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What I want to teach you today:

•basic idea of regularization 

•regularization as soft model selection

•basic idea of data augmentation

•equivalence between regularization and data aug.
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What is ML ? 
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informal: learn hypothesis out of a hypothesis space or “model” 
that incurs minimum loss when predicting labels of datapoints 
based on their features

see Ch. 4.1 of mlbook.cs.aalto.fi
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“training error”



Data and Model Size
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training set

nr. of features n

m

hypospace
/model

dcrucial parameter is the 
ratio d/m 
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d / m
5

training error validation error

adjust model and/or data to reach 

“critical value” (d/m=1) 
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bring d/m below critical value 1:

• increase m by using more training data

• decrease d by using smaller hypothesis space
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bring d/m below critical value 1:

• increase m by using more training data

• decrease d by using smaller hypothesis space
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Data Augmentation
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add a bit of noise to features

feature x

label y original datapoint

augmented
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we have increased the dataset by factor 3 !  
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rotated cat image is still cat image
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flipped cat image is still cat image
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shifted cat image is still cat image
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bring d/m below critical value 1:

• increase m by using more training data

• decrease d by using smaller hypothesis space
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replace original ERM 
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degree 3 
polyn.

degree 2 
polyn.

Nested Models

degree 1 
polyn.
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10000 iterations

100 iterations
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Prune Hypospace by Early Stopping

10 iterations
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Soft Model Pruning 
via 
Regularization
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Regularized ERM
learn hypothesis ℎ out of 
model (hypospace) ℋ by minimizing

average loss on training set
(empirical risk of h)
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loss increase for datapoints 
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Regularized Linear Regression
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• ridge regression uses ℛ 𝑤 = 𝑤 )
) = 𝑤&) +⋯+𝑤*)

• Lasso uses ℛ 𝑤 = 𝑤 & = 𝑤& +⋯+ 𝑤*

• squared error loss 

• linear hypothesis map ℎ 𝑥 = 𝑤+𝑥 = 𝑤&𝑥& +⋯+𝑤*𝑥*
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Regularization = Implicit Pruning!
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with pruned model ℋ(3) ⊂ ℋ
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Regularization = “Soft” Model Selection
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Regularization 
does implicit
Data Augmentation
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augment with (infinitely many)
realizations of RV!

feature x

label y original datapoint
augmented
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= + ”noise” 



Regularization =Implicit Data Aug.

feature x

label y raw datapoint 
“perturbed” 
datapoint
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h(x)
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see Chapter 7.3 of mlbook.cs.aalto.fi
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Transfer Learning 
via 
Regularization



• Problem I: classify image as “shows border collie” vs. “not”

• Problem II: classify image as “shows a dog” vs. “not” 

•ML Problem I is our main interest

• only little training data 𝒟(#) for Problem I 

•much more labeled data 𝒟(&) for Problem II 

• pre-train a hypothesis on 𝒟(&) , fine-tune on 𝒟(#)
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𝒟(")
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𝒟($)

pre-train hypothesis #ℎlearn h by fine-tuning #ℎ
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Multi-Task Learning 
via 
Regularization



• Problem I: classify image as “shows border colly” vs. “not”

• Problem II: classify image as “shows husky” vs. “not” 

• training data 𝒟(&) for Problem I and 𝒟()) for Problem II 

• jointly learn hypothesis ℎ(&) on 𝒟(&) and ℎ()) on 𝒟())

• require ℎ(&) to be “similar” to ℎ())
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𝒟(")
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𝒟($)
jointly learn similar  
ℎ($) and ℎ(") for each dataset 
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𝑚𝑖𝑛
ℇ ℎ : 𝒟 : + ℇ ℎ = 𝒟 =

+λ𝑑(ℎ(:), ℎ(=))
ℎ(:), ℎ(=)

“distance” between ℎ(#) and ℎ(&)

training error of ℎ(&)training error of ℎ(#)
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Semi-Supervised Learning 
via 
Regularization



• classify image as “shows border colly” vs. “not”

• small labeled dataset 𝒟(&)

•massive image database 𝒟()) with unlabeled images

• train hypothesis h(.) on 𝒟(&) with following structure: 
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feature map
g(.)x

z lin. map
f(.)

h(x)



𝒟(")
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𝒟($)
learn feature map g(.) learn linear classifier f(.) 
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min56ℋ
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use training error
to fine tune f(.)

learn feature map g(.) 
using large unlabeled
database 𝒟 &



To sum up, 
•regularization is a soft model pruning

•regularization does implicit data augmentation

•special cases of regularization 

• transfer learning 

•multi-task learning 

• semi-supervised learning
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Questions ?
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