 −1
0 3

2
5
2

0 −1
2

3
2

∣∣∣∣∣∣
2
0
−1


and  2 1 −1

0 3
2

5
2

0 0 7
3

∣∣∣∣∣∣
2
0
−1

 .

We get:

x3 =
−3
7
.

Substituting into the second row:

3

2
x2 +

5

2

(
−3
7

)
= 0.

Hence:
x2 =

5

7
.

The first row gives:

2x1 +
5

7
− −3

7
= 2

or
x1 =

3

7
.

A matrix without full rank

A =

 2 0 4
1 1 3
2 1 5


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Eliminate the first entry in the second and the third row by using the first
row:  2 0 4

0 1 1
0 1 1

 .

When eliminating the second entry on the third row by using the second,
we get row echelon form:  2 0 4

0 1 1
0 0 0

 .

We see that the matrix A has rank(A) = 2 and the system of equations
has either zero or infinitely many solutions.

Ax = b

I leave it as an exercise using the augmented matrix to show that the
system has a solution only if

b3 = b2 +
1

2
b1.

Since A does not have full rank, we know that the homogenous equa-
tion has non-trivial solutions (in this case any multiple of the vector (−2,−1, 1)
solves the system). If x0 is a solution to the homogenous eqyation and xP

is some solution to the non-homogenous system, then x = x0 + xP is also
a solution to the non-homogenous equation. You can see this by summing
the homogenous and non-homogenous equations.

Invering a matrix via Gaussian elimination We compute A−1, for

A =

 2 3 1
0 2 1
1 0 1

 .

To find the inverse matrix, we need to find three vectors x1,x2,x3 such
that

Axi = ei for i ∈ {1, 2, 3},
where ei is the ith unit vector. To do this in one go, form the augmented
matrix:

9



(
A

...I
)

=

 2 3 1
0 2 1
1 0 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 .

After using Gaussian elimination to transform A into the identity ma-
trix, we can read the xi as the columns on the right hand side of the aug-
mented matrix.

Multiply first row by 1
2
. Add the first row multiplied by −1

2
to the third

row. At this point, we have: 1 3
2

1
2

0 2 1
0 −3

2
1
2

∣∣∣∣∣∣
1
2

0 0
0 1 0
−1

2
0 1

 .

Multiply the second row by 1
2

and add 3
4

of the second row to the third
row:  1 3

2
1
2

0 1 1
2

0 0 5
4

∣∣∣∣∣∣
1
2

0 0
0 1

2
0

−1
2

3
4

1

 .

Multiply third row by 4
5

and add the third row multiplied by −2
5

to the
second and the first row: 1 3

2
0

0 1 0
0 0 1

∣∣∣∣∣∣
7
10
− 3

10
−2

5
1
5

1
5
−2

5

−2
5

3
5

4
5

 .

Add −3
2

times the second row to the first row: 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
2
5
−3

5
1
5

1
5

1
5
−2

5

−2
5

3
5

4
5

 .

From this last augmented matrix, we read that:

A−1 =
1

5

 2 −3 1
1 1 −2
−2 3 4

 .
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