# TASK 04 presentation <br> LOVE TRIANGLES 

(Ilkka, Emilia, Helena)

## Where we left - different implementation ideas




## Tube diameter 5 mm vs 10 mm



## Tube diameter

- We tested 6, 8, 10 and 12 mm diameter tubes
- 6 and 8 mm were clearly too small
- 10 and 12 mm proved ok
- 12 mm fits almost double the wire amount of 10 mm



## Prototyping



## Prototyping



## Prototyping

- Challenge: up to 12 pipes in one joint



## Acrylic sheets

- Placing acrylic sheets in between the piece
- Uncertain where
- Drilling holes into the sheets and attaching them to the piece with loops


## 1 Tetractys

A mathematical
sculpture highlighting geometrical properties behind triangles and tetrahedrons




## Materials

- Aluminium tubes (Ø10-12 mm)
- Steel wire
- Acrylic sheets



## Material calculations

- Unit size depends on large tetrahedron size (a) and the number of levels (n)
$a=1200 \mathrm{~mm}$
$\mathrm{~h}=980 \mathrm{~mm}$



## Material calculations

- Aluminium tube usage (roughly, joints not taken into account):

|  | $\mathrm{a}=$ | 1 | [m] |  |
| :---: | :---: | :---: | :---: | :---: |
| Number of levels ( n ) | Tetrahedrons | Tube number | Tube length $\mathrm{a} / \mathrm{n}[\mathrm{m}]$ | Total tube amount [m] |
| 1 | 1 | 6 | 1,000 | 6,00 |
| 2 | 4 | 24 | 0,500 | 12,00 |
| 3 | 10 | 60 | 0,333 | 20,00 |
| 4 | 20 | 120 | 0,250 | 30,00 |
| 5 | 35 | 210 | 0,200 | 42,00 |
| 6 | 56 | 336 | 0,167 | 56,00 |
| 7 | 84 | 504 | 0,143 | 72,00 |
| 8 | 120 | 720 | 0,125 | 90,00 |



## Material calculations

- 10 mm aluminium tube 2,60 €/m
- 12 mm aluminium tube 3,975 €/m
- Aluminium tube usage likely in the range of 40-60 m
-> 104-238 €



## Budget

- Aluminium tube
- Total amount $=40-60 \mathrm{~m}$ (estimated)
- Price = 104-238 €
- Steel wire
- Total amount $=20-30 \mathrm{~kg}$ (estimated)
- Price = 100-150 €
- Acrylic sheets
- Total amount $=$ maximum of $1 \mathrm{~m}^{\wedge} 2$
- Price = ~ 90€

$$
\text { Total }=\sim 500 €
$$

## Conclusions

- Some final decisions are still needed (colours, layers etc)
- More prototyping to determine the most efficient way to assemble the piece

