Mathematics for Economists: Lecture 1

Juuso Välimäki

Aalto University School of Business

Spring 2021

Welcome to the course

- Course logistics
- Lectures Mon, Wed at 13:15-14:45
- Review sessions with Amin Mohazab Thu 10:15-11:45
- Weekly Problem Sets to be returned via MyCourses on specified due date
- 20% of the grade based on problem sets, 80% on final exam
- To succeed in the course, you should attempt all problem sets
- Exam May 31, 9:00-12:00

Contents I

- Course contents: Part I
- Lectures 1-2 Introduction and Applications of Linear Algebra Readings: Synopsis, Section 1, material for week 1, S\&B: Chapter 6-11, 13.
- Lectures 3-4: Multivariate Calculus Readings: Synopsis, Section 2, material for week 2, S\&B: Chapters 14, 15.
- Lecture 5: Unconstrained Optimization, Convexity and Concavity Readings: Synopsis, Section 3, material for week 3, S\&B: Chapters 16, 17, 21.

Contents II

- Course contents: Part II
- Lecture 7-8: Constrained Optimization Readings: Synopsis, Sections 4-5, material for week 4, S\&B Chapters 18, 19
- Lecture 9-10: Economic Applications of Constrained Optimization Readings: Synopsis, Sections 4-5: material for week 5, S\&B:Chapters 20, 22
- Lectures 11-12: Linear Dynamical Systems

Readings: Synopsis, Sections 6: material for week 6, S\&B: 23, 25.1, 25.2

Economic models

- Economics studies the allocation of scarce resources amongst competing ends
- what are the ways to allocate?
- how to evaluate the results?
- what do we mean by scarcity?
- how can we formalize such questions?
- Individualistic approach: economic agents are autonomous decision makers
- They act in pursuit of individual objectives or goals
- agents do not make systematic mistakes in their choices, they choose according to their preferences
- they act within constraints
- they react to changes on their environment

Economic models

- Equilibrium analysis to guarantee the consistency of individual decisions
- in competitive markets: equilibrium brought about by price mechanism
- in games: equilibrium from consistency of expectations and realized behavior

Optimizing agents

- Economic agents (also called decision makers) have objectives summarized in their objective functions
- utility function of a consumer
- profit function of a firm
- total surplus for an economic planner
- Autonomous decisions:
- each agent chooses her own actions
- Decisions in line with the objectives
- each agent maximizes her objective function
- Economic choices constrained by scarcity

Endogenous and exogenous variables

- Economic models are chosen by the modeler
- Idea is to pick the most important features of an economic situation and ignore the rest
- Every model has variables that are determined within the model
- endogenous variables
- Interesting models have variables not determined within the model
- exogenous variables
- Exogenous variables and parameters of the model are similar in nature

Mathematical formulation

- In order to formulate the problem, we need the following ingredients:
- Choices x from the set of choice variables: X
- Evaluation of choices: objective function $f: X \rightarrow \mathbb{R}$
- Scarcity in the form of feasible set: $F=\{x \mid g(x) \leq 0\}$
- Possible parameters and other (exogenous) variables, $\{\alpha, \beta, \ldots\}$ to include in f, g
- Exogenous variables are not determined in the model
- For concreteness, let's consider a economic problems familiar from Principles of Economics I

Examples

- Consumer choice between food and leisure
- x_{1} food consumption, x_{2} leisure,

$$
X=\left\{\left(x_{1}, x_{2}\right) \mid x_{i} \in \mathbb{R}, \text { for } i \in\{1,2\}, x_{1} \geq 0,0 \leq x_{2} \leq 24\right\} .
$$

- Utility from $x: f\left(x_{1}, x_{2}\right), f\left(x_{1}, x_{2}\right) \geq f\left(y_{1}, y_{2}\right)$ if $\left(x_{1}, x_{2}\right)$ is at least as good for the consumer as $f\left(y_{1}, y_{2}\right)$.
- Feasible set: $p_{1} x_{1} \leq w\left(24-x_{2}\right)$.
- Price of food p_{1} and wages w are exogenous variables.
- Best responses of player 1 in two player games:
- Own action $x_{1} \in X_{1}$ (row in the matrix).
- Payoff from own action: $f\left(x_{1} ; x_{2}\right)$, where x_{2} is the exogenous variable (for best responses of 1 , pick the row with the largest payoff to 1).
- In this context, no further feasibility constraint.
- When solving the game, x_{2} becomes also an endogenous variable.

General form:

- In general, we have the problem

$$
\begin{gathered}
\max _{x \in X} f(x ; \alpha) \\
\text { subject to } g(x ; \beta) \leq 0 .
\end{gathered}
$$

- What is a solution to the problem? An x^{*} such that
- i) The solution must be feasible:

$$
x^{*} \in F
$$

- ii) No other feasible alternative achieves a higher value of the objective function:

$$
f\left(x^{*} ; \alpha\right) \geq f(y ; \alpha) \text { for all } y \in F
$$

- Can you formulate the monopolists production problem from Principles of Economics in this framework?

Mathematical structure:

- What kinds of variables are x, α, β ?
- most often real numbers, real vectors or sometimes discrete choices (such as choosing the row in a matrix or choosing between a red and a blue car)
- When does a solution to an economic model exist?
- Solutions to equilibrium systems: for linear systems, conditions on the rank (in the material for week 1 and Lecture 2). Other existence theorems (these are hard and only hinted at in this course).
- Optimal choices: Weierstrass theorem for maximization problems (you will see this in part II of the course).
- For dynamic systems, we construct the solutions.
- How to find a solution?
- one of the main questions for this course
- usually with the help of calculus
- calculus is not of much help for discrete problems, in more advanced courses tools for handling this to some extent

Mathematical structure:

- Is the solution unique?
- concavity and convexity of the objective function key for this
- How do endogenous variables react to changes in exogenous variables?
- comparative statics
- implicit function theorem is the key tool for this and one of our first goals in this course

Linear economic models

- The key object of study in linear algebra are linear equations
- A linear equation has the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where

- $a_{1}, a_{2}, \ldots, a_{n}, b$ are fixed real numbers (parameters)
- $x_{1}, x_{2}, \ldots, x_{n}$ are real valued variables
- A system of linear equations is a collection of such equations that hold simultaneously

Examples of systems

A system of two linear equations in two unknowns:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}=7 \\
2 x_{1}+x_{2}=4 \tag{2}
\end{array}
$$

A system of two non-linear equations in two unknowns:

$$
\begin{array}{r}
2 x_{1} x_{2}+3 x_{2}=7 \\
2 x_{1}^{2}+x_{2}=4 \tag{4}
\end{array}
$$

Market Equilibrium for Two Goods

- Goal: Determine competitive equilibrium prices and quantities for two goods $i \in\{1,2\}$.
- Demand Q_{i}^{d} depends on the prices of the two goods P_{1} and P_{2}, on disposable income Y and on other factors K_{i} as follows:

$$
\begin{aligned}
& Q_{1}^{d}=K_{1} P_{1}^{\alpha_{11}} P_{2}^{\alpha_{12}} Y^{\beta_{1}} \\
& Q_{2}^{d}=K_{1} P_{1}^{\alpha_{21}} P_{2}^{\alpha_{22}} Y^{\beta_{2}}
\end{aligned}
$$

- How would you interpret the parameters $\alpha_{i j}$ ja β_{i} ?
- Think back to Principles 1 and elasticities

Market Equilibrium for Two Goods

- Y and K_{i} are the exogenous variables (i.e. ones not determined in the model).
- Supply functions Q_{i}^{s} for the two products are assumed to take the form:

$$
\begin{aligned}
& Q_{1}^{s}=M_{1} P_{1}^{\gamma_{1}} \\
& Q_{2}^{s}=M_{2} P_{2}^{\gamma_{2}}
\end{aligned}
$$

- Again, we take the variables M_{i} to be exogenous to the model.
- In equilibrium, supply equals demand so that

$$
Q_{1}^{d}=Q_{1}^{s},
$$

and

$$
Q_{i}^{d}=Q_{i}^{s}
$$

- Six equations for six endogenous variables $\left(Q_{i}^{s}, Q_{i}^{d}, P_{i}\right)_{i=1,2}$, but not linear

Market Equilibrium for Two Goods

- But a change of variables helps: define the following new variables for $i \in\{1,2\}$:

$$
q_{i}^{d}=\ln Q_{i}^{d}, q_{i}^{s}=\ln Q_{i}^{s} p_{i}=\ln P_{i}, y=\ln Y, m_{i}=\ln M_{i}, k_{i}=\ln K_{i} .
$$

- By taking logarithms on both sides of each equation, we can write the six equations for $i \in\{1,2\}$:

$$
\begin{gathered}
q_{i}^{d}=k_{i}+\alpha_{i i} p_{i}+\alpha_{i j} p_{j}+\beta_{i} y \\
q_{i}^{s}=m_{i}+\gamma_{i} p_{i} \\
q_{i}^{s}=q_{i}^{d}
\end{gathered}
$$

Market Equilibrium for Two Goods

- By the third equation, $q_{i}^{d}=q_{i}^{s}$ for $i \in\{1,2\}$, and therefore the right hand sides in the first and the second equations are equalized:

$$
k_{i}+\alpha_{i i} p_{i}+\alpha_{i j} p_{j}+\beta_{i} y=m_{i}+\gamma_{i} p_{i}, i \in\{1,2\}
$$

- The only remaining endogenous variables are: p_{1} ja p_{2}.
- Let's write the exogenous variables on the right-hand side and the endogenous variables on the left-hand side:

$$
\begin{array}{ccl}
\left(\alpha_{11}-\gamma_{1}\right) p_{1} & +\alpha_{12} p_{2} & =m_{1}-k_{1}-\beta_{1} y \\
\alpha_{21} p_{1} & \left(\alpha_{22}-\gamma_{2}\right) p_{2} & =m_{2}-k_{2}-\beta_{2} y
\end{array}
$$

Market Equilibrium for Two Goods

- Let's solve for p_{1} from the top equation:

$$
p_{1}=\frac{m_{1}-k_{1}-\beta_{1} y-\alpha_{12} p_{2}}{\left(\alpha_{11}-\gamma_{1}\right)}
$$

- Substituting into the second equation gives:

$$
\begin{aligned}
p_{2} & =\frac{m_{2}-k_{2}-\beta_{2} y-\alpha_{21} p_{1}}{\left(\alpha_{22}-\gamma_{2}\right)} \\
& =\frac{m_{2}-k_{2}-\beta_{2} y-\alpha_{21} \frac{m_{1}-k_{1}-\beta_{1} y-\alpha_{12} p_{2}}{\left(\alpha_{11}-\gamma_{1}\right)}}{\left(\alpha_{22}-\gamma_{2}\right)} .
\end{aligned}
$$

- Multiplying both sides by $\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right)$ gives:

$$
\begin{gathered}
\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right) p_{2}=\left(\alpha_{11}-\gamma_{1}\right)\left(m_{2}-k_{2}-\beta_{2} y\right) \\
-\alpha_{21}\left(m_{1}-k_{1}-\beta_{1} y\right)+\alpha_{12} \alpha_{21} p_{2}
\end{gathered}
$$

Market Equilibrium for Two Goods

- Solving for p_{2},

$$
p_{2}=\frac{\left(\alpha_{11}-\gamma_{1}\right)\left(m_{2}-k_{2}-\beta_{2} y\right)-\alpha_{21}\left(m_{1}-k_{1}-\beta_{1} y\right)}{\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right)-\alpha_{12} \alpha_{21}}
$$

- And substituting back gives:

$$
\begin{aligned}
p_{1} & =\frac{m_{1}-k_{1}-\beta_{1} y-\alpha_{12} \frac{\left(\alpha_{11}-\gamma_{1}\right)\left(m_{2}-k_{2}-\beta_{2} y\right)-\alpha_{21}\left(m_{1}-k_{1}-\beta_{1} y\right)}{\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right)-\alpha_{12} \alpha_{21}}}{\left(\alpha_{11}-\gamma_{1}\right)} \\
& =\frac{\left(\alpha_{22}-\gamma_{2}\right)\left(m_{1}-k_{1}-\beta_{1} y\right)-\alpha_{12}\left(m_{2}-k_{2}-\beta_{2} y\right)}{\left(\left(\alpha_{22}-\gamma_{2}\right)\left(\alpha_{11}-\gamma_{1}\right)-\alpha_{12} \alpha_{21}\right)} .
\end{aligned}
$$

Market Equilibrium for Two Goods

- The (logarithmic) equilibrium quantities are solved most easily from the supply curves.
- Finally P_{i}, Q_{i} are solved by exponentiating p_{i}, q_{i}.
- Exercise: Can you see how an improvement in the production technology for good 2 changes the equilibrium?
- Lessons from the example
- A nonlinear model can sometimes be transformed to a linear model (logarithmic transforms are particularly useful)
- Solving by substitution is clumsy and prone to errors.
- Gaussian elimination (familiar from Matrix Algebra) is a systematic representation of this process .

Next Lecture

- A brief review of some of the main concepts of Matrix Algebra or Linear Algebra
- Input-output models of economic production
- Linear models of exchange

