The Norm and Inner Product

If the inner product is defined as:

$$
\boldsymbol{x} \cdot \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

the norm can be defined un terms of the inner product:

$$
\|\boldsymbol{x}\|^{2}:=\boldsymbol{x} \cdot \boldsymbol{x}
$$

The projection of a vector \boldsymbol{y} on \boldsymbol{x} is defined as the point $t^{*} \boldsymbol{x}$ on the line $t \boldsymbol{x}$ for $t \in \mathbb{R}$ such that

$$
\left(\boldsymbol{y}-t^{*} \boldsymbol{x}\right) \cdot \boldsymbol{x}=0 .
$$

This gives an explicit formula for t^{*} :

$$
t^{*}=\frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\|}
$$

Hence the projection $P_{x}(\boldsymbol{y})$ is given by:

$$
P_{\boldsymbol{x}}(\boldsymbol{y})=\boldsymbol{x} \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\|} .
$$

By basic trigonometry, the angle θ between \boldsymbol{x} and \boldsymbol{y} satisfies:

$$
\cos (\theta)=\frac{\left\|P_{\boldsymbol{x}}(\boldsymbol{y})\right\|}{\|\boldsymbol{y}\|}=\frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|} .
$$

Since $-1 \leq \cos (\theta) \leq 1$ for all θ, we get Cauchy's inequality for all vectors $\boldsymbol{x}, \boldsymbol{y}$:

$$
|\boldsymbol{x} \cdot \boldsymbol{y}| \leq\|\boldsymbol{x}\|\|\boldsymbol{y}\| .
$$

