CS-C3240 - Machine Learning

Model Regularization

Data Augmentation. Soft Model-Selection. Transfer Learning. Multi-Task Learning. Semi-Supervised Learning.

Alexander Jung

10.3.2021

What I want to teach you today:

- basic idea of regularization
- regularization as soft model selection
- basic idea of data augmentation
- equivalence between regularization and data aug.

What is ML?

informal: learn hypothesis out of a hypothesis space or "model" that incurs minimum loss when predicting labels of datapoints based on their features

see Ch. 4.1 of mlbook.cs.aalto.fi

Data and Model Size

bring d/m below critical value 1:

- increase m by using more training data
- decrease d by using smaller hypothesis space

bring d/m below critical value 1:

• increase m by using more training data

decrease d by using smaller hypothesis space

Data Augmentation

rotated cat image is still cat image

flipped cat image is still cat image

shifted cat image is still cat image

bring d/m below critical value 1:

- increase m by using more training data
- decrease d by using smaller hypothesis space

replace original ERM

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h)$$

with ERM on smaller $\widehat{\mathcal{H}} \subset \mathcal{H}$

$$\min_{h\in\widehat{\mathcal{H}}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h)$$

Prune Hypospace by Early Stopping

Soft Model Pruning via Regularization

Regularized ERM

learn hypothesis h out of model (hypospace) \mathcal{H} by minimizing

Regularized Linear Regression

- squared error loss
- linear hypothesis map $h(x) = w^T x = w_1 x_1 + \dots + w_n x_n$

$$\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)} - w^T x^{(i)}\right)^2 + \lambda \mathcal{R}(w)$$

- ridge regression uses $\mathcal{R}(w) = ||w||_2^2 = w_1^2 + \dots + w_n^2$
- Lasso uses $\mathcal{R}(w) = ||w||_1 = |w_1| + \dots + |w_n|$

Regularization = Implicit Pruning!

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h) + \lambda \mathcal{R}(h)$$

equivalent to

$$\min_{h \in \mathcal{H}^{(\lambda)}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h)$$

with pruned model $\mathcal{H}^{(\lambda)} \subset \mathcal{H}$

10.3.2021

Regularization = "Soft" Model Selection

Regularization does implicit Data Augmentation

augment with (infinitely many) realizations of RV! label y original datapoint augmented = + "noise"

feature x

Regularization =Implicit Data Aug.

Transfer Learning via Regularization

- Problem I: classify image as "shows border collie" vs. "not"
- Problem II: classify image as "shows a dog" vs. "not"
- ML Problem I is our main interest
- ullet only little training data $\mathcal{D}^{(1)}$ for Problem I
- much more labeled data $\mathcal{D}^{(2)}$ for Problem II
- pre-train a hypothesis on $\mathcal{D}^{(2)}$, fine-tune on $\mathcal{D}^{(1)}$

Multi-Task Learning via Regularization

- Problem I: classify image as "shows border colly" vs. "not"
- Problem II: classify image as "shows husky" vs. "not"
- ${}^{\bullet}\, {\rm training} \, {\rm data} \, {\mathcal D}^{(1)}$ for Problem I and ${\mathcal D}^{(2)}$ for Problem II
- jointly learn hypothesis $h^{(1)}$ on $\mathcal{D}^{(1)}$ and $h^{(2)}$ on $\mathcal{D}^{(2)}$
- require $h^{(1)}$ to be "similar" to $h^{(2)}$

training error of
$$h^{(1)}$$

min
 $\mathcal{E}(h^{(1)}|\mathcal{D}^{(1)}) + \mathcal{E}(h^{(2)}|\mathcal{D}^{(2)})$
 $+\lambda d(h^{(1)}, h^{(2)})$
 $h^{(1)}, h^{(2)}$
"distance" between $h^{(1)}$ and $h^{(2)}$

Semi-Supervised Learning via Regularization

- classify image as "shows border colly" vs. "not"
- ullet small labeled dataset $\mathcal{D}^{(1)}$
- massive image database $\mathcal{D}^{(2)}$ with unlabeled images
- train hypothesis h(.) on $\mathcal{D}^{(1)}$ with following structure:

$\mathcal{D}^{(1)}$ learn linear classifier f(.) learn feature map g(.)

$\mathcal{D}^{(2)}$ 35

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h) + \lambda \mathcal{E}(g | \mathcal{D}^{(2)})$$

use training error
to fine tune f(.) learn feature map g(.)
using large unlabeled

database $\mathcal{D}^{(2)}$

To sum up,

- regularization is a soft model pruning
- regularization does implicit data augmentation
- special cases of regularization
 - transfer learning
 - multi-task learning
 - semi-supervised learning

Questions ?