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VIBRATION EXPERIMENT
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MODELLING ASSIGNMENT

In the modelling assignment, you will determine the two first frequencies of the free
vibrations of the 3-story building using a model and

1.  Particle Surrogate Method (PSM)
2. Finite Difference Method (FDM)
3. Finite Element Method (FDM)

To report the outcome, supplement the assignment paper with experimental results and the
outcome of calculations (table for results in light blue shading). Return your report (in PDF)
on Sun 25.04.2021 23:55 at the latest (MyCourses).
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FREE VIBRATIONS OF STRUCTURE

Assuming linearly elastic material, displacements ( )ta  at the grid points (in blue) can be
represented as the sum ( ) [ sin( ) / cos( )]j j j j j jt t t     a A , where jA  are the
modes (deformation patterns of the figure) and 2j jf   the angular velocities associated
with the modes.
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VIBRATION EXPERIMENT

ACCELEROMETER

COMPUTER &

SIGNAL

AMPLIFIER
SOFTWARE

PROCESSING
UNITSampling rate 1000Hz 

a(t)



1-5

ACCELERATION TIME-SERIES

Experimental data consists of the acceleration time-series measured by the accelerometer at
one point. Experiment is repeated 6 times.
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DISCRETE SINE SERIES

The discrete Fourier series (various forms exist) can be used to represent a list as the sum of
lists of harmonic terms. For example, the sine-transformation pair for a list ia

{1,2, , 1}i n    is given by

{1,2, , 1}
2 sin( )j ii n

ij a
n n

     {1,2, , 1}j n 

{1,2, , 1} sin( )i jj n
ia j
n

    {1,2, , 1}i n 

The transformation pair is based on the orthogonality of the modes (Cronecker delta 1jl 
if j l   and 0jl   if j l )

{1,2, , 1} sin( )sin( )
2jlj n

i i nj l
n n

      .
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PROCESSING OF DATA

Experimental data consists of the acceleration time-series measured by the accelerometer at
one point. In processing of data, the time-acceleration representation is transformed to
frequency-mode magnitude form by Discrete Fourier Transform (DFT).



1-8

MODELLING STEPS

 Crop: Decide the boundary of a structure. Interaction with surroundings need to be
described in terms of known forces, moments, displacements, and rotations. All
uncertainties with this respect bring uncertainty to the model too.

 Idealize and parameterize: Simplify the geometry. Ignoring the details not likely to
affect the outcome may simplify the analysis a lot. Assign symbols to geometric and
material parameter of the idealized structure.

 Model: Write the equilibrium equations, constitutive equations, and boundary
conditions of the structure.

 Solve: Use an analytical or approximate method and hand calculation or a code to find
the solution.
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STRUCTURE IDEALIZATION

The simplified model considers the columns as bending beams, floors as rigid bodies, omits
the plastic strips, and assumes that the floors move horizontally in the XZ plane. The
horizontal displacements of the floors are denoted by 1( )u t  and 2 ( )u t .
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PARAMETERIZATION

Parameter symbol value

Column thickness d 0.0048 m

Room height h 0.156 m

Column distance (x) lx 0.4 m

Column distance (y) ly 0.243 m

Floor length L 0.44 m

Floor width W 0.295 m

Floor thickness t 0.015 m

Strip width w 0.04 m

Strip thickness s 0.002 m
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APPROXIMATE METHODS

The simplest approximate equations of motion by Particle Surrogate Method, Finite
Difference Method, and Finite Element Method, contain only the horizontal
displacements of the first and second floors:

PSM:
2

1 1
2 32 2

1 0 2 0 2 11( 4 ) 4 12 0
0 1 0 1 1 12

s
s

u uE Idm Ah
u udt h


        

                    

FDM:
2

1 1
2 42 2

1 0 1 0 2 1
( 4 ) 4 12 0

0 1 0 1 1 1s
u um d EIA
u uh dt h


        

                    

FEM:
2

1 1
2 3

2 2

1 0 4 1 2 1
( 4 ) 4 12 0

0 1 1 2 1 16
s u uAh d EIm

u udt h
         

                    

Mode analysis for the frequencies assumes solution of the form exp(i )ta A  where
2 f  , 2i 1  ,  T

1 2( )t u ua  , and  T
1 2A AA  (some constants).
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BEAM THEORY

Domain:
4

4 0yy z
d wEI b
dx

   ,
2

2 0dGJ
dx

 in (0, )L

Free end:
2

2yy y
d wEI M
dx

  ,
3

3yy z
d wEI F
dx

  , x
dGJ M
dx

 at x L

Clamped end: 0w   , 0dw
dx

    , 0     at 0x 

L
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MOMENTS OF AREA

Zero moment: A dA 

First moments: zS ydA     and yS zdA 

Second moments: 2
zzI y dA  , 2

yyI z dA  ,  and zy yzI I yzdA  

Polar moment: 2 2
B rr zz yyJ I y z dA I I    

The polar moment according to the standard model is usually (way) too large for profiles
that do not actually remain planar in deformation.



1-14

FIRST TWO EIGENFREQUENCIES AND MODES

method 1[Hz]f 1[ ]A  2 [ ]A  2 [Hz]f 1[ ]A  2 [ ]A 

EXP - - - -

PSM

FDM

FEM


