CS-C3240 - Machine Learning Lecture 3 Mar 2021

Model Selection

Chap. 6.1 – 6.3 of mlbook.cs.aalto.fi

Alexander Jung

"Model"

Hypothesis Space

What I want to teach you:

- modern ML methods use large hypothesis spaces
- small training error does not rule out overfitting!
- probe learnt hypothesis on validation set
- choose the model with smallest validation error

Let's Start with a Course Recap

4

What are three main components of machine learning?

1. Data

Data

set of "data points" (atomic unit of information)

each data point has features and labels

features =properties that can be measured easily

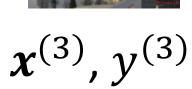
labels = higher-level facts or quantities of interest

Data Point = "Some Ski Day" features x : pixel RGB values of webcam snapshot label y : maximum daytime temperature

Data = Bunch of Data Points

feature vector $x^{(1)}$ label $y^{(1)}$

 $x^{(2)}, y^{(2)}$



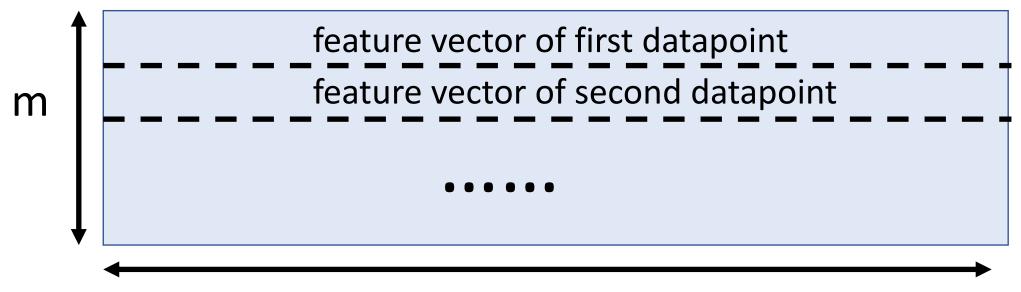
 $x^{(4)}, y^{(4)}$

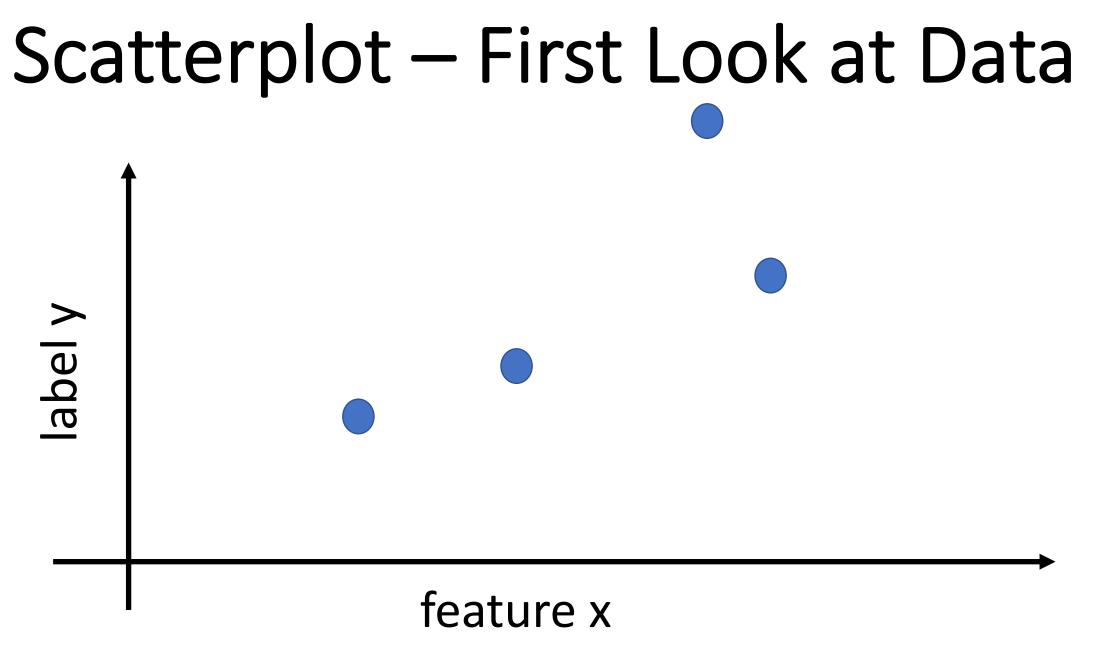
 $x^{(5)}, y^{(5)}$

Key Parameters of Datasets

•number m of data points

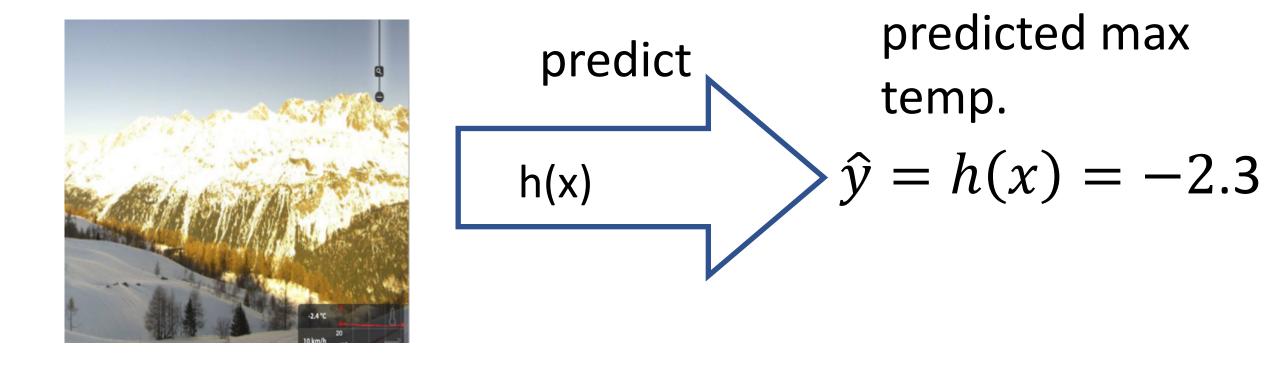
•number n of features





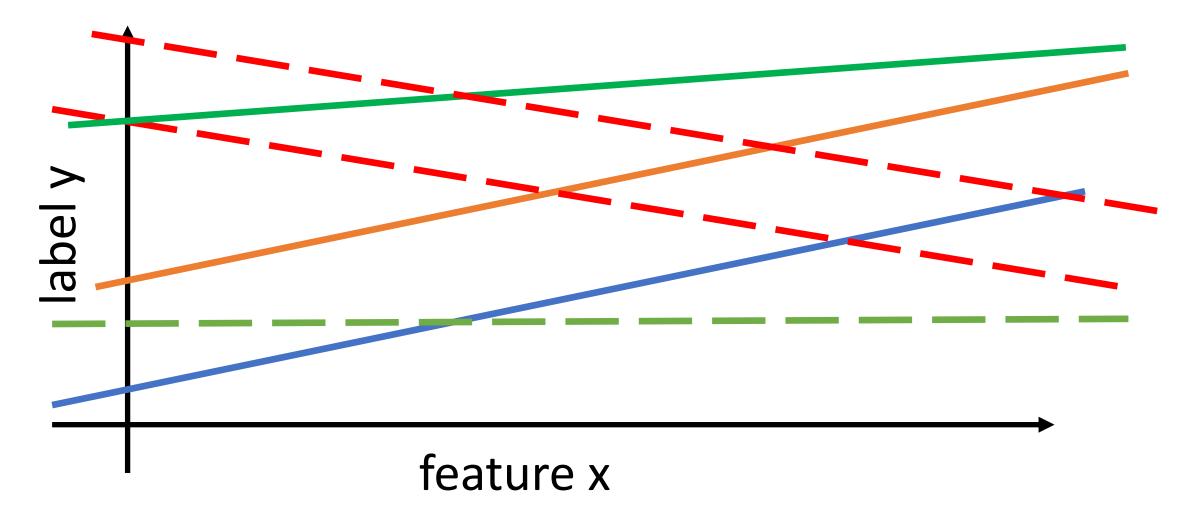
2. Hypothesis Space/Model

How Many Hypotheses Are There?

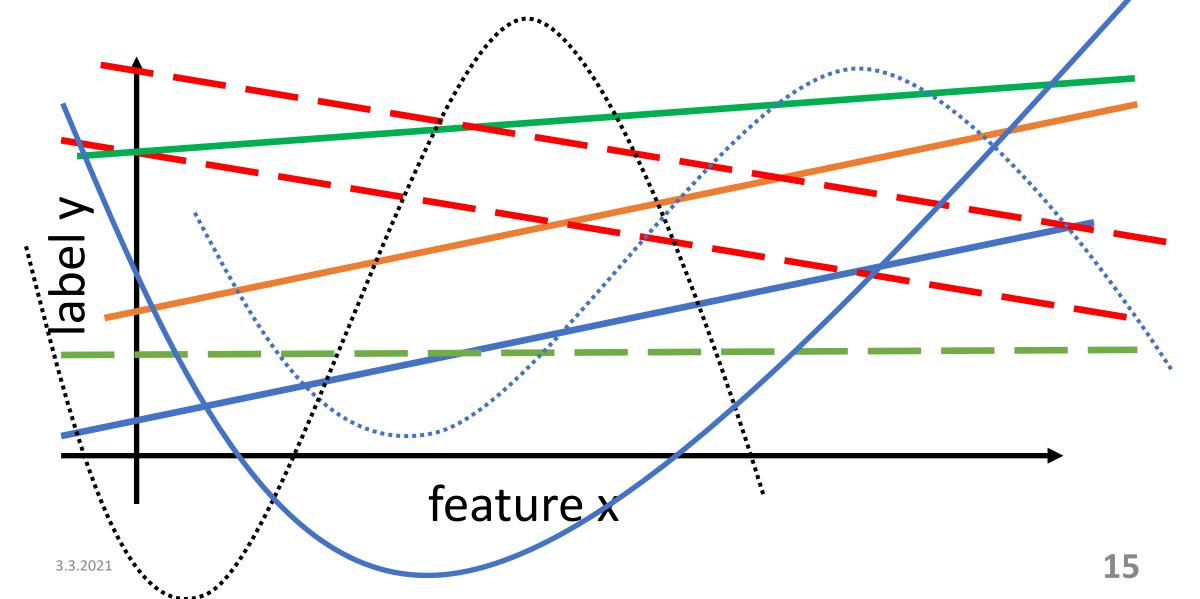


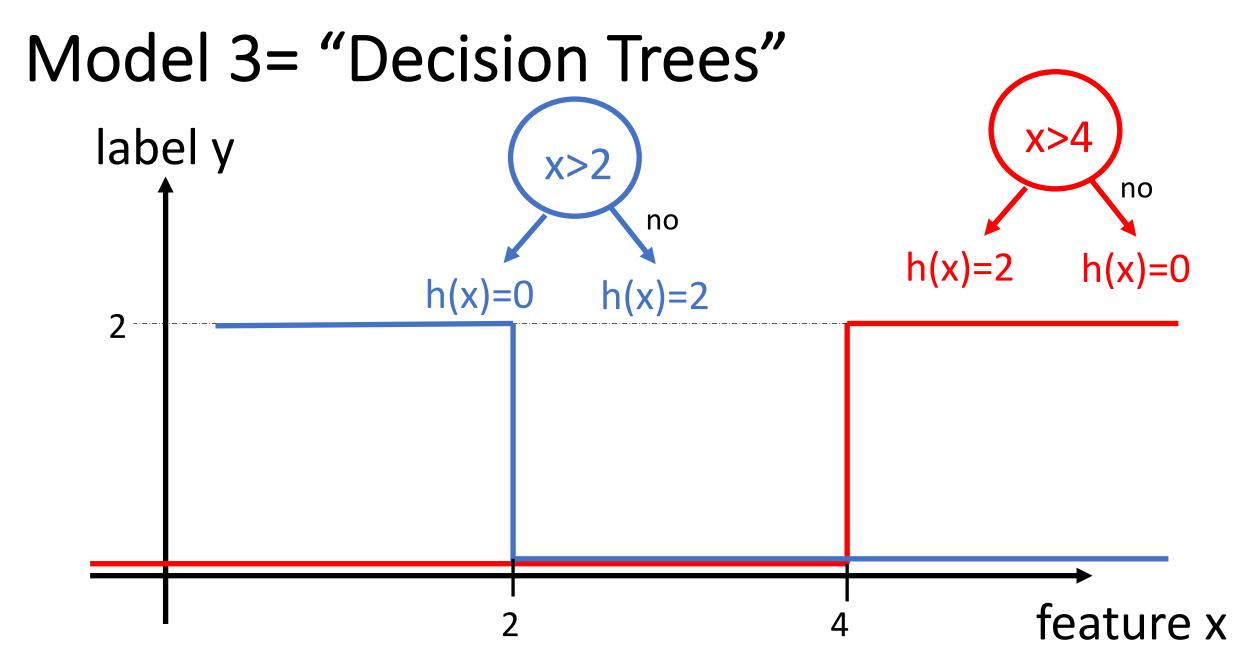
feature x = -10

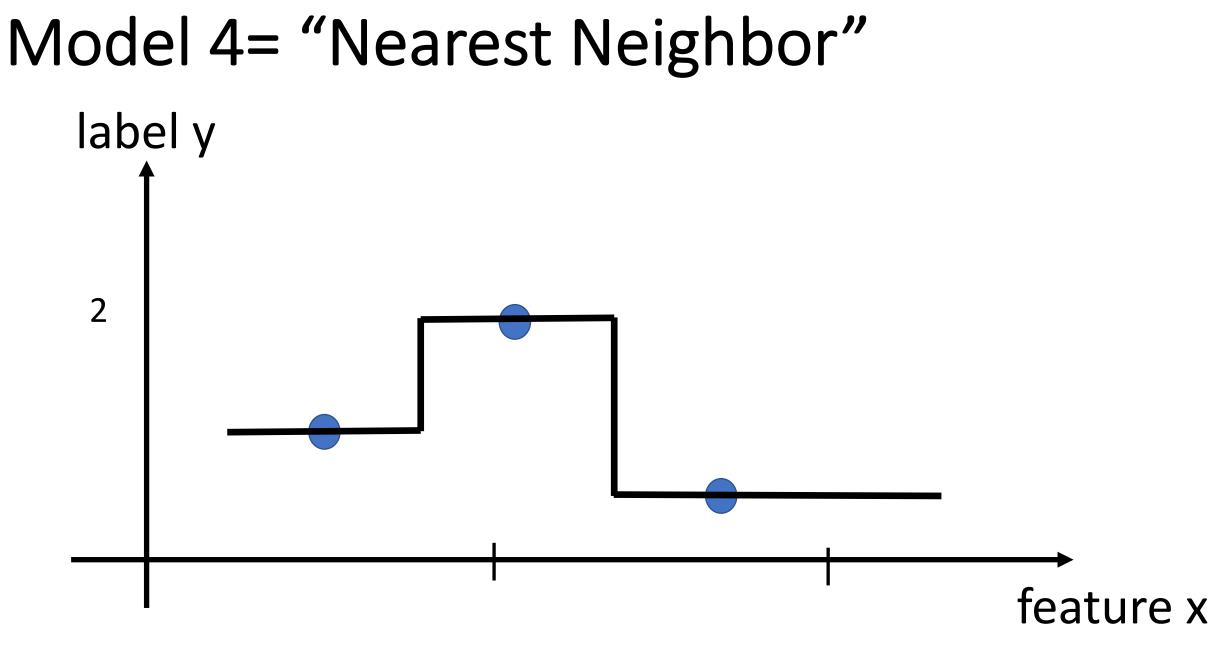
Model 1="Linear Predictors/Degree 1 Polyn."



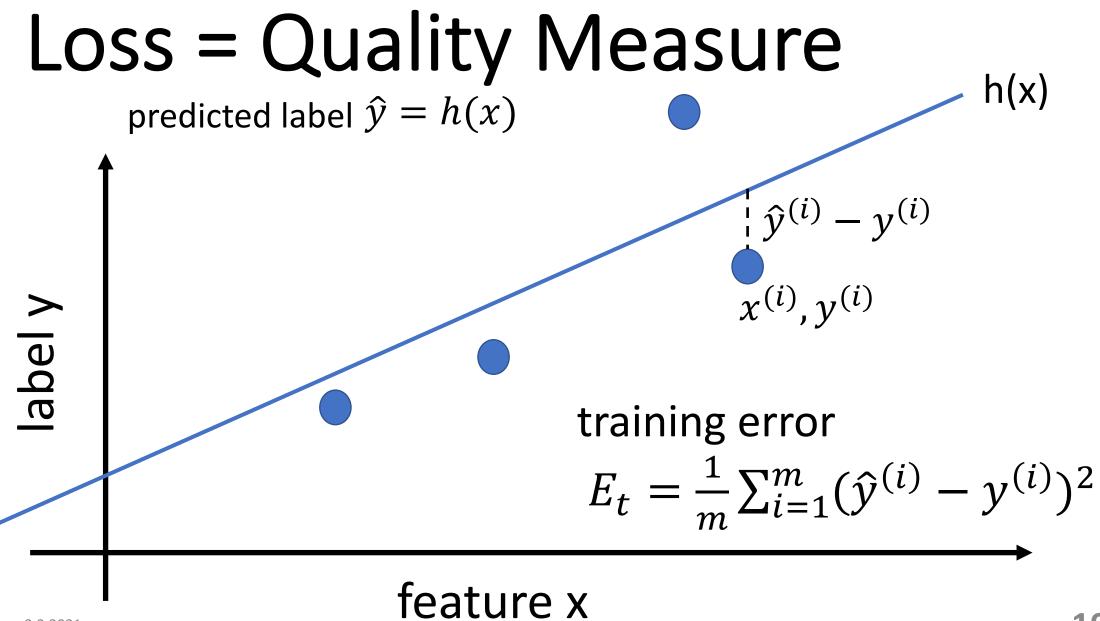
Model 2= "Degree 3 Polyn. Predictors"



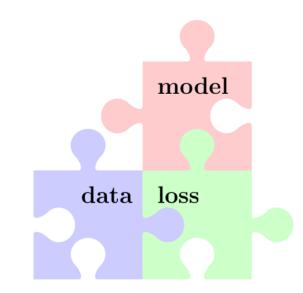




3. Loss Function



Putting Together the Pieces



Plethora of ML methods obtained by combining difference choices for data representation, model and loss function

see Chapter 3 of mlbook.cs.aalto.fi

What is ML?

informal: learn hypothesis out of a hypothesis space or "model" that incurs minimum loss when predicting labels of datapoints based on their features

formal:

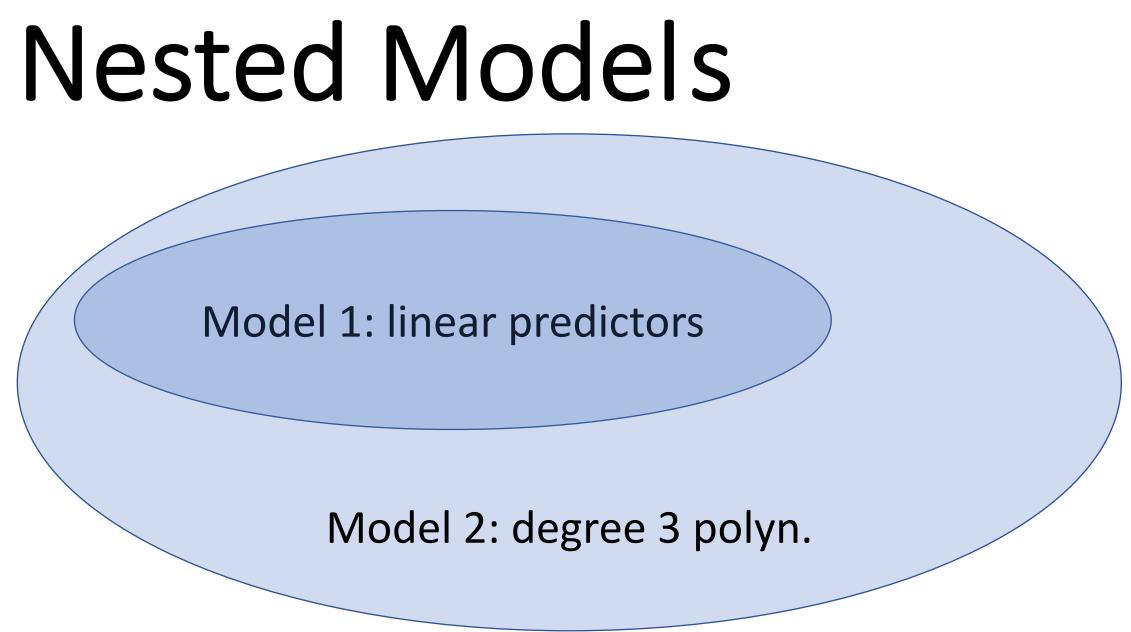
$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \mathcal{E}(h|\mathcal{D})$$

$$\stackrel{(2.12)}{=} \underset{h \in \mathcal{H}}{\operatorname{argmin}} (1/m) \sum_{i=1}^{m} \mathcal{L}((\mathbf{x}^{(i)}, y^{(i)}), h).$$

see Ch. 4.1 of mlbook.cs.aalto.fi

ML Methods and their Models

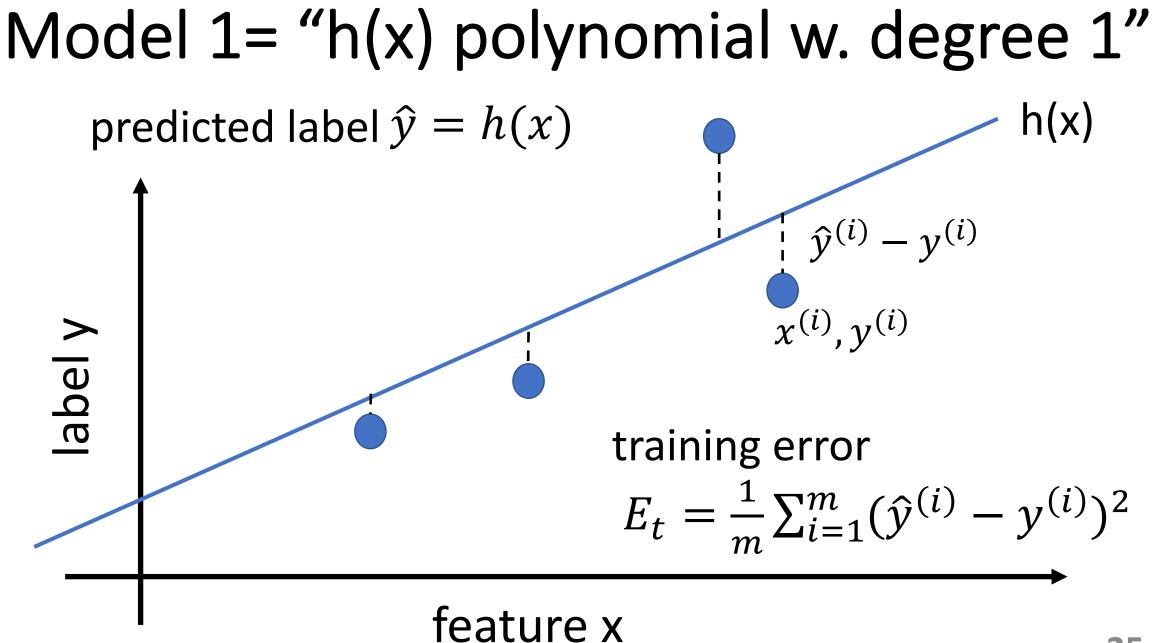
- linear regression uses linear hypothesis maps
- logistic regression uses linear hypothesis maps
- decision trees uses maps represented by flow-charts
- nearest neighbors uses piece-wise constant maps

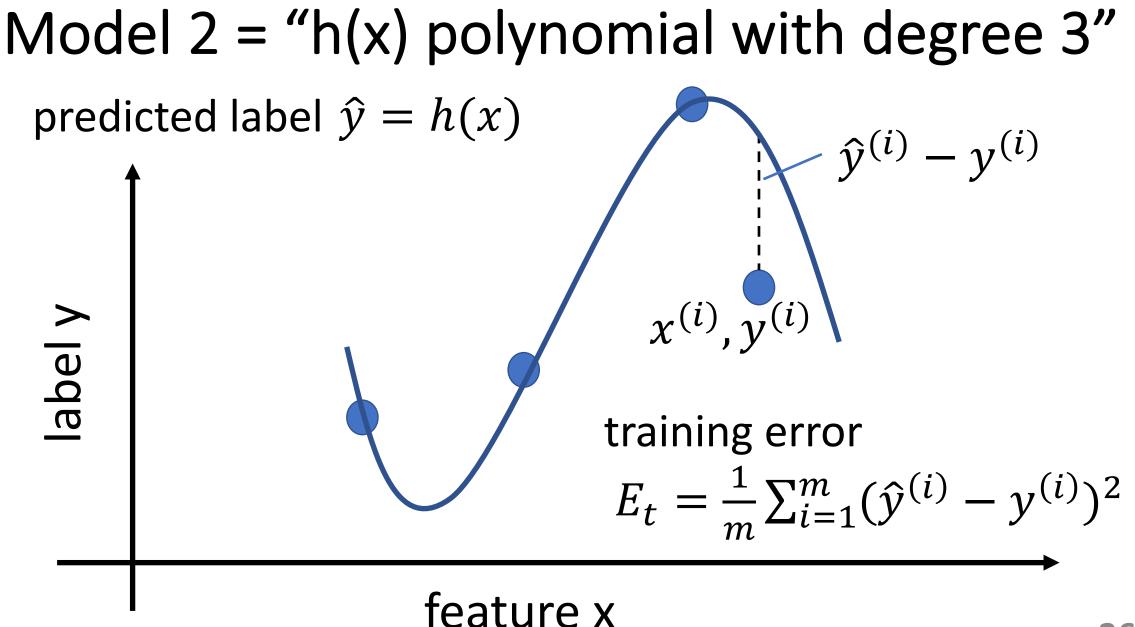


Nested Models

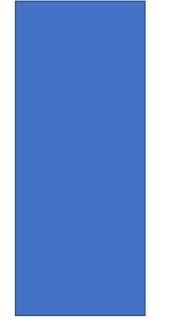
$$\mathcal{H}^{(r)} = \left\{ h(x) = \sum_{l=0}^{r} w_l x^l \text{ with some } w_l \right\}$$

$$\begin{split} &\mathcal{H}^{(1)} \ ... \ linear \ hypotheses \\ &\mathcal{H}^{(4)} \ ... \ degree \ 4 \ polyn. \\ &\mathcal{H}^{(1)} \subset \mathcal{H}^{(2)} \subset \ \mathcal{H}^{(3)} \subset \mathcal{H}^{(4)} \subset ... \\ & \text{which model should we use } \end{split}$$



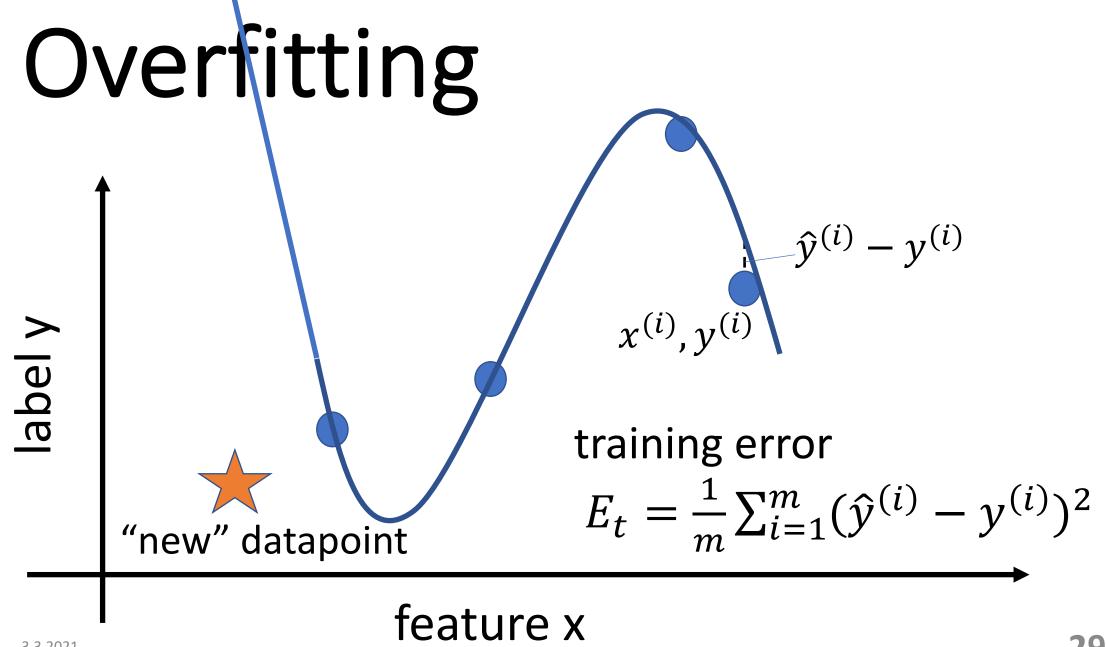


Training Errors



model 1 degree 1 polyn.

model 2: degree 3 polyn. small train error does not guarantee good performance outside the training set!



small training error only indicates that we have solved the ERM optimization problem

Model Validation and Selection

Learn and Validate!

•divide datapoints into two subsets

training and validation set

•train.set: used to learn a hypothesis \hat{h}

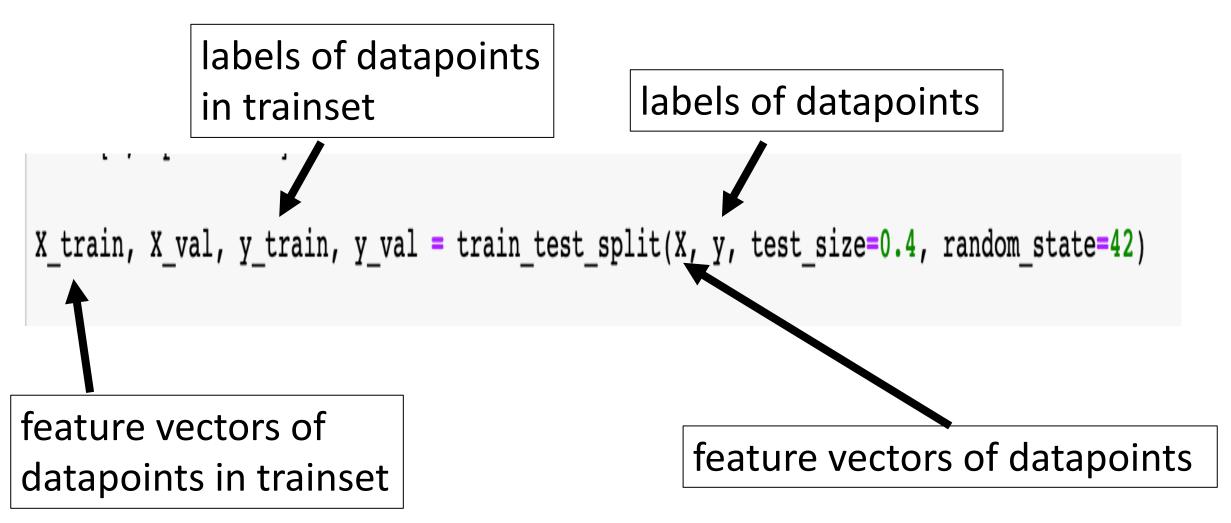
•val.set: used to probe \hat{h} outside trainset

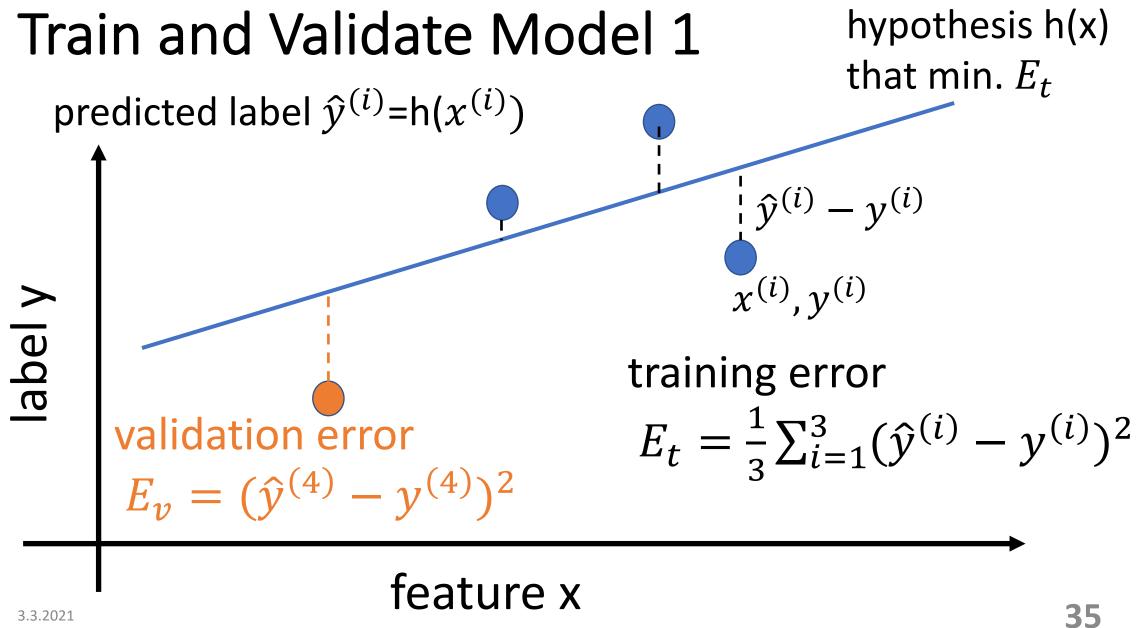
Split Data into Training and Validation Set !

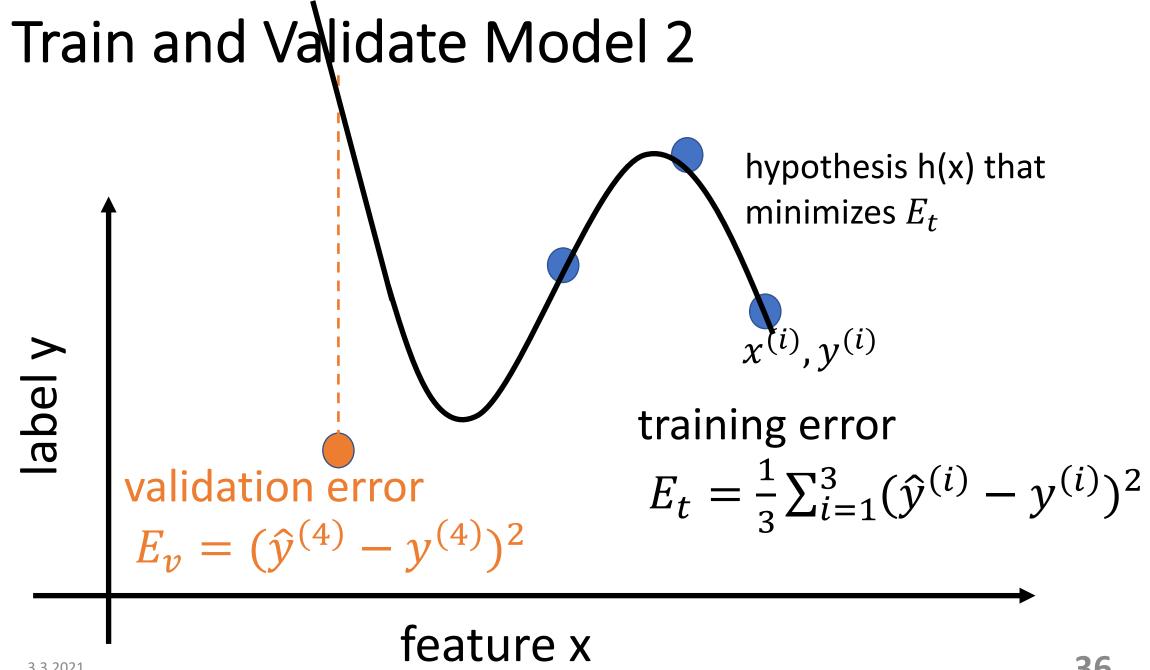
Python library:

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Split into Train and Val Set in Python







Train and Validate in Python

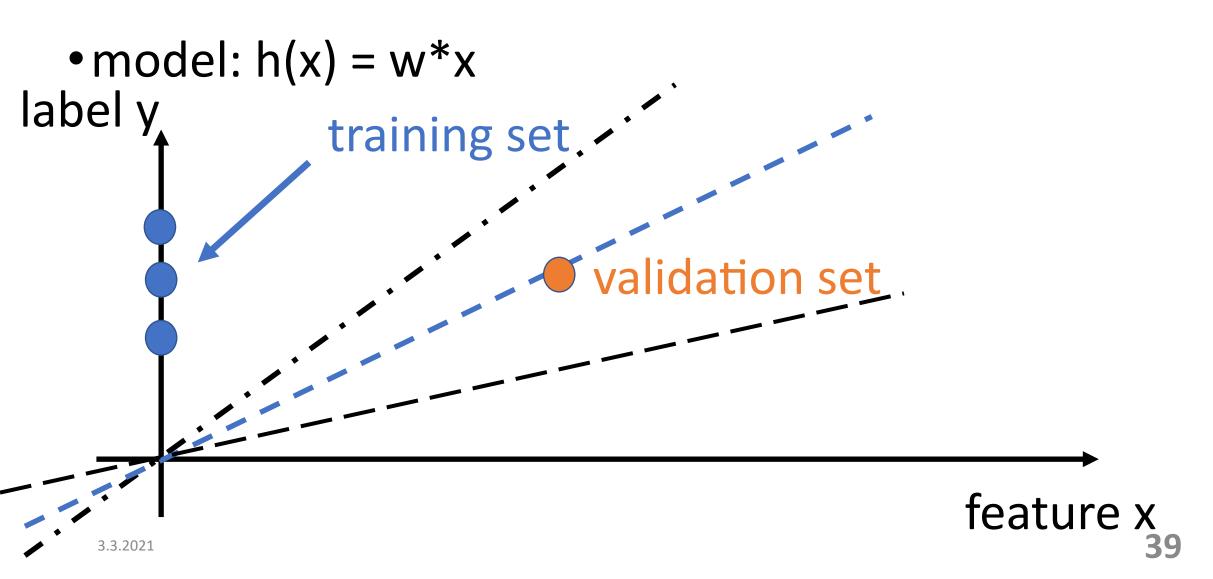
model.fit(X_train, y_train)
training_error = mean_squared_error(y_train,model.predict(X_train))
validation_error = mean_squared_error(y_val,model.predict(X_val))

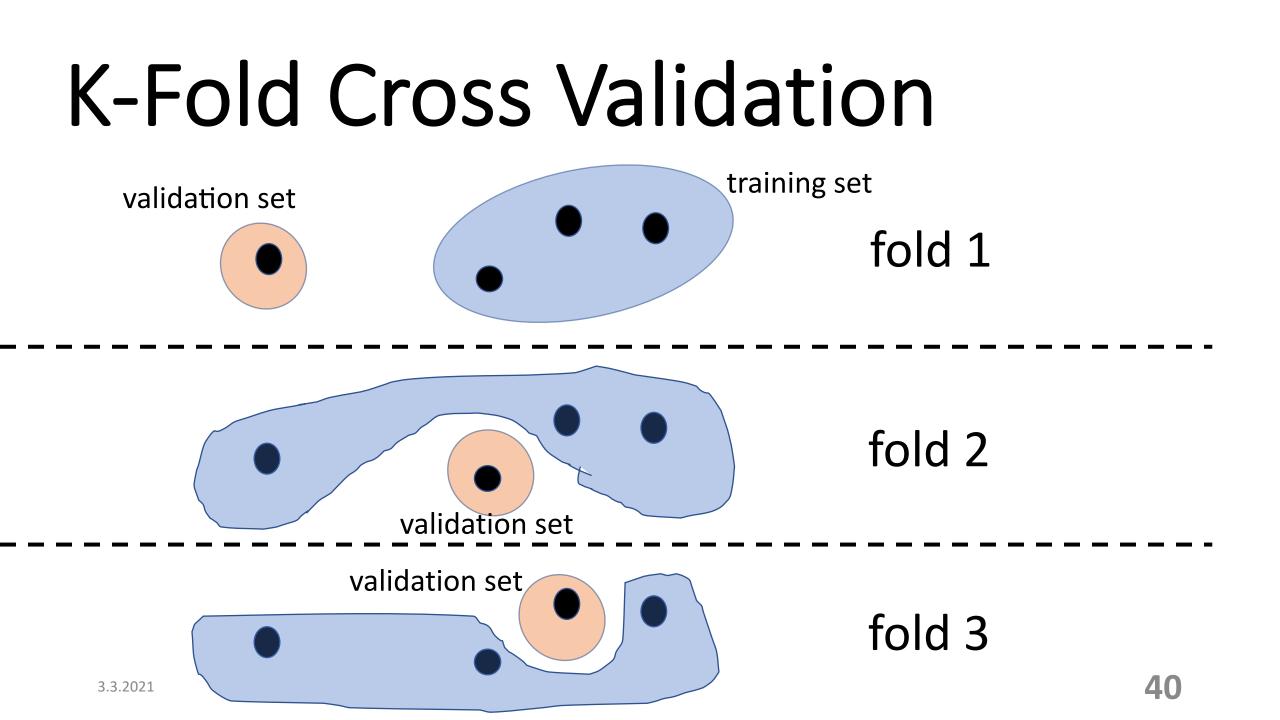
K-Fold Cross Validation

• might be unlucky with train/val split

- problematic for small datasets
- •IDEA: randomly split several times
- "average out" unlucky splits

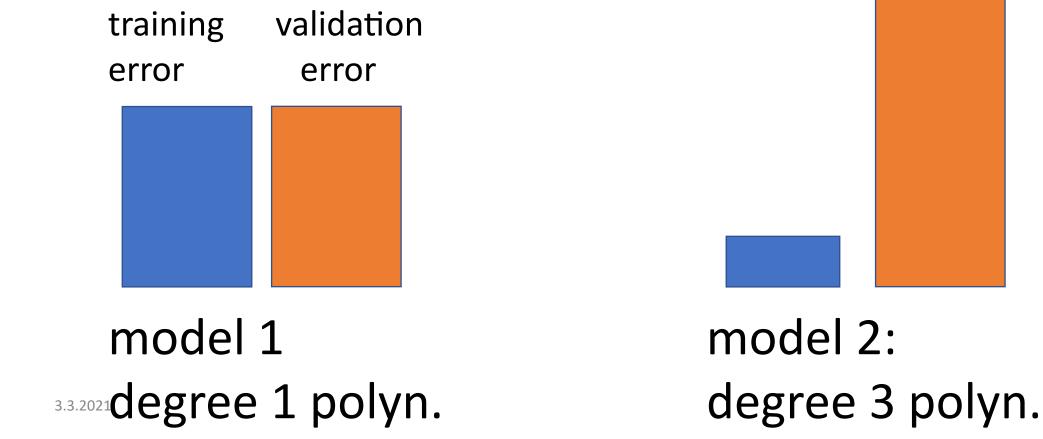
Unlucky Split into Train and Val Set





Basic Idea of Model Selection

choose model with smallest validation error!



Use Different Loss for Train and Val

- we can use different loss for training and validation
- this enables the comparison of different ML methods
- logistic regression uses log loss to learn hypothesis h1(x)
- SVM uses hinge loss to learn hypothesis h2(x)
- compare h1, h2 by their average 0/1 loss ("accuracy") on val. set

Compare Log.Reg. and SVM in Python

```
# split dataset into training and validation set
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=42)
# learn hypothesis h1(x) by minimizing its average logistic loss on the training set
logreg= LogisticRegression(random_state=0).fit(X_train, y_train)
# compute validation error of learnt hypothesis h1(x) using average 0/1 loss (accuracy)
```

```
val_error_logreg = logreg.score(X_val, y_val)
```

```
svmclf = svm.SVC()
#learn hypothesis h2(x) by minimizing its average hinge loss on the training set
svmclf.fit(X_train, y_train)
# compute validation error of learnt hypothesis h2(x) using average 0/1 loss (accuracy)
val_error_svm = svmclf.score(X_val, y_val)
```

print("accuracy of logistic regression on validation set:",val_error_logreg)
print("accuracy of logistic regression on validation set:",val_error_svm)

Test Set

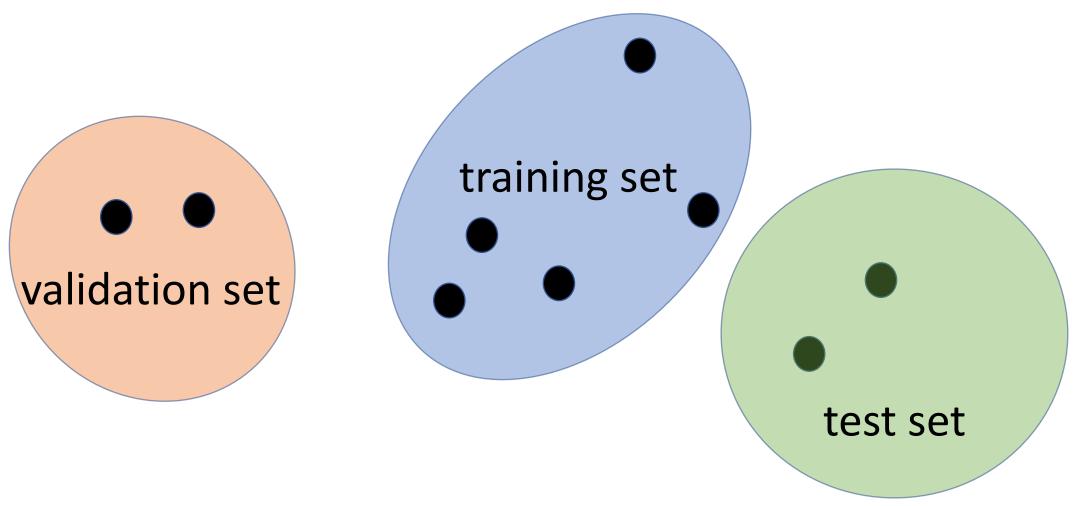
• chosen model $\mathcal{H}^{(r)}$ with validation error E_{v}

•validation error E_{v} is a poor performance indicator

• E_v too optimistic since $\mathcal{H}^{(r)}$ choosen with smallest E_v

need a test set different from train. and valset

Split Data into Train, Val and Test Set



Model Selection Recipe

- input: list of candidate models $\mathcal{H}^{(1)}, \mathcal{H}^{(2)}, \dots, \mathcal{H}^{(M)}$
- for each candidate model $\mathcal{H}^{(l)}$, l = 1, ..., M:
 - learn optimal hypothesis $\hat{h}^{(l)}$ by min. train. error
 - compute validation error $E_v^{(l)}$ on val. set
- choose $\hat{h}^{(r)} \in \mathcal{H}^{(r)}$ with min. val. error $E_v^{(r)} = \min E_v^{(l)}$
- compute test error of $\hat{h}^{(r)}$ on test set

How Large should we choose the Validation Set ?

validation error is sum of individual loss terms

$$E_{v} = \frac{1}{m_{v}} \sum_{i=1}^{m_{v}} (h(x^{(i)}) - y^{(i)})^{2}$$

loss $L^{(i)}$ for i-th datapoint

interpret data as realizations of i.i.d. random variables (RV), => loss values $L^{(i)}$ become realizations of RVs

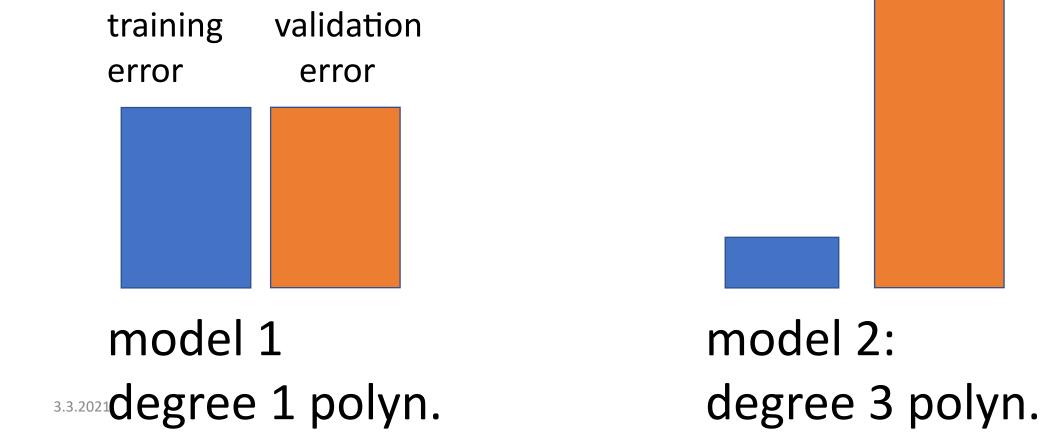
validation error E_v also becomes realization of RV with mean $E\{E_v\} = E\{L^{(i)}\}$ and variance $\sigma_v^2 = \frac{1}{m_v}\sigma_i^2$ with σ_i^2 being the (common) variance of $L^{(i)}$

The Effective Dimension of a Model

Basic Idea of Model Selection

choose model with smallest validation error!

50



Effective Dimension

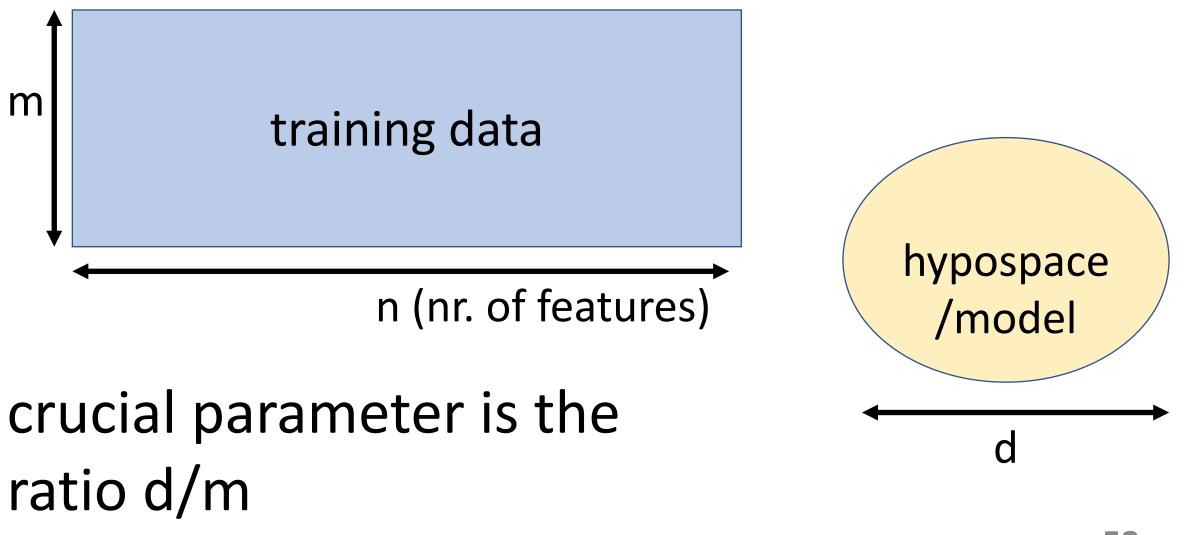
• we define effective dimension d of a hypothesis

space as maximum number of datapoints that can be

perfectly fit by some hypothesis in that space

• provides a measure for size of hypospace!

Data and Model Size



Effective Dim. Linear Maps

- linear map can perfectly fit m data points with n features, as soon as $n \ge m$ (see Ch 6.1)
- eff.dim. of linear maps = nr. of features

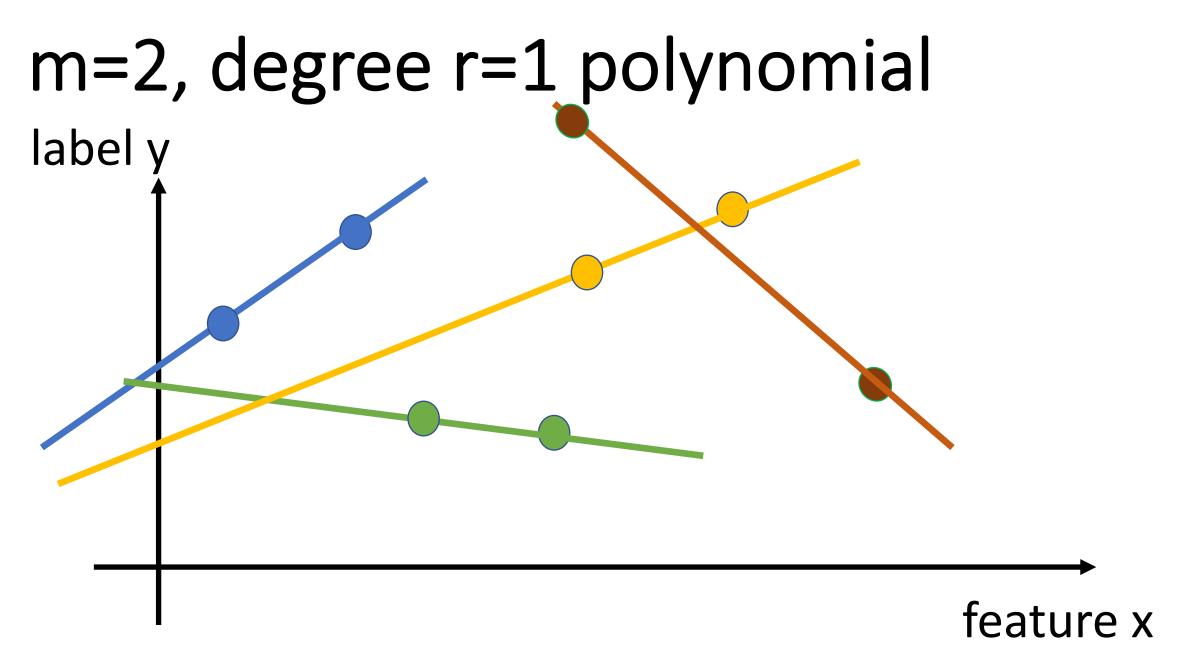
• d = n

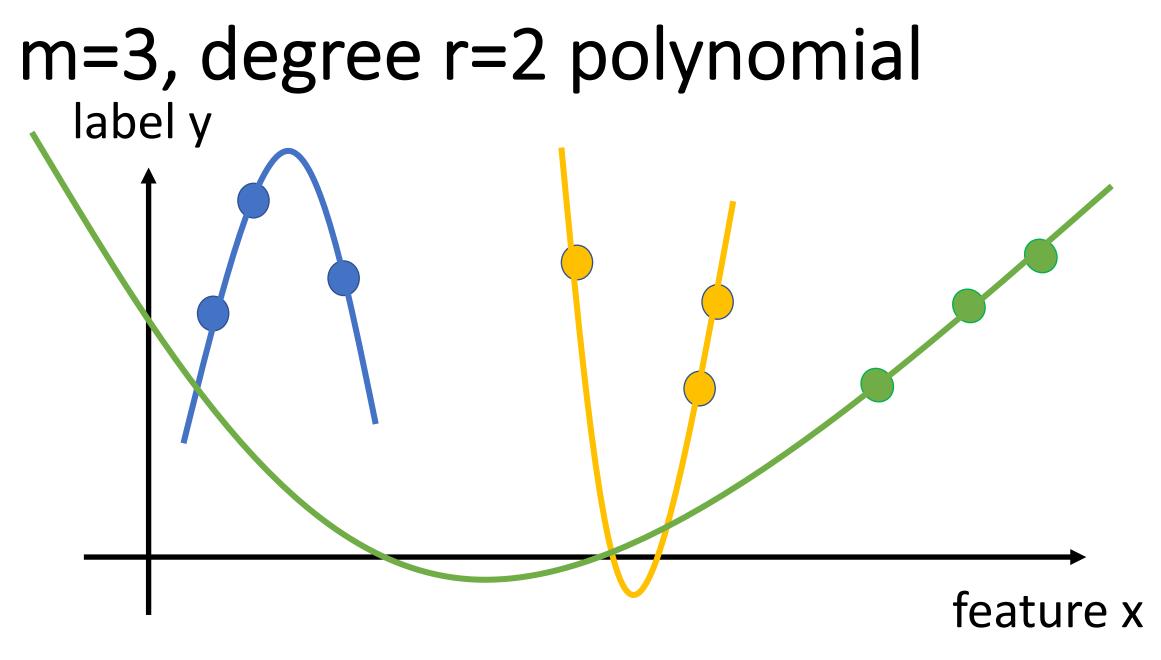
Effective Dim. Polyn. Reg.

perfectly fit (almost) any m data points using polynomials of max degree r as soon as

r+1 ≥ m

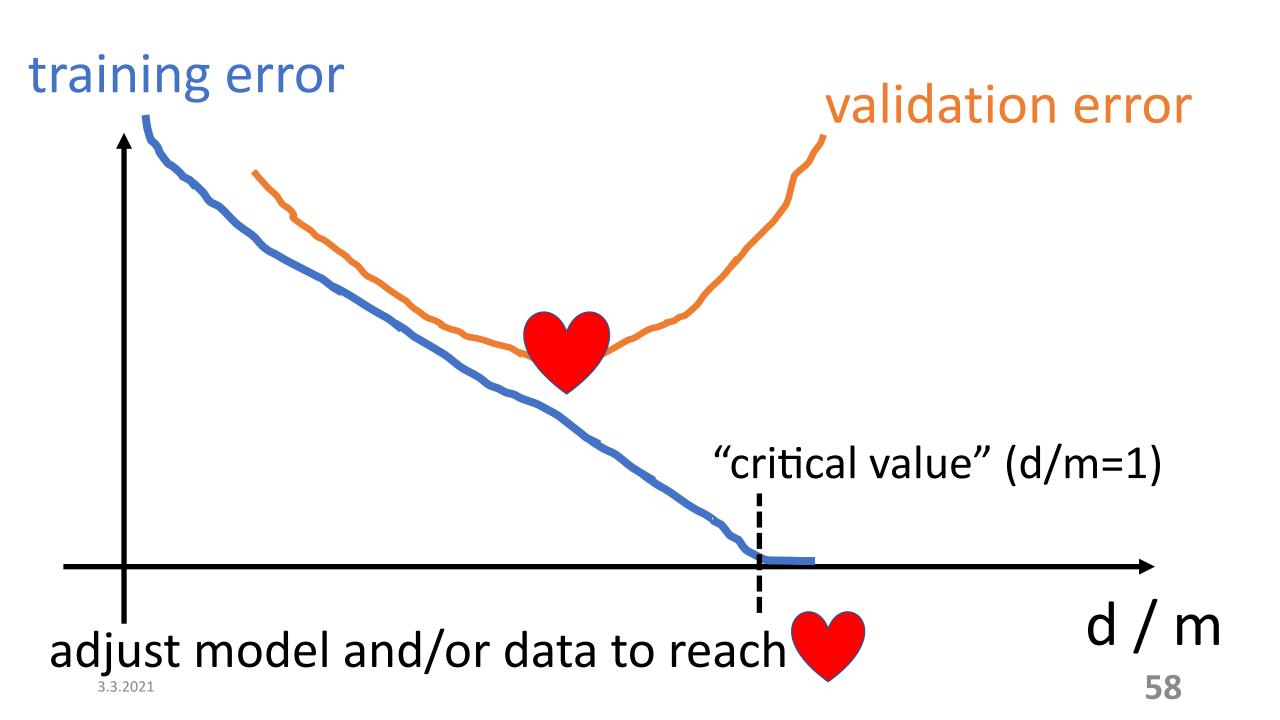
-> d = r+1 (effective dim. of polyn. regression equals the max. polyn. degree plus one!)





Data Hungry ML Methods

- millions of features for datapoints (e.g. megapixel image)
- eff.dim. d of linear maps is also millions
- eff.dim d of deep nets is millions ... billions
- can perfectly fit any set of 100000s (!) of datapoints
- training error will be zero (overfitting!)



Take Home Messages

- ML methods using large models tend to overfit
- probe/validate learnt hypothesis outside trainset
- train on trainset, then validate on val.set
- choose model with minimum val. error
- compute test error for chosen model

What's Next ?

- so far, assume a given list of candidate models
- how to produce a good list of candidate models?
- lecture "Diagnosing ML" to find good candidate models
- lecture "Regularization" on manipulating "d/m"

Thank You !