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LEARNING OUTCOMES

Introduction to approximate methods for initial and boundary value problems in solid

mechanics. After the course, student understands the physical background of the bar and

string model problems, knows the basic ideas of (1) particle surrogate, (2) finite difference,

(3) finite element methods, is able to apply the methods to the model problems (1D), and

knows the extensions to the thin slab and membrane models of solid mechanics (2D).

Prerequisites: Linear algebra, ordinary differential equations
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VIBRATION OF 3-STORY BUILDING
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MODELLING ASSIGNMENT

In the modelling assignment, you will determine the two first frequencies of the free
vibrations of the 3-story building using a model and

1.  Particle Surrogate Method (PSM)

2. Finite Difference Method (FDM)

3. Finite Element Method (FDM)

To report the outcome, supplement the assignment paper with experimental results and the
outcome of calculations (table for results in light blue shading). Return your report (in PDF)
on Sun 25.04.2021 23:55 at the latest (MyCourses).
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VIBRATION EXPERIMENT

Experimental data consists of the acceleration time-series measured by the accelerometer at
one point. In processing of data, the time-acceleration representation is transformed to
frequency-mode magnitude form by Discrete Fourier Transform (DFT).
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MODELLING STEPS

 Crop: Decide the boundary of a structure. Interaction with surroundings need to be
described in terms of known forces, moments, displacements, and rotations. All
uncertainties with this respect bring uncertainty to the model too.

 Idealize and parameterize: Simplify the geometry. Ignoring the details not likely to
affect the outcome may simplify the analysis a lot. Assign symbols to geometric and
material parameter of the idealized structure.

 Model: Write the equilibrium equations, constitutive equations, and boundary
conditions of the structure.

 Solve: Use an analytical or approximate method and hand calculation or a code to find
the solution.
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STRUCTURE IDEALIZATION

The simplified model considers the columns as bending beams, floors as rigid bodies, omits
the plastic strips, and assumes that the floors move horizontally in the XZ plane. The
horizontal displacements of the floors are denoted by 1( )u t  and 2 ( )u t .
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APPROXIMATE METHODS

The simplest approximate equations of motion by Particle Surrogate Method, Finite
Difference Method, and Finite Element Method, contain only the horizontal
displacements of the first and second floors:

PSM:
2

1 1
2 3

2 2

1 0 2 0 2 11( 4 ) 4 12 0
0 1 0 1 1 12

u ud EIm Ah
u udt h


        

                    

FDM:
2

1 1
2 4

2 2

1 0 1 0 2 1
( 4 ) 4 12 0

0 1 0 1 1 1
u um d EIA
u uh dt h


        

                    

FEM:
2

1 1
2 3

2 2

1 0 4 1 2 1
( 4 ) 4 12 0

0 1 1 2 1 16
u uAh d EIm
u udt h

         
                    

Mode analysis for the frequencies assumes solution of the form exp(i )ta A  where
2 f  , 2i 1  ,  T

1 2( )t u ua  , and  T
1 2A AA  (some constants).
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FEM SIMULATION WITH A DETAILED MODEL
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1.1 PARTICLE SURROGATE MODELLING (PSM)

In a particle model surrogates, discretization replaces a continuum model by a particle model
on a grid of spatial resolution h. There

  Inertia forces (actually mass) and external forces are lumped to the grid points. Elastic
properties of the material are used to deduce an interaction model of particles at the grid
points, i.e., internal forces of the particle system.

 The main unknowns are the displacement of the particles. The model consists of
equations of motion of the particles and possible initial conditions (if known).

Discretization replaces the original problem with computable problem whose complexity
depends on resolution h. Particle discretization introduces modelling error compared with
the continuous model which should reduce in h (by design of the method) and vanish in the
limit 0h  .
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PARTICLE AND CONTINUUM MODELS

Particle surrogate model replaces the continuum model of solid mechanics by a particle
model by reverting the reasoning used commonly in derivation of the continuum models.

In particle models, index i is used for labelling. In continuum models, material
coordinates 3( , , )x y z   are used for the purposes.
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REGULAR GRID IN 1D

On a regular grid, the grid points are distributed evenly. Here, grid point numbering starts
from 0 and increases without gaps in the direction of the x axis the total number of grid
points being 1n . The line segments of numbered from 1 in the same manner.

The numbering convention above fits well hand calculations in 1D case but it will be refined
later for an unified geometrical description including, e.g., non-regular grids in several
physical dimensions.

0 1 2 n
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NEWTON’S LAWS OF MOTION

I In an inertial frame of reference, an object either remains at rest or continues to move
at a constant velocity, unless acted upon by a force.

II The vector sum of the forces on an object is equal to the mass of that object multiplied
by the acceleration of the object (assuming that the mass is constant).

III When one body exerts a force on a second body, the second body simultaneously exerts
a force equal in magnitude and opposite in direction on the first body.

Newton’s laws in their original forms above apply to each particle separately. The
formulation for average behavior of particle systems, rigid bodies, deformable bodies,  open
system of particles etc. require slight modifications.
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PARTICLE MODEL OF STRING

In the horizontal string model, particles move in vertical direction and forces between the
particles are aligned with the string. In PSM, mass of the string and distributed transverse
force are lumped as particles and point forces on a regular grid.

2

1 1 2( 2 ) i
i i i i i

d wS w w w m g m
h dt

     {1,2, , 1}i n  , 0iw  {0, }i n

Fixed
ends
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Free body diagrams for the typical particle and the particle at the end of the string

As particles move in the vertical direction, horizontal tightening must be constant S .
Assuming also constant density of the material and constant cross-sectional area,
external distributed force due to gravity im g  is the same for all particles. Using the free
body diagrams and the geometry of the figures, where im hA , equations of motion
in the transverse direction become

2

1 1 2
i

i i i i
d wF F m g m
dt

        where 1 1i i iF w w
S h
 

   and 1 1i i iF w w
S h
 

 ,
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2

1 2
n

n n n
d wF F m g m
dt

       where 1 1n n nF w w
S h
 

 .

 At the fixed boundary transverse displacement vanishes or coincides with that of the
surroundings 0w w  so the equations describing the displacement of the particles are

2

1 1 2( 2 ) i
i i i i i

d wS w w w m g m
h dt

     {1,2, , 1}i n 

0w w    and
2

1
2( )n n n

n n
w w d wS F m g m

h dt


    .

For a unique solution, the second order ordinary differential equations in time require
initial conditions specifying the positions and velocities of the particles at the initial time

0t  .
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PARTICLE MODEL OF BAR

In the horizontal bar model, particles move in the horizontal direction and forces between
the particles are aligned with the bar. In PSM, mass of the bar and the distributed horizontal
force are lumped as particles and point forces on a regular grid.

2

1 1 2( 2 ) i
i i i i i

d uEA u u u m g m
h dt

     {1,2, , 1}i n    and 0iu  {0, }i n

Fixed
ends
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In the particle surrogate model of an elastic bar, interaction of the particles are modelled
by using elastic springs of spring constant /k EA h , where A is the cross-sectional area
and E  the Young’s modulus of the material. The external forces acting on particles are
due to gravity.

Using the free body diagrams for the typical particle and the particle at the free end of
the string

2

1 1 2
i

i i i i
d uF F m g m
dt

        where 1 1( )i i i
EAF u u
h     and 1 1( )i i i

EAF u u
h   ,
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2

1 2
n

n n n
d uF F m g m
dt

       where 1 1( )n n n
EAF u u
h   .

 At the fixed boundary transverse displacement vanishes 0 0u  or coincides with that of
the surroundings 0u u  so the equations describing the displacement of the particles are

2

1 1 2( 2 ) i
i i i i i

d uEA u u u m g m
h dt

     {1,2, , 1}i n  ,

0u u    and
2

1 2( ) n
n n n n

d uEA u u F m g m
h dt

     .

 For a unique solution, the second order ordinary differential equations in time require
initial conditions specifying the positions and velocities of the particles at the initial time

0t  .
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DIFFERENCE AND MATRIX REPRESENTATIONS

In their mathematical forms, the particle models for string and bar coincide. Assuming fixed
ends, both can be considered as particular cases of a bit more generic set of ordinary second
order difference-differential equations (notation /a da dt , 2 2/a d a dt )

1 1( 2 )i i i i i i ik a a a F m a      {1,2, , 1}i n    and 0ia  {0, }i n 0t 

i ia g   and i ia h {1,2, , 1}i n  0t 

or, using the more concise matrix representation, as a set of ordinary second order
differential equations

  Ka F Ma 0t  , a g  and a h 0t  .

The two (mathematically equivalent) representations are the starting points for difference
equation and matrix based solution methods for displacement and vibration analyses.
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The ( 1) ( 1)n n    stiffness and mass matrices of the matrix representation are given by

1 1

2 2 2

1 1

2
2

2n n

k k
k k k

k k 

 
   
 
  

K


,

1

2

1n

m
m

m 

 
 
 
 
 
 

M


and the ( 1)n  column matrices for the displacement of free particles, external forces,
initial displacements and velocities

1

2

1n

a
a

a 

 
 
   
 
  

a


,

1

2

1n

F
F

F 

 
 
   
 
  

F


,

1

2

1n

g
g

g 

 
 
   
 
  

g


,

1

2

1n

h
h

h 

 
 
   
 
  

h


.



1-23

EXAMPLE A connector bar is welded at its ends to rigid walls. If the right end wall
displacement is u , write the matrix representation for the stationary particle surrogate
model. Cross sectional area A and Young’s modulus of the material E are constants Use a
regular grid of points {0,1,2,3}i . Also, find the solution to the axial displacements.

Answer 0 0u  , 1
1
3

u u , 2
2
3

u u ,  and 3u u

L

u
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In time independent problem without external distributed forces, the two difference
equations for the free interior particles and the conditions for the boundary particles
simplify to

0 0u  , 0 1 2( 2 ) 0EA u u u
h

   , 1 2 3( 2 ) 0EA u u u
h

   ,  and 3u u .

In matrix representation, one considers the equations for the free particles and uses the
known displacements of the fixed particles in their expressions to get

1

2

2 1 0
0

1 2
uEA EA
u uh h

     
          


1

1

2

2 1 0 1 / 3
1 2 2 / 3

u
u

u u

       
             

. 
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1.2 DISPLACEMENT ANALYSIS

A stationary surrogate particle model is composed of equilibrium  equations for the free
particles and equations defining the displacement of fixed particles (displacement boundary
conditions). The equilibrium equations for the free interior end boundary particles differ
(see the derivation)

Free interior 1 1( 2 ) 0i i i ik a a a F     {1,2, , 1}i n 

Free boundary 0 1 0( )k a a F    or 1( )n n nk a a F 

Fixed i ia a {0, }i n

For a boundary particle, one may give the force acting on a particle or displacement of the
particle but not both. Also, displacement condition should be specified for one particle to
make the solution unique (otherwise rigid body motion is not constrained).
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MATRIX REPRESENTATION

Representing the displacement of the free particles by column matrix a , the coefficient of
internal force, and the external force terms by square stiffness matrix K  and column matrix
F , respectively, gives the set of algebraic equations in their “standard” forms

  Ka F 0   where

2 1
1 2 1

1 2 1
1 2

k

 
   

  
   
  

K  ,

1

2

1n

a
a

a 

 
 
    
 
 
  

a  , and

1

2

1n

F
F

F 

 
 
    
 
 
  

F  .

Matrix representation allows difference equations of various forms in the same model.
Solution to the displacement follows with the standard methods for linear equations system.
Therefore, the computational work in calculations is some power (1 3 ) of n  and 1/n h
(depends on the method used).
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DIFFERENCE EQUATION REPRESENTATION

Difference equation is a mathematical equality involving the differences between successive
values of a function of a discrete variable, typically values of a function at discrete spatial
or temporal domain. Assuming constant coefficients , ,    and a polynomial i

Difference equation 1 1 0i i i ia a a        

Generic solution 1 2
i i

ia Ar Br      or 1 ( )i
ia r A Bi     where 2 0r r    

Particular solution 2
ia C Di Ei   

Difference equations of discrete variables correspond to differential equations of continuous
variables: Solution is composed of the generic solution to homogeneous equations and a
particular solution. Uniqueness of the solution require additional (boundary) conditions of
number indicated by the order.
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The well-known methods for 2nd order ordinary differential equations work with slight
modifications. Solution to the homogeneous equation 0i   is obtained with i

ia Ar :

1 1 1 2( ) 0i i i iAr Ar Ar Ar r r              2 0r r     .

Separate roots imply the generic solution of the form 1 2
i i

ia Ar Br  . A double root
implies the generic solution of the form 1( ) i

ia A Bi r  . Assuming a polynomial i ,
particular solution follows with a higher order polynomial trial etc. Finally, the two
parameters A and B  of the solution follow from the equations for the boundary particles

{0, }i n .

Representation by difference equation is particularly useful on regular grids and a simple

i  as the difference equation can be solved analytically in the same manner as the
underlying ordinary differential equation. Therefore, effort for solving the problem does
not depend on n  at all.
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EXAMPLE A connector bar, which is loaded by its own weight, is welded at its ends to
rigid walls. Use a particle surrogate model on a regular grid of points {0,1,2,3,4}i  to find
the displacements at the grid points. Use first the difference equation method to determine
displacements on the generic grid and apply that to get the solution for the case 4n  . Cross
sectional area A, density of the material  , and Young’s modulus of the material E are
constants.

Answer
2

2
( )
2

i
L g i n iu
E n

 
   and

2 (4 )
32i

L g i iu
E

 
   when 4n 

L

x

g
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 Let us use the difference equation method for generic n

1 1( 2 ) 0i i ik u u u F     {1,2, , 1}i n      and 0iu  {0, }i n ,

 where /k EA h , m Ah , F mg , and /h L n . Solution to the homogeneous
equation follows with i

ia Ar  giving, when substituted to the difference equation,

2 22 1 ( 1) 0r r r     .

The double root 1r  implies the generic solution iu A Bi  . As loading F  is constant,
i.e., a zero-order polynomial in i , a second order polynomial 2

iu Ci  might work as the
particular solution. Substitution into the difference equation gives

2 2 2[ ( 1) 2 ( 1) ] 0k C i Ci C i F      
2
FC
k

   .
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When the solution is substituted there, the two displacement conditions 0 0nu u   give
equations for the two parameters of the generic solution part

0 0u A     and 2 0
2n
Fu A Bn n
k

     0A    and
2
FB n
k

 .

Therefore, the analytic solution to the bar problem by PSM becomes

( )
2i
Fu i n i
k

    where
2

2
F L g
k En


 .

NOTICE: In terms of the coordinates of the grid points ix hi   and L hn

2

2
( )( )

22
i i

i
x L xL g i n i gu

E En
  

      (continuous model ( )( )
2

g x L xu x
E
 

 ).
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1.3 VIBRATION ANALYSIS

In time dependent case, the model is composed of equations for the interior and boundary
particles, and two initial conditions for the free particles. Considering displacement
component ( )a t  on a regular grid

Particles {1,2, , 1}i n  : 1 1( 2 )i i i i i ik a a a F m a      {1,2, , 1}i n  0t 

Particle 0: 0 0a a     or 0 1 0 0 0 0( )k a a F m g m w      0t 

Particle n: n na a     or 1( )n n n n n nk a a F m g m w      0t 

Initial conditions: i ia g   and i ia h {1,2, , 1}i n  0t 

In solid mechanics, one may give the force acting on a particle or displacement of the
particle as the boundary condition but not both.
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MATRIX REPRESENTATION

Representing the displacement of the free particles by column matrix ( )ta , coefficients of
( )ta  by square mass matrix M ,  coefficients of ( )ta  by square stiffness matrix K , and the

external force terms by column matrix F  in the difference equations of the free particles
gives the second order initial value problem of ordinary differential equations

  Ka F Ma 0t  a g  and a h 0t  .

The column matrices g   and h   represent the initial positions and velocities of the free
particles. Matrix representation is the concise starting point for

(1) mode analysis for frequencies and modes of free vibrations

(2) displacement solutions based on the frequencies and modes

(3) step-by-step time integration methods on temporal grid of time instants
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The 1n  by 1n  matrices and the 1n  column matrix corresponding to a problem of
free particles {1,2, , 1}i n  , conditions 0 0na a  , and ik k  , im m , iF F

2 1 0 0
1 2 1 0

1 0
0 0 1 2 1
0 0 0 1 2

k

 
   

  
   
  

K




   ,

1 0 0 0
0 1 0 0

0 0
0 0 0 1 0
0 0 0 0 1

m

 
 
 

  
 
 
  

M




   ,   and

1
1

1
1

F

 
 
    
 
 
  

F  .

The coefficients for the bar of length L nh  are /k EA h , m Ah , and F g Ah
(gravity in the direction of the axis) and the coefficients for the string of length L nh
are /k S h , m Ah , and F g Ah  (gravity in the transverse direction).
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MODAL ANALYSIS

For constant M , K  and F 0, displacement can be considered as the sum of harmonic
components. In mode analysis, a harmonic trial solution is used to transform the ordinary
differential equations into algebraic one for the angular velocity and mode pairs ( , )j j A :

 Ma Ka 0   and i( ) tt e a A  2( ) 0  M K A .

The necessary condition for a non-zero solution to A  is 2det( ) 0  M K . The algebraic
polynomial equation gives j {1,2, }j   of number of the free particles as its solutions
(positive square roots of 2 ). After that, the modes follow from

2( ) 0j j  M K A

up to an arbitrary multiplier. The angular velocity   and frequency f  are related by
2 f  .
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MODE SUPERPOSITION

If the initial conditions concerning position and displacement of the particles are known
(quite exceptional case), the outcome of the modal analysis ( , )j j A {1,2, }j   can be
used to construct a displacement solution for the given initial data. The combination of the
modes for a g   and a h  is given by

{1,2, }
1( ) [ sin( ) cos( )]j j j j jj

j
t t t   

 a A   where

T

T
j

j
j j

 
A h

A A
  and

T

T
j

j
j j

 
A g

A A
.

As the first term contains division by k , one should use 0lim sin( ) /t t     if 0k 
. The simple formula relies on orthogonality of the modes T 0j l A A  whenever j l . One
may think that the coefficients j  and j  are given by discrete Fourier series.
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EXAMPLE A connector bar is welded at its ends to rigid walls. Use a particle surrogate
model on a regular grid of points {0,1, , }i n   to find displacements at the grid points as
functions of time for the initial data ig U  and 0ih  , respectively. Cross sectional area A,
density of the material  , and Young’s modulus of the material E are constants. Use the
matrix method and consider the case 3n 

Answer
1 1 3( ) cos( ) cos( )
1 1

k Et U t U t
m L 

   
    

   
a

L

x
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Let us start with modal analysis with the stiffness and mass matrix of the example
problem where /k EA h , m Ah , and / 3h L . The number of free particles is 2
so

1 12

2 2

1 0 2 1 2 1
( ) ( ) 0

0 1 1 2 1 2
A A

m k k
A A





         

                   
    (denote

2m
k
  )

The homogeneous linear equation system can yield a non-zero solution to the mode only
if the matrix in parenthesis is singular, i.e., its determinant vanishes

22 1
det ( 2) 1 0

1 2





 
     

  so 1 1    or 2 3  .

Knowing the possible angular velocities, solution to the modes are given by the linear
equation systems:
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1 1  : 1
k
m

    and 1

2

1 2 1
0

1 1 2
A
A

   
     

   so 1 1
1

( , ) ( , )
1

k
m


 

  
 

A .

2 3  : 2 3 k
m

    and 1

2

3 2 1
0

1 3 2
A
A

   
     

   so 2 2
1

( , ) ( 3 , )
1

k
m


 

   
A .

The coefficients of the series solution are 1 2 0    and

T

T
1

1 T T
1 1

1
1

1 1
1 1

U
U

U

   
   
     
   
   
   

A g
A A

,

T

T
2

2 T T
2 2

1
1

) 0
1 1
1 1

U
Ug

   
        
   
       

A
A A



{1,2}
11( ) [ sin( ) cos( )] cos( )
1j j j j jk

j

kt t t U t
m

   


 
    

 
a A .
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DIFFERENTIAL-DIFFERENCE EQUATION METHOD

The analytical solution method for differential-difference equations on a regular grid uses a
trial solution mode which gives an algebraic equation for the corresponding angular
velocity. Then the outcome of modal analysis takes the form

( , )j j A   where 2 [1 cos( )]j
k j
m n

 
     and ( ) cos( ) sin( )j i

i ij j
n n

    A ,

where   and   are determined by the (homogeneous) boundary conditions. The
combination of the modes for a g   and a h  at 0t 

{1,2, }
1( ) [ sin( ) cos( )]j j j j jj

j
t t t   

 a A  ,
T

T
j

j
j j

 
A h

A A
 and

T

T
j

k
j j

 
A g

A A

is the same as with the matrix formulation.
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EXAMPLE A connector bar is welded at its ends to rigid walls. Use a particle surrogate
model on a regular grid of points with 3n   to find displacements at the grid points as
functions of time for the initial data ig U  and 0ih  , respectively. Cross sectional area A,
density of the material  , and Young’s modulus of the material E are constants. Use the
differential-difference equation method.

Answer
1 3( ) cos( )
1

Et t
L 

 
  
 

a

L

x
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The method is based on the closed form solution to the modal analysis

( , )j j A   where 2 [1 cos( )]j
k j
m n

 
     and ( ) cos( ) sin( )j i

i ij j
n n

    A

As both ends are fixed, the parameters of the modes are chosen to be 0    and 1 
(say). As 3n  {1,2}j   so

1
1[1 cos( )]
3

2 k k
m m

       and 1
sin( / 3) 1

s
3

2in(2 / 3) 1



   
    
   

A ,

2
1[1 cos(2 )2 ]
3

3k k
m m

     and 2
sin(2 / 3) 1
sin(4 / 3 1

3
2)




   
       

A

Notice that the modes differ only in scaling from the ones of the matrix method.
Therefore, the solution by the two methods coincide as should be the case.
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DISCRETE SINE SERIES

The discrete Fourier series (various forms exist) can be used to represent a list as the sum of
lists of harmonic terms. For example, the sine-transformation pair for a list ia

{1,2, , 1}i n    is given by

{1,2, , 1}
2 sin( )j ii n

ij a
n n

     {1,2, , 1}j n 

{1,2, , 1} sin( )i jj n
ia j
n

    {1,2, , 1}i n 

The transformation pair is based on the orthogonality of the modes (Cronecker delta 1jl 
if j l   and 0jl   if j l )

{1,2, , 1} sin( )sin( )
2jlj n

i i nj l
n n

      .
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1.4 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work is one of the equivalent forms of equilibrium equations and
equations of motion (an important one). According to the principle, work of forces acting
on the particles vanishes in all virtual displacements of the particles. In short

ext int ine 0W W W W       ir


.

External ext
i iW F r  
 

Internal int
i i p pW f r f      
 

Inertia ine
i i iW m a r     

Principle of virtual work has a physical interpretation which is useful in connection with the
variety of particle and continuum models and numerical methods in solid mechanics.

i

j

O
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Let us consider the set of particles i I  and the set of interacting pairs p P I I   .
The two equivalent representations for the equations of motion are

i i i iF f m a 
  i I   ( ) 0i i i i ii I r F f m a    

 
ir


,

where ir


 is the virtual displacement (a virtual offset) of particle i. The two-ways
implication follows from the fundamental lemma of variation calculus. Works of the
forces in the virtual displacement (forces are not affected by the virtual offset)

ext
i ii IW r F  


 , int
i ii IW r f  


 , and ine
i i ii IW r m a     

.

Above, if


 denotes the sum of the internal forces acting on particle i . Let us consider a
typical pair ( , )p i j  of particles and interaction ij jif f 

 
. The contribution to intW

can be written in a more concise form
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int ( )p ij i ji j ij i j ij ij p pW f r f r f r r f f                
        ,

where j i ijr r  
   (assuming a simple force interaction). The overall work of the internal

forces is obtained as the sum over all the interacting pairs, i.e,

int int
p p pp P p PW W f       .
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VIRTUAL WORK EXPRESSIONS FOR STRING

Let us consider particles {0,1, , }i I n   , interacting particle pairs p P I I   , choose
0iw   whenever i iw w  (known), and denote p i jw w w     when ( , )p i j

Internal forces: int
p pp P

SW w w
h

    

External forces: ext
i ii IW w F 

Inertia forces: ine
i ii IW w Ahw    

Principle of virtual work and  the virtual work expressions give a concise reprentation of the
string and bar equations of PSM. Various different boundary conditions can be included by
modification of the expression using the physical work interpretation. The representation is
almost indispensible with membrane and thin slab models of the course and irregular grids
on generic solution domains.
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The external and inertia parts are obvious. In the string model, particle i  interacts with
the neighbors 1i   and 1i   only. Therefore, virtual work of the internal forces (all
particles accounted for)

int
0 1 1 0 3 2 1 3 1( ) ( ) n nW w F w F F w F F w F             .

 Substituting expressions 1 1( ) /i i iF S w w h     and 1 1( ) /i i iF S w w h    for the left
and right neighbour interactions and rearranging

int
1 0 1 0 2 1 2 1 1 1( )( ) ( )( ) ( )( )n n n n

hW w w w w w w w w w w w w
S

                  

and, finally, using the concise sum notation

int
1 1{1,2, , } ( ) ( )i i i i p pi n p P

S SW w w w w w w
h h

              . 
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 VIRTUAL WORK EXPRESSIONS

Principle of virtual work is just a concise representation of the equations-of-motion (or
equilibrium equations) and boundary conditions of a particle surrogate model. Virtual work
expression depends on the problem, but the principle does not.

Virtual work Bar String

intW p pp P
EAu u
h

   p pp P
Sw w
h

  

extW i ii I u F i ii I w F
ineW i ii I u Ahu   i ii I w Ahw  


