Decision Trees

Alexander Jung

Assistant Professor

Department of Computer Science

Aalto University

Machine Learning With Python

What are three main components of machine learning?

1. Data

Data

set of "data points" (atomic unit of information)

- data point has features and labels
- features are properties that can measured easily
- labels = higher-level facts or quantities of interest

Data Point = "Some Movie" features:

- x1 = movie duration in minutes
- x2 = screen time of Arnold Schwarzenegger

label: the movie rating (scale 0 ... 10)

Data = Bunch of Data Points

2. Hypothesis Space

How Many Predictors Are There?

x1 = 123.348, x2 = 40.456

Hypothesis Space "Decision Tree"

• infinitely many functions from x1,x2 to \hat{y}

restrict to subset of maps (hypothesis space)

subset of maps given by decision trees

Hypothesis Space of DTs

space of predictor maps given by DT that involve threshold tests for x1 and x2

sklearn.tree.DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(*, criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort='deprecated', ccp_alpha=0.0) [source]

numeric labels

discrete valued

label

A decision tree regressor.

sklearn.tree.DecisionTreeClassifier

class sklearn.tree.**DecisionTreeClassifier**(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0) [source

[source]

A decision tree classifier.

Read more in the User Guide.

3. Loss Function

Learning a Good DT

- decision tree defines a hypothesis space
- set of maps that are represented by DT
- quality of map measured by (average) loss
- can use any loss function

So What ?

- DT is a flow chart of predictor map
- DT define a hypothesis space
- DT can be combined with different loss functions
- DT can be used for regression or classification

Machine Learning With Python

Thank You !