Mathematics for Economists: Lecture 2

Juuso Välimäki

Aalto University School of Business

Spring 2021

Content of Lecture 2

- In Lecture 1, a gentle introduction to a linear model of market equilibrium.
- This Lecture:

1. Gaussian elimination via an example
2. Economic application 1: input-output model (Leontieff)
3. Linear equations without full rank
4. Economic application 2: linear model of exchange (Gale)
5. Connections from applications to other models

Gaussian Elimination

- Consider the following system of linear equations:

$$
\begin{aligned}
2 x_{1}-x_{2} & =0 \\
-x_{1}+2 x_{2}-x_{3} & =0 \\
-x_{2}+2 x_{3}-x_{4} & =0 \\
-x_{3}+2 x_{4} & =5
\end{aligned}
$$

- Write this in matrix form:

$$
\left(\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
5
\end{array}\right)
$$

Gaussian Elimination

- The augmented matrix corresponding to this system is:

$$
\left(\begin{array}{rrrr:r}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right)
$$

- Step 1: Eliminate all terms $a_{j 1}$ below the first pivot a_{11} (i.e. first non-zero element in column 1). In this case, just multiply the first row by $\frac{1}{2}$ and add to second row.

$$
\left(\begin{array}{rrrr:r}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right)
$$

Gaussian Elimination

- Step 2: Eliminate all terms blow the second pivot: add the second row multiplied by $\frac{2}{3}$ to the third row.

$$
\left(\begin{array}{rrrr:r}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right)
$$

Gaussian Elimination

- Step 3: Eliminate the term below the third pivot: add row 3 multiplied by $\frac{3}{4}$ to row 4.

$$
\left(\begin{array}{rrrr:r}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & -1 & 0 \\
0 & 0 & 0 & \frac{5}{4} & 5
\end{array}\right)
$$

- Step 4: At this point, the matrix is in row echelon form, i.e. each row starts with more zeros than the previous row.
- Last row reads: $\frac{5}{4} x_{4}=5$ or $x_{4}=4$. You can substitute this back to row 3 that says $\frac{4}{3} x_{3}-x_{4}=0$ to get $x_{3}=3$. From row $2, x_{2}=2$ and from row $1, x_{1}=1$.
- In Gauss-Jordan elimination, one eliminates all elements above and below the pivot in these steps.
- This requires more eliminations, but avoids the substitutions in the last step

Gaussian Elimination: Second Example

- Consider another example:

$$
\begin{aligned}
x_{1}+x_{2} & =1 \\
x_{1}+x_{2}+x_{3} & =2 \\
x_{2}+x_{3} & =1
\end{aligned}
$$

- In matrix form:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Gaussian Elimination: Second Example

- Step 1:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

- Notice that now the second pivot is in row 3 . Swapping rows 2 and 3 does not change the solution to an equation. So Step 2: Swap rows 2 \& 3:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

- Now you can read $x_{3}=1, x_{2}=0$, and $x_{1}=1$.

Gaussian Elimination: General Principles

- Three elementary row operations that leave the solutions to systems of equations unchanged:

1. Multiplying a row by a real number
2. Adding rows to other rows
3. Swapping rows

- Every matrix can be transformed to its row echelon form by elementary row operations.
- The rank of a matrix is the number of non-zero rows in its row echelon form.
- A linear system of equations $\boldsymbol{A x}=\boldsymbol{b}$ has a solution if and only if the rank of the coefficient matrix \boldsymbol{A} is equal to the rank of the augmented matrix $(\boldsymbol{A} \mid \boldsymbol{b})$.
- If $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b})=n$, the solution is unique, if $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b})$; n, then the system has infinitely many solutions.

Economic Application 1: Linear Input-Output Model

- Suppose (as Leontieff in the 1950's did) that an economy consists of s few aggregated sectors, for simplicity: Manufacturing, Agriculture and Services.
- If you have access to national accounts, you can compute the following: how much (say in monetary terms) each sector produces final consumer product denoted by $\boldsymbol{b}=\left(b_{A}, b_{M}, b_{S}\right)$.
- You can also compute how much each sector uses the products of the three sectors as intermediate goods or inputs in the production of the output:
- For $i, j \in\{A, M, S\}$ denote by $a_{i j}$ the amount of sector i product needed to produce one unit in sector j.
- Let's assume that production is linear:
- To produce x_{j} units in sector j, you need $a_{i j} x_{j}$ units of sector i product.
- Can you describe this economy via a system of linear equations?

Linear Input-Output Model

- Let $\boldsymbol{x}=\left(x_{A}, x_{M}, x_{S}\right)$ denote the total production vector for all sectors.
- We have the basic accounting identities (e.g. here for agriculture):

$$
x_{A}=a_{A A} x_{A}+a_{A M} x_{M}+a_{A S} x_{S}+b_{A} .
$$

- On the left-hand side is the total agricultural production and on the right hand-side, we have the uses of those products as intermediate products needed in the other sectors and as final consumption.
- We have three simultaneous linear equations:

$$
\begin{aligned}
x_{A} & =a_{A A} x_{A}+a_{A M} x_{M}+a_{A S} x_{S}+b_{A} \\
x_{M} & =a_{M A} x_{A}+a_{M M} x_{M}+a_{M S} x_{S}+b_{M} \\
x_{S} & =a_{S A} x_{A}+a_{S M} x_{M}+a_{M S} x_{S}+b_{S}
\end{aligned}
$$

Linear Input-Output Model

- Write in matrix form:

$$
\left(\begin{array}{rrr}
1-a_{A A} & -a_{A M} & -a_{A S} \\
-a_{M A} & 1-a_{M M} & -a_{M S} \\
-a_{S A} & -a_{S M} & 1-a_{S S}
\end{array}\right)\left(\begin{array}{c}
x_{A} \\
x_{M} \\
x_{S}
\end{array}\right)=\left(\begin{array}{c}
b_{A} \\
b_{M} \\
b_{S}
\end{array}\right)
$$

- Or more concisely as:

$$
(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}=\boldsymbol{b}
$$

where \boldsymbol{I} is the $n \times n$ identity matrix, and \boldsymbol{A} is the matrix of coefficients $a_{i j}$.

- The system has a unique solution for all \boldsymbol{b} if rank $(\boldsymbol{I}-\boldsymbol{A})=n$. But is this good enough? Shouldn't we also have

$$
x \geq 0 ?
$$

Linear Input-Output Model: Bad Numerical Example

- Suppose that to produce $a_{i i}=0$ and $a_{i j}=1$ for $i \neq j$.
- Then we have the augmented matrix $(\boldsymbol{I}-\boldsymbol{A} \mid \boldsymbol{b})$:

$$
\left(\begin{array}{rrr|r}
1 & -1 & -1 & b_{A} \\
-1 & 1 & -1 & b_{M} \\
-1 & -1 & 1 & b_{S}
\end{array}\right)
$$

- Elimination using the first pivot gives:

$$
\left(\begin{array}{rrr:r}
1 & -1 & -1 & b_{A} \\
0 & 0 & -2 & b_{M}+b_{A} \\
0 & -2 & 0 & b_{S}+b_{A}
\end{array}\right)
$$

- You see immediately from the last two lines above that in any solution to the system, $x_{M}, x_{S}<0$ for positive final consumptions and we conclude that $\boldsymbol{I}-\boldsymbol{A}$ is not a valid input-output matrix.

Linear Input-Output Model: Positive solutions

- Is there a reasonable condition that would guarantee the existence of positive solutions?
- We say that a matrix \boldsymbol{D} is a dominant diagonal matrix if

1. $d_{i i}>0$ for all $i \in\{1, \ldots, n\}$,
2. $d_{i j} \leq 0$ for all $i \neq j$,
3. $\sum_{i=1}^{n} d_{i j}>0$ for all $j \in\{1, \ldots, n\}$.

- The first condition just says that the production of any sector needs less of its own product as input than it gets as output.
- The second says that each sector produces a single output.
- The third condition means that each sector produces a positive value added (since we use the dollar values for inputs and outputs from the national accounts).

Linear Input-Output Model: Positive solutions

Proposition

If \boldsymbol{D} is an $n \times n$ dominant diagonal matrix, then the equation system

$$
D x=b
$$

has a unique solution $\boldsymbol{x} \geq 0$ for all $\boldsymbol{b} \geq 0$.
A proof is provided at the end of these lecture notes for those interested in seeing how these models work.

Linear Input-Output Model: Good Numerical Example

Suppose we have the the following input-output matrix:

$$
\left(\begin{array}{c}
x_{A} \\
x_{M} \\
x_{S}
\end{array}\right)=\left(\begin{array}{rrr}
0 & .2 & .6 \\
.3 & 0 & .1 \\
.5 & .4 & 0
\end{array}\right)\left(\begin{array}{c}
x_{A} \\
x_{M} \\
x_{S}
\end{array}\right)+\left(\begin{array}{c}
b_{A} \\
b_{M} \\
b_{S}
\end{array}\right)
$$

Is it possible to produce $\left(b_{A}, b_{m}, b_{S}\right)=(1,1,1)$ The augmented matrix $(\boldsymbol{I}-\boldsymbol{A} \mid \boldsymbol{b})$ for this input-output system is:

$$
\left(\begin{array}{rrr|r}
1 & -.2 & -.6 & 1 \\
-.3 & 1 & -.1 & 1 \\
-.5 & -.4 & 1 & 1
\end{array}\right)
$$

Linear Input-Output Model: Good Numerical Example

Eliminating the first column gives:

$$
\left(\begin{array}{rrr|r}
1 & -.2 & -.6 & 1 \\
0 & .94 & .28 & 1.3 \\
0 & -.5 & .7 & 1.5
\end{array}\right)
$$

For numerical ease, eliminate the middle element in the third column with the last equation to get:

$$
\left(\begin{array}{rrr|r}
1 & -.2 & -.6 & 1 \\
0 & 1.14 & 0 & .7 \\
0 & -.5 & .7 & 1.5
\end{array}\right)
$$

Now you can solve: $x_{M}=\frac{.7}{1.14}=.61$, by substituting, you get $x_{S}=2.58$, and $x_{A}=2.67$

Input-Output Model: How to use it?

- So far we have talked about the quantities side of production.
- What about prices and value added?
- Let v_{i} be the value added per unit of production in sector i and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$.
- Then v_{i} is the $i^{\text {th }}$ element in the row vector $\boldsymbol{p}^{\top}(\boldsymbol{I}-\boldsymbol{A})$, where $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)>0$ is the price vector for the goods. (Exercise: Can you show that for each $v \geq 0$, such a price vector exists?)
- One fundamental identity for national accounts is that the total value added in the economy equals the value of final consumption or $\boldsymbol{v}^{\top} \boldsymbol{x}=\boldsymbol{p}^{\top} \boldsymbol{b}$.
- This follows from the fact that they both equal $\boldsymbol{p}^{\top}(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}$.

Economic Application 2: A Linear Model of Exchange

- Economics: What is the simplest imaginable model of international trade?
- Mathematics: Should we ever be interested in matrices without full rank?
- Imagine n countries.
- Country j spends fraction $a_{i j}$ of its income on goods from country i.
- Let $x_{i}(t)$ be the income of country i in trading round t.
- No income enters the system from the outside and all income from round t is spent on goods from the n countries in round $t+1$.

A Linear Model of Exchange

- If all income is spent, this means that $\sum_{i=1}^{n} a_{i j}=1$ for all j.
- Let $\boldsymbol{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$. Then we have:

$$
\boldsymbol{x}(t+1)=\boldsymbol{A} \boldsymbol{x}(t)
$$

where \boldsymbol{A} is the exchange matrix with $i j^{t h}$ element $a_{i j}$.

- Does a stable distribution of income exist?
- With this we ask if an $\boldsymbol{x} \neq 0$ exists such that:

$$
\boldsymbol{x}=\boldsymbol{A} \boldsymbol{x}
$$

A Linear Model of Exchange

- by writing the left hand side as $I \boldsymbol{x}$, we see that this is the same having:

$$
(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}=0 .
$$

- Non-zero solutions to a homogenous equation exist if and only if the matrix on the left hand side does not have full rank.
- Consider the following exchange matrix:

$$
\boldsymbol{A}=\left(\begin{array}{lll}
.2 & .2 & .6 \\
.2 & .4 & .1 \\
.6 & .4 & .3
\end{array}\right)
$$

- For the sake of some variety, let's check the rank of this matrix by computing its determinant
$\Rightarrow \operatorname{det} \boldsymbol{A}=.2(.12-.04)-.2(.06-.24)+.6(.02-.24)=.016+.036-.132 \neq 0$ so it has full rank.

A Linear Model of Exchange

- What about $(\boldsymbol{I}-\boldsymbol{A})$?

$$
(I-A)=\left(\begin{array}{rrr}
.8 & -.2 & -.6 \\
-.2 & .6 & -.1 \\
-.6 & -.4 & .7
\end{array}\right)
$$

- You can see that the third row is the sum of the first two rows multiplied by minus 1 and the rank is not full.
- You may recall from Matrix Algebra that we say that 1 is an eigenvalue of \boldsymbol{A}.
- If you eliminate the first column with the first pivot, you get:

$$
\left(\begin{array}{rrr}
.8 & -.2 & -.6 \\
0 & .55 & -.25 \\
0 & -.55 & .25
\end{array}\right)
$$

A Linear Model of Exchange

- Eliminating using the second pivot gives the row echelon form:

$$
\left(\begin{array}{rrr}
.8 & -.2 & -.6 \\
0 & .55 & -.25 \\
0 & 0 & 0
\end{array}\right)
$$

- This shows that any vector of the form $x_{3}\left(\frac{5}{44}+.75, \frac{5}{11}, 1\right)$ satisfies the homogenous equation.
- We say that $\left(\frac{5}{44}+.75, \frac{5}{11}, 1\right)$ is en eigenvector of \boldsymbol{A}.
- Since x_{3} is arbitrary, it is often nice to normalize the incomes to sum to 1 :

$$
x=\left(\frac{38}{102}, \frac{20}{102}, \frac{44}{102}\right)
$$

solves the equation.

Connections etc. for your information

- In week 6 , we shall analyze the dynamics of $\boldsymbol{x}(t+1)=\boldsymbol{A} \boldsymbol{x}(t)$.
- By repeated substitution, you see that $\boldsymbol{x}(k)=\boldsymbol{A}^{k} \boldsymbol{x}(0)$ so we see again that the key is to understand what happens to matrices when you raise them to powers.
- In Problem Set 1, you can relate this mathematical structure to popularity rankings.
- The most important real world application of this is Google Pagerank for ranking web sites.
- In that case, $a_{i j}$ is the fraction of outward links from site j linking to i.
- There \boldsymbol{x} solving $(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{x}=0$ is the vector of site ranks.

Next Lecture

- Non-linear economic models: utility functions and production functions
- Partial derivatives and total derivatives
- Derivative as a linear approximation of a non-linear function

Extra Material: Proof for Dominant Diagonal Matrices

Proposition

If \boldsymbol{D} is an $n \times n$ dominant diagonal matrix, then the equation system

$$
D x=b
$$

has a unique solution $\boldsymbol{x} \geq 0$ for all $\boldsymbol{b} \geq 0$.
Proof We prove this Proposition by induction on the size of the matrix. For $n=1$ the claim is true by condition 1 for dominant diagonal matrices.
The induction hypothesis is that for all $(n-1) \times(n-1)$ dominant diagonal matrices \boldsymbol{D}^{\prime}, the equation system $\boldsymbol{D}^{\prime} \boldsymbol{x}=\boldsymbol{b}$ has a unique positive solution.

Extra Material: Proof for Dominant Diagonal Matrices

Need to show that if the claim is true for $(n-1) \times(n-1)$ dominant diagonal matrices, then it is also true for $n \times n$ dominant diagonal matrices.

In the first step, eliminate the first column of by using the first pivot $d_{11}>0$.
After the elimination, the $(n-1) \times(n-1)$ submatrix \boldsymbol{D}_{-11} consisting of rows and columns $\{2, \ldots, n\}$ is:

$$
\boldsymbol{D}_{-11}=\left(\begin{array}{cccccc}
d_{22}-\frac{d_{21}}{d_{11}} d_{12} & \cdots & d_{2 j}-\frac{d_{21}}{d_{11}} d_{1 j} & \cdots & \cdots & d_{2 n}-\frac{d_{21}}{d_{11}} d_{1 n} \\
\vdots & \vdots & & & \vdots \\
d_{i 2}-\frac{d_{i 1}}{d_{11}} d_{12} & \cdots & d_{j j}-\frac{d_{j 1}}{d_{11}} d_{1 j} & \cdots & \cdots & d_{i n}-\frac{d_{i 1}}{d_{11}} d_{1 n} \\
\vdots & & \vdots & & & \vdots \\
d_{n 2}-\frac{d_{n 1}}{d_{11}} d_{12} & & d_{n j}-\frac{d_{n 1}}{d_{11}} d_{1 j} & & & d_{n n}-\frac{d_{n 1}}{d_{11}} d_{1 n}
\end{array}\right) .
$$

Linear Input-Output Model: Positive solutions

We need to show that this is a dominant diagonal matrix, i.e. we need to verify conditions 1-3 for \boldsymbol{D}_{-11}.
The diagonal elements of D_{-11} are positive (exercise) and the off-diagonal elements are negative.
To prove the claim we need to verify that the sum of the elements in column j is positive for all $j \geq 2$.
Summing the elements in column j, we get:

$$
\sum_{i=2}^{n}\left(d_{i j}-\frac{d_{i 1}}{d_{11}} d_{1 j}\right)
$$

Since the original matrix D is by assumption a dominant diagonal matrix, we have:

$$
\sum_{i=2}^{n} d_{i j}>-d_{1 j}, \text { and } \sum_{i=2}^{n}-\frac{d_{i 1}}{d_{11}} d_{1 j}>d_{1 j}
$$

Hence the claim follows by summing.

Extra Material: Proof for Dominant Diagonal Matrices

For the augmented matrix $(\boldsymbol{D} \mid \boldsymbol{b})$, the rightmost column entries remain positive after the elimination step.
By the induction hypothesis, for each positive \boldsymbol{b}^{\prime}, there is a unique positive vector $\left(x_{2}, \ldots, x_{n}\right)$ solving

$$
\boldsymbol{D}_{-11} \boldsymbol{x}=\boldsymbol{b}^{\prime}
$$

Substituting into the first row of the original matrix \boldsymbol{D} gives that x_{1} is uniquely determined and positive. This proves the claim.

Extra Material on the Input-Output Model

- Consider the following reasoning: A final goods vector \boldsymbol{b} generates intermediate goods demand for production $\boldsymbol{A b}$.
- To produce the intermediate goods $\boldsymbol{A b}$, generates production demand $\boldsymbol{A}(\boldsymbol{A x})$.
- Continuing this line of thinking for K rounds you need $\left(\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\ldots+\boldsymbol{A}^{K}\right) \boldsymbol{b}$ of resources to satisfy the final demand and all the intermediate stages.
- By multiplying out $(\boldsymbol{I}-\boldsymbol{A})\left(\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}+\ldots+\boldsymbol{A}^{K}\right)=\left(\boldsymbol{I}-\boldsymbol{A}^{k+1}\right)$, you see that $\lim _{K \rightarrow \infty} \sum_{k=0}^{K} \boldsymbol{A}^{K}=(\boldsymbol{I}-\boldsymbol{A})^{-1}$ if $\lim _{K \rightarrow \infty} \boldsymbol{A}^{K}=0$.
- Notice that whenever $\lim _{K \rightarrow \infty} \boldsymbol{A}^{K}=0$, we see immediately that all elements in $(\boldsymbol{I}-\boldsymbol{A})^{-1}$ are positive since all elements in \boldsymbol{A} are positive.
- Hence also $\boldsymbol{x}=(\boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{b}$ is positive for all positive \boldsymbol{b}.

