CS-C3240 - Machine Learning

Hard Clustering

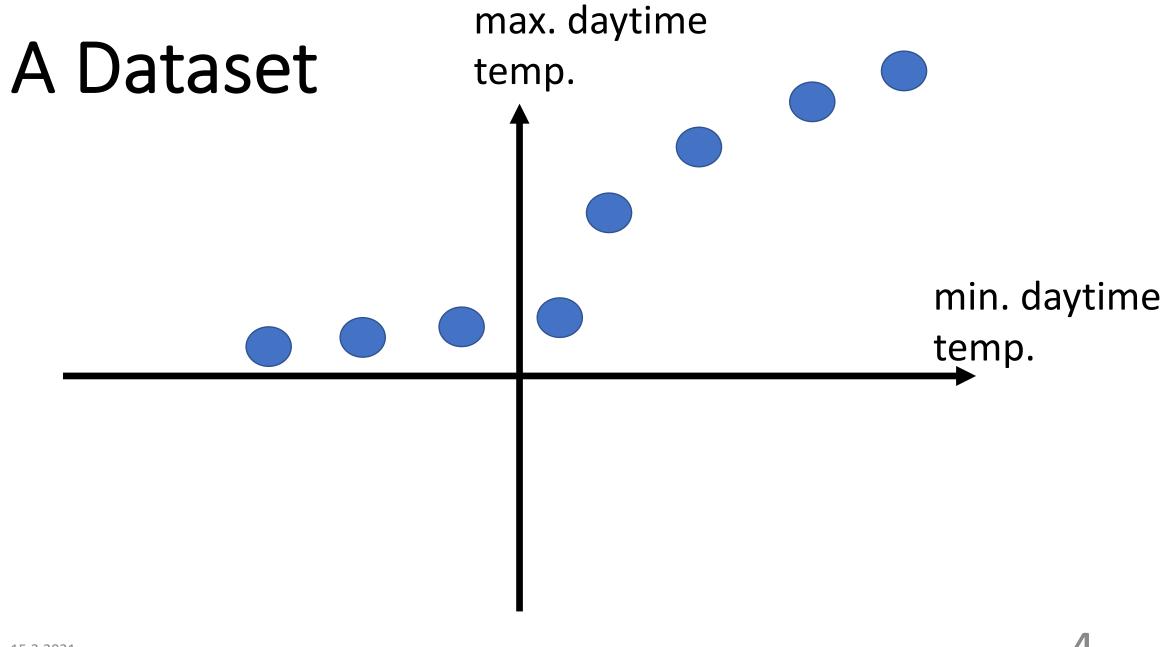
Alexander Jung

What I want to teach you today:

- basic idea of hard clustering
- k-means method for hard clustering
- optimization problem underlying k-means
- how to choose number of clusters

First things First

What are three main components of Machine Learning ?



What is a Cluster?

Noun [edit]

cluster (plural clusters)

 A group or bunch of several discrete items that are close to each other. [quotations ▼]
a cluster of islands

A cluster of flowers grew in the pot.

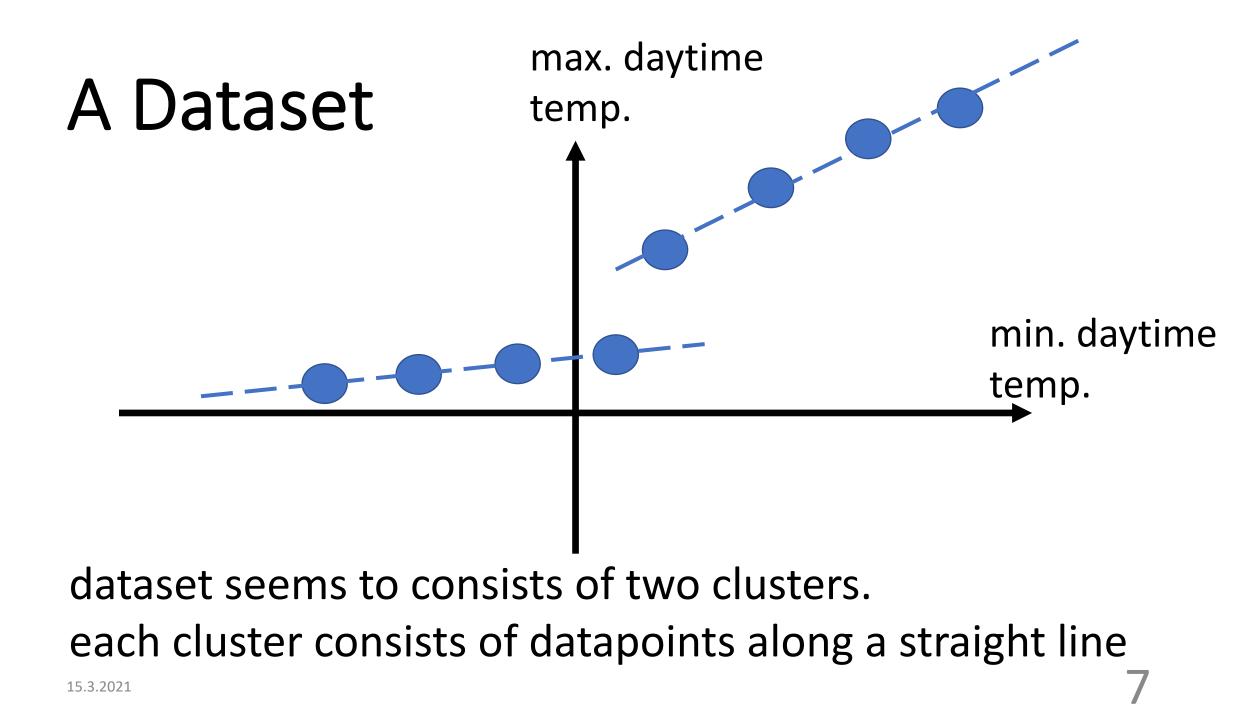
A leukemia cluster has developed in the town.

https://en.wiktionary.org/wiki/cluster

Informal Definition

a cluster corresponds to a subset of datapoints that are in some sense homogeneous or similar

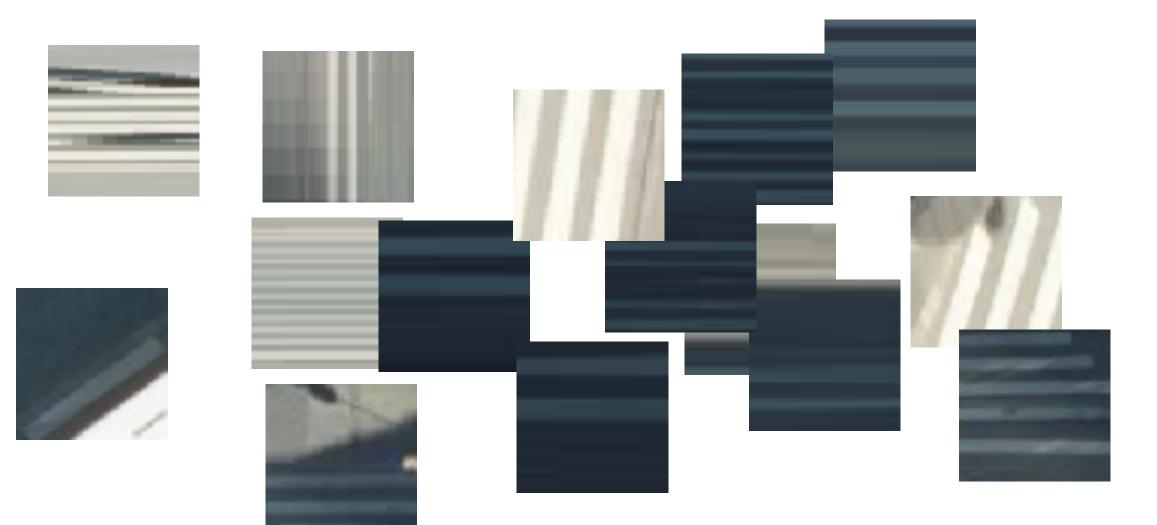
plethora of different definitions for "homogeneous" and "similar"



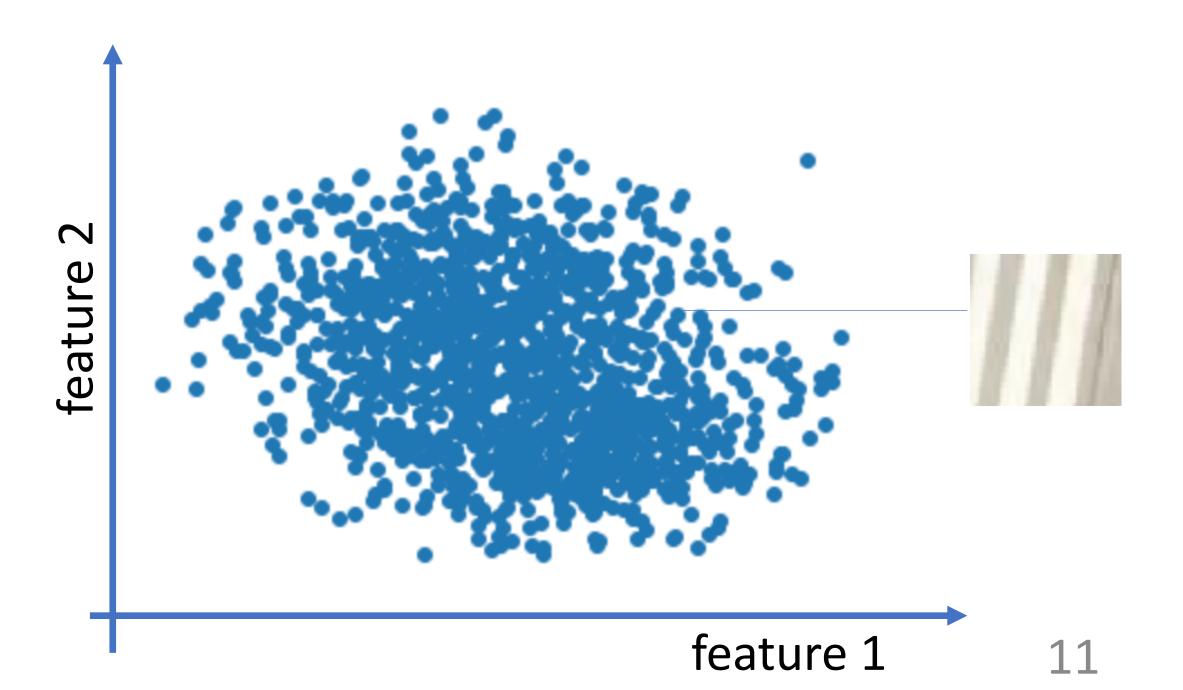
Clustering Applications

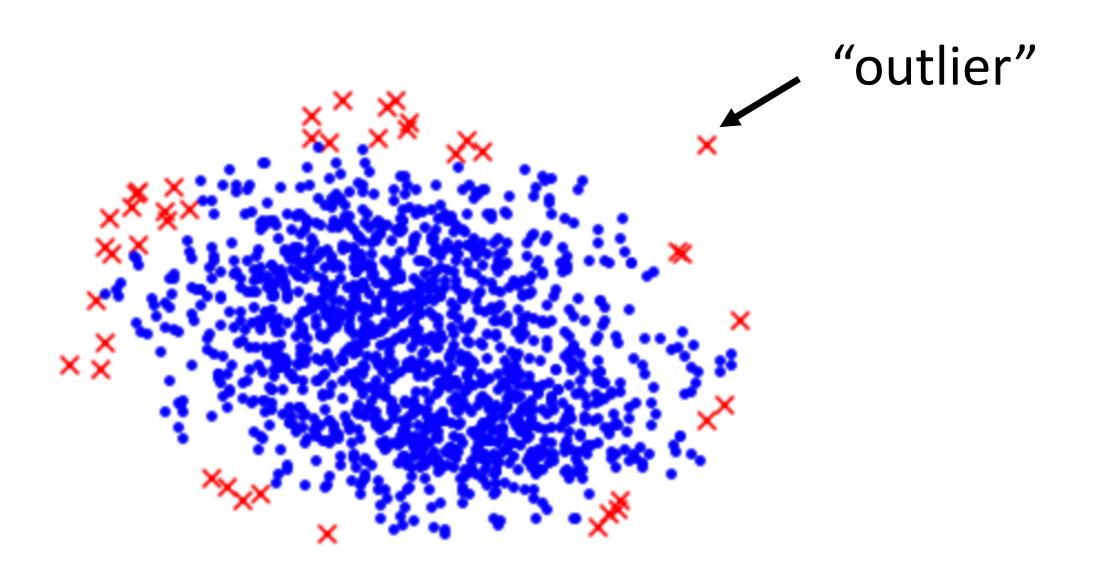
Outlier Detection

Dataset = "Bunch of Images"

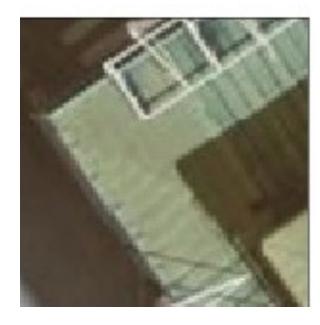


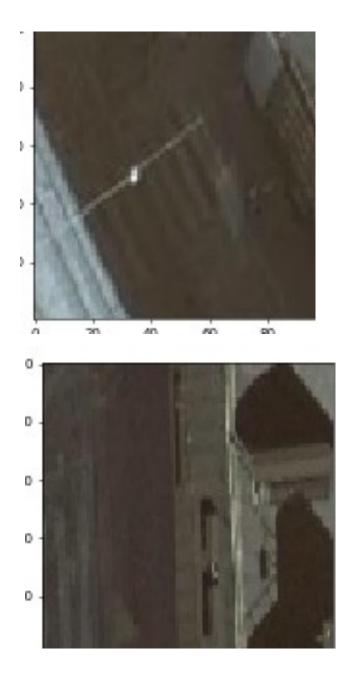
https://kartta.hel.fi/10





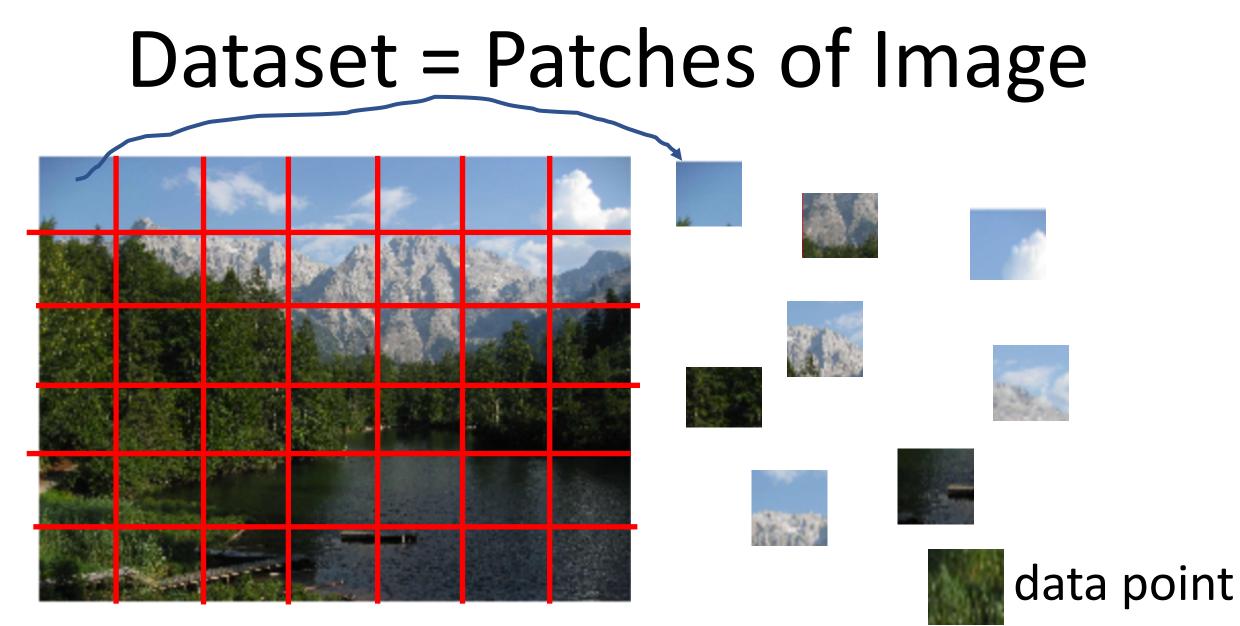
some outliers



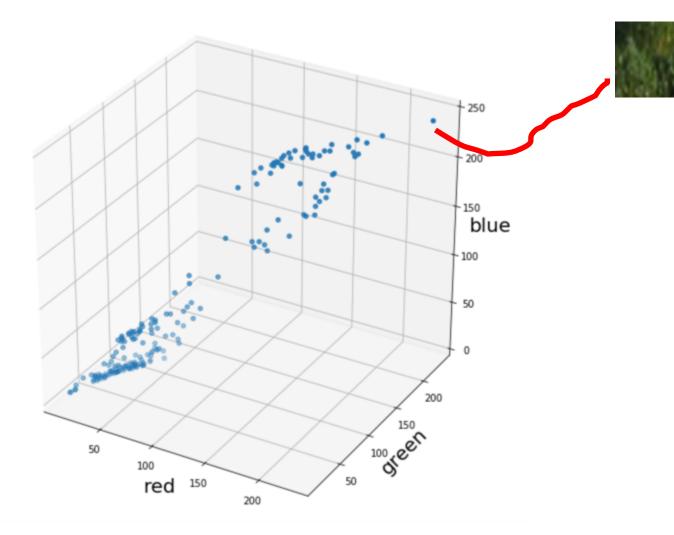


13

Image Segmentation

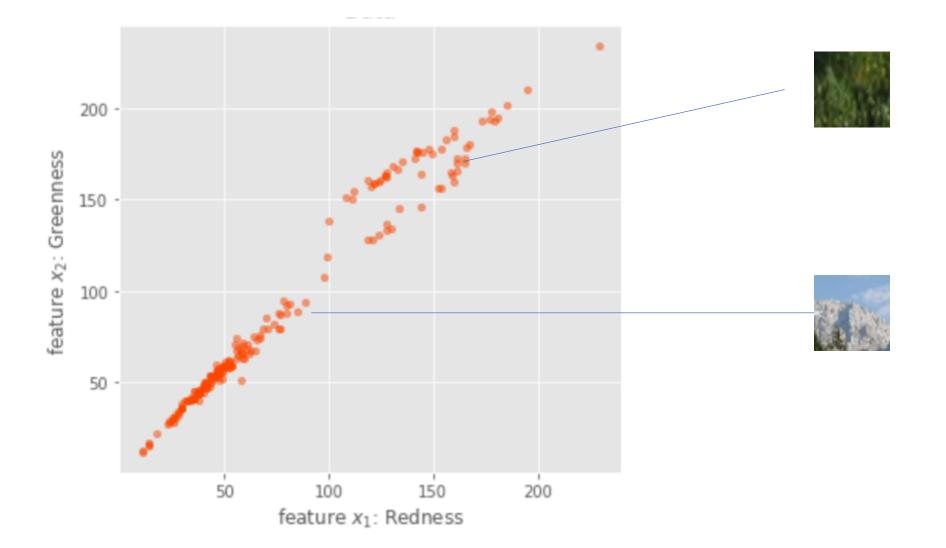


Using Three Features



three features: average red, green and blue component

Using Two Features (Red+Green)

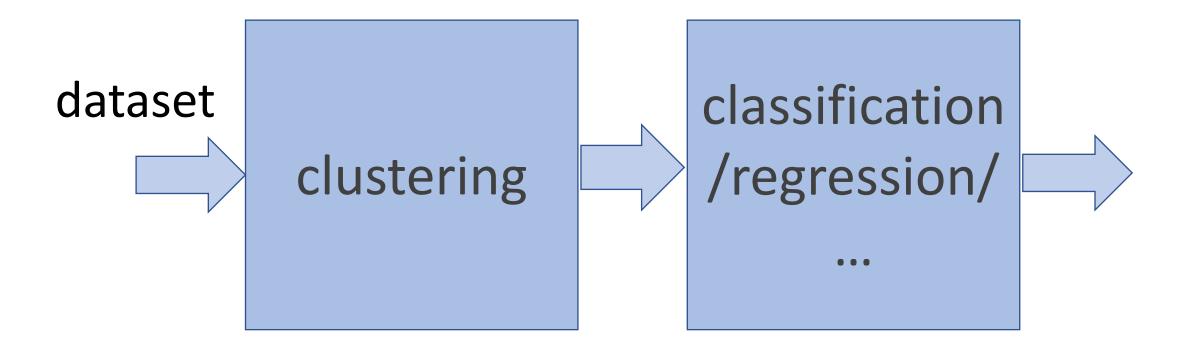


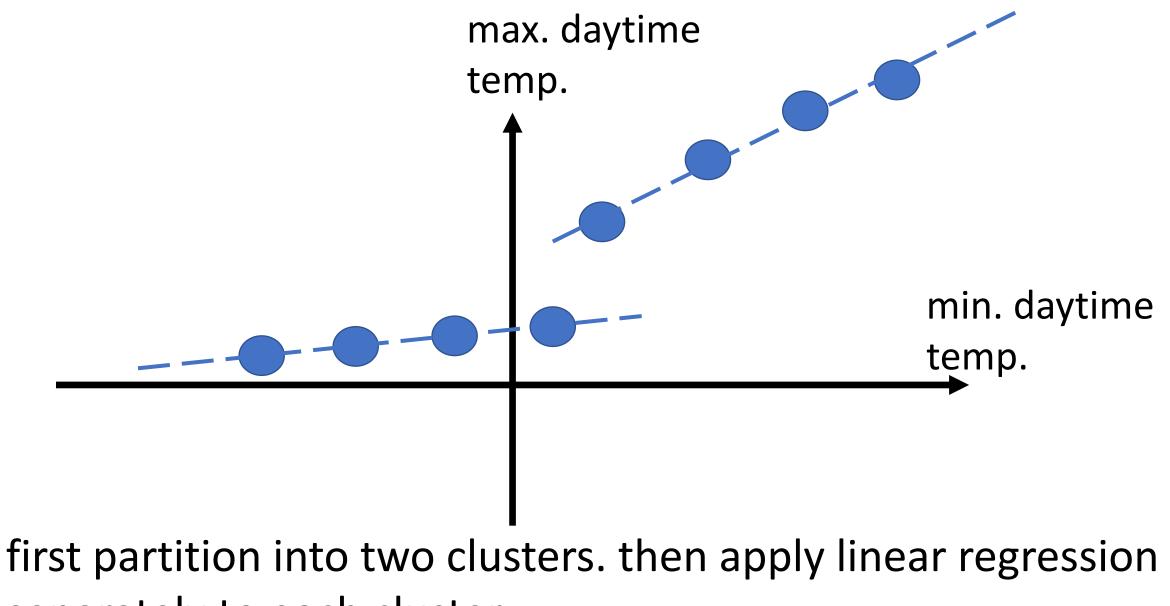
17

Use Clustering For Image Segmentation

Pre-Processing

Clustering as Pre-Processing





separately to each cluster

Hard Clustering

- datapoints $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$
- i-th datapoint characterized by n features

$$\boldsymbol{x}^{(i)} = \left(\boldsymbol{x}_1^{(i)}, \dots, \boldsymbol{x}_n^{(i)} \right)$$

- i-th datapoint belongs to one of k clusters
- cluster index of i-th datapoint is $y^{(i)} \in \{1, ..., k\}$

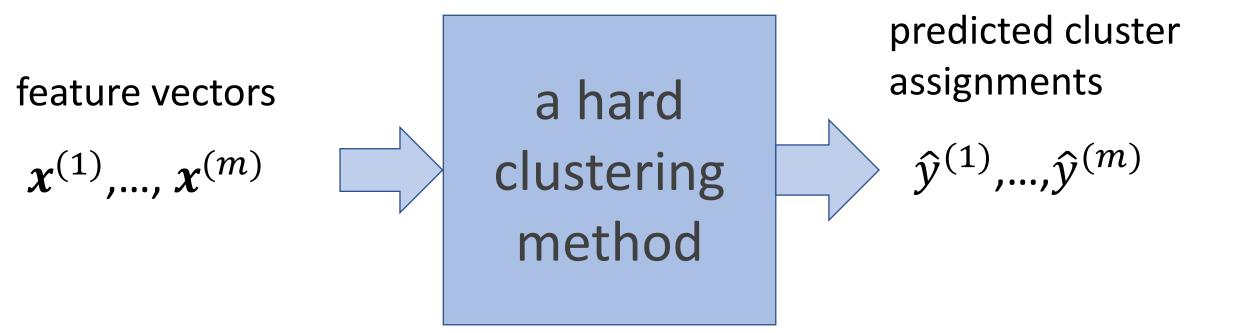
Hard Clustering Methods

- datapoints $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$
- cluster index of i-th datapoint is $y^{(i)} \in \{1, ..., k\}$
- hard clustering methods compute predicted cluster

indices $\hat{y}^{(i)}$ based solely on features

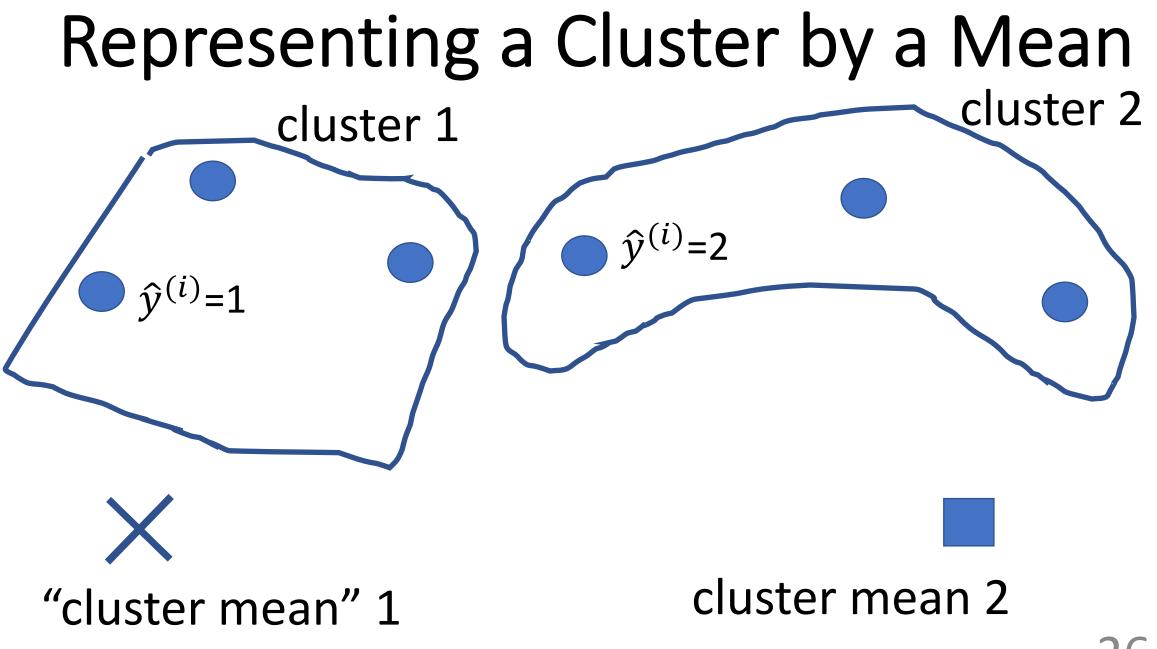
• does not require true cluster index $y^{(i)}$ of any datapoint

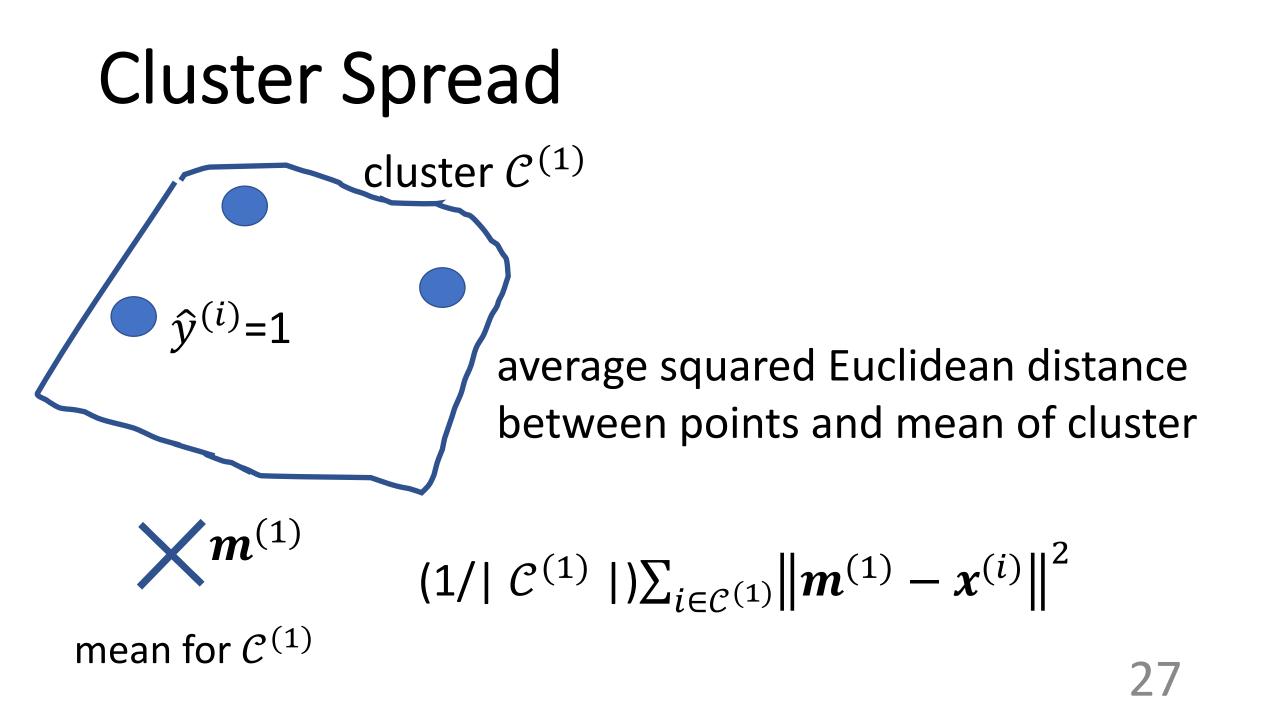
Hard Clustering Methods

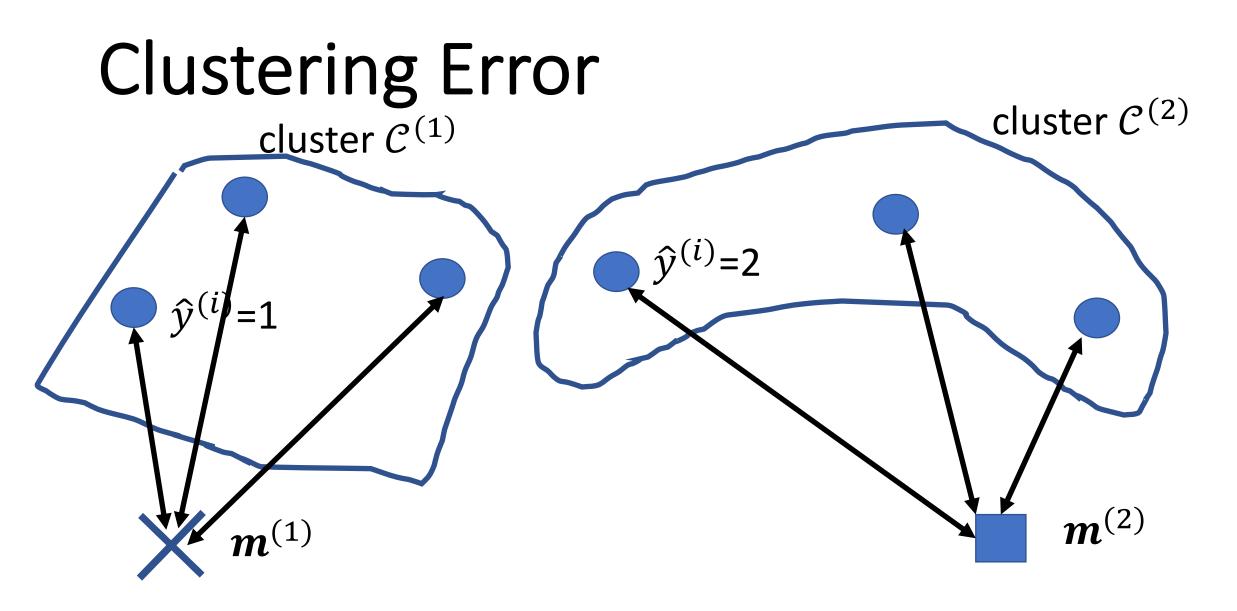


Hard Clustering with k-Means

25







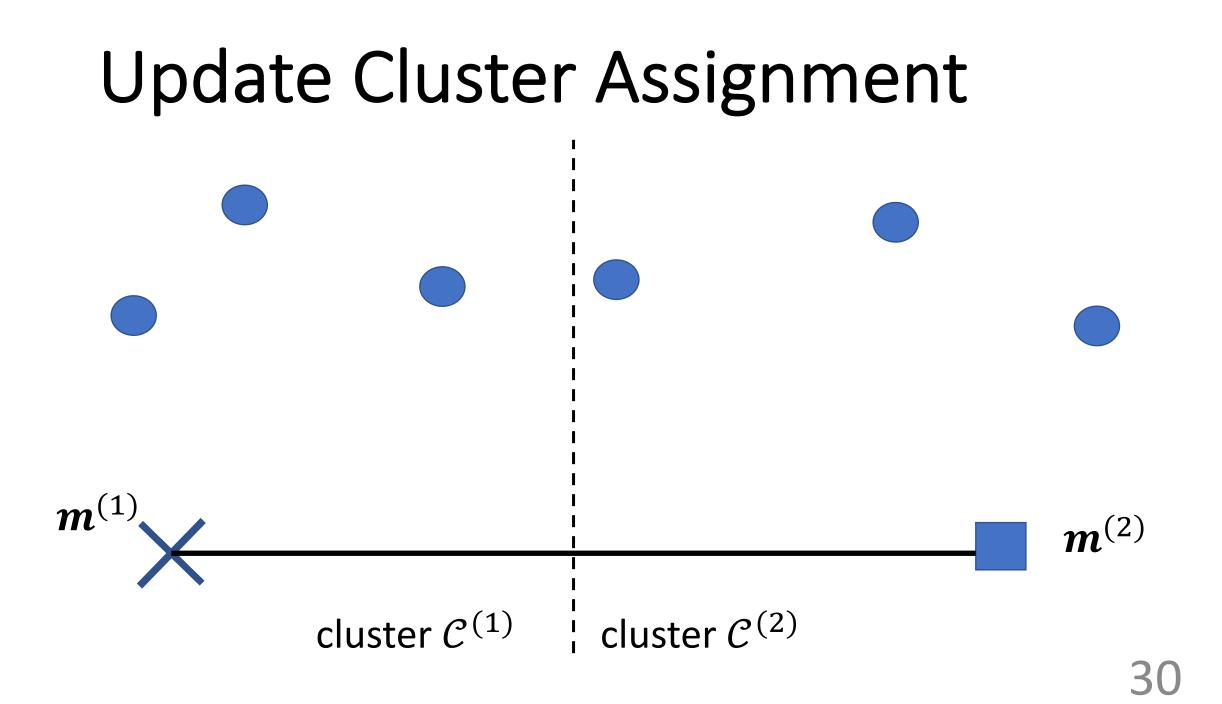
$$(1/m)\sum_{c=1}^{2}\sum_{i\in\mathcal{C}^{(c)}} \|\boldsymbol{m}^{(c)}-\boldsymbol{x}^{(i)}\|^2$$
 28

Update Cluster Assignments

for given cluster means, clustering error is minimized by assigning i-th datapoint to cluster with nearest cluster mean

$$\hat{y}^{(i)} \coloneqq c$$

with
$$\|\boldsymbol{m}^{(c)} - \boldsymbol{x}^{(i)}\|^2 = \min_{c'=1,...,k} \|\boldsymbol{m}^{(c')} - \boldsymbol{x}^{(i)}\|^2$$

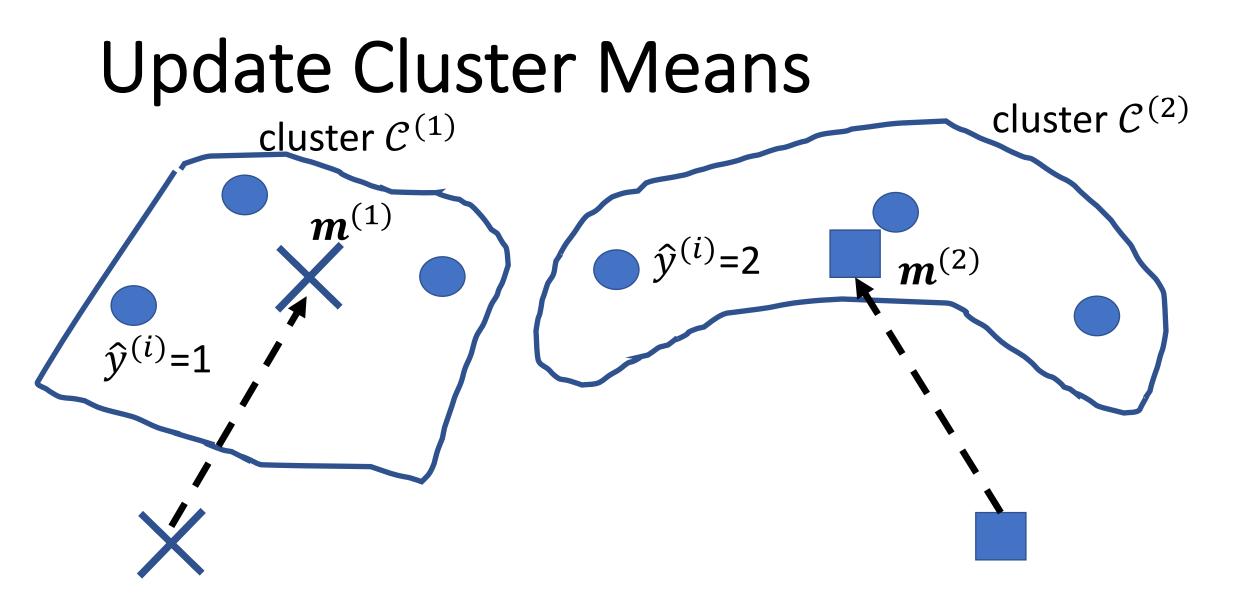


Update Cluster Means

for given cluster assignments, clustering error is minimized by representing c-th cluster by the cluster mean

$$m^{(c)} \coloneqq \frac{1}{|\mathcal{C}^{(c)}|} \sum_{i \in \mathcal{C}^{(c)}} x^{(i)}$$

with cluster $\mathcal{C}^{(c)} = \{i: \hat{y}^{(i)} = c\}$



Minimizing the Clustering Error

clustering error

$$\mathcal{E}(\{m^{(c)}\},\{\hat{y}^{(i)}\}) \coloneqq \frac{1}{m} \sum_{i=1}^{m} \left\| m^{(\hat{y}^{(i)})} - x^{(i)} \right\|^2$$

simultaneously finding cluster means $m^{(c)}$ and assignments $\hat{y}^{(i)}$ that minimize clustering error is difficult ("NP-hard")

https://cseweb.ucsd.edu/~avattani/papers/kmeans_hardness.pdf

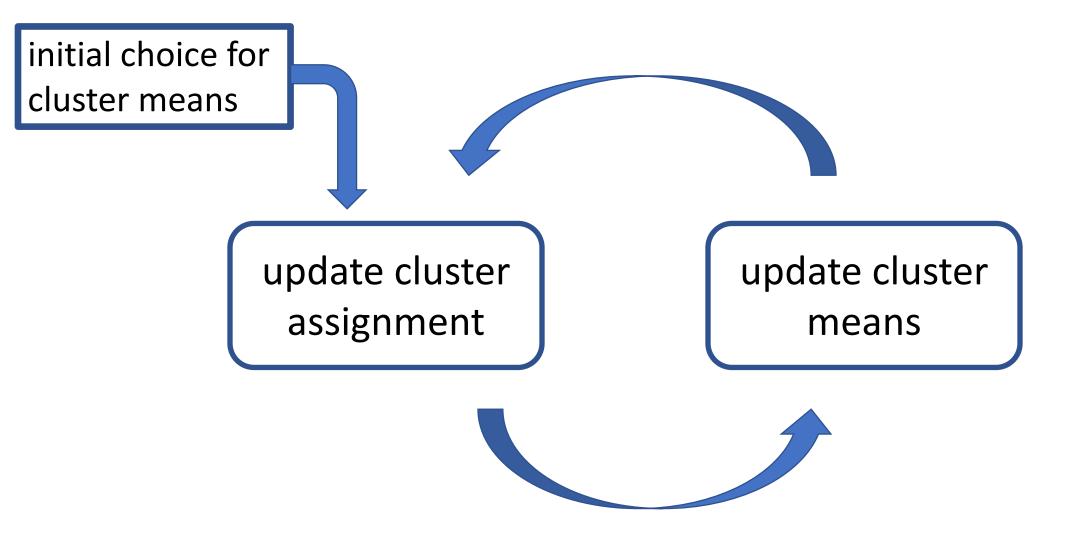
Alternating Minimization

clustering error $\mathcal{E}\left(\left\{m^{(c)}\right\}, \left\{\hat{y}^{(i)}\right\}\right) \coloneqq \frac{1}{m} \sum_{i=1}^{m} \left\|\boldsymbol{m}^{(\hat{y}^{(i)})} - \boldsymbol{x}^{(i)}\right\|^{2}$

for given assignments $\hat{y}^{(i)}$, finding cluster means $\boldsymbol{m}^{(c)}$ that minimize clustering error is easy

for given cluster means $m^{(c)}$, finding assignments $\hat{y}^{(i)}$ that minimize clustering error is easy

"k-Means"

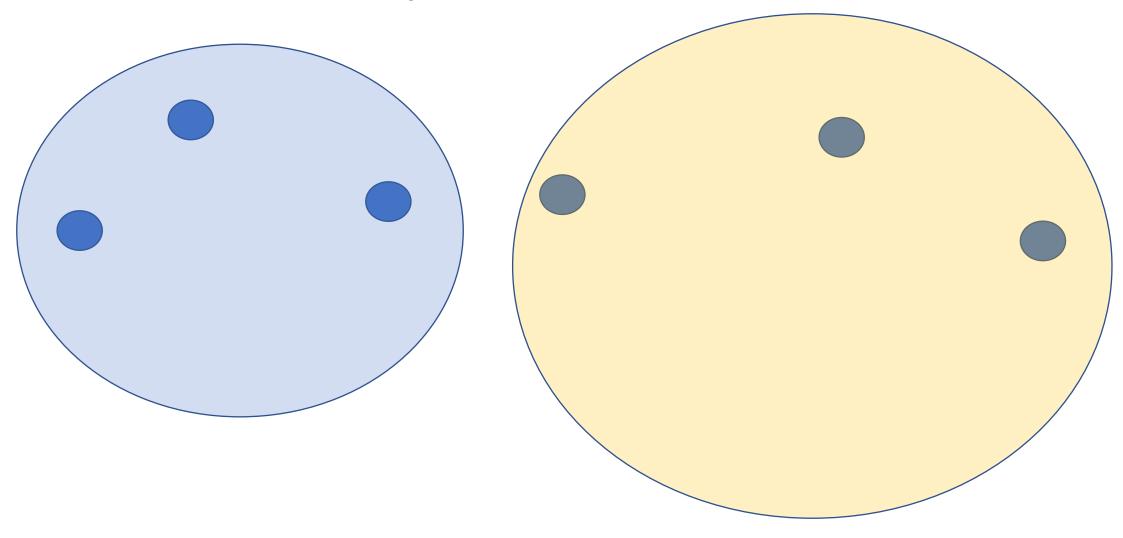


"k-Means" (Algorithm 8 mlbook.cs.aalto.fi)

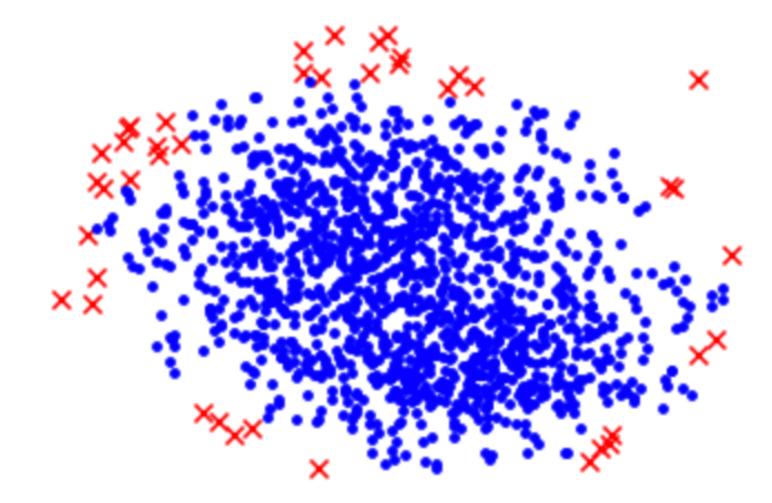
- Input: number k of clusters, initial cluster means
- •Step 1: update cluster assignments
- •Step 2: update cluster means
- •Go to Step 1 unless "Finished"

•Output: final cluster means

Cluster Shape of k-means Result



Clustering by k-means?



k-Means never increases Clustering Error !

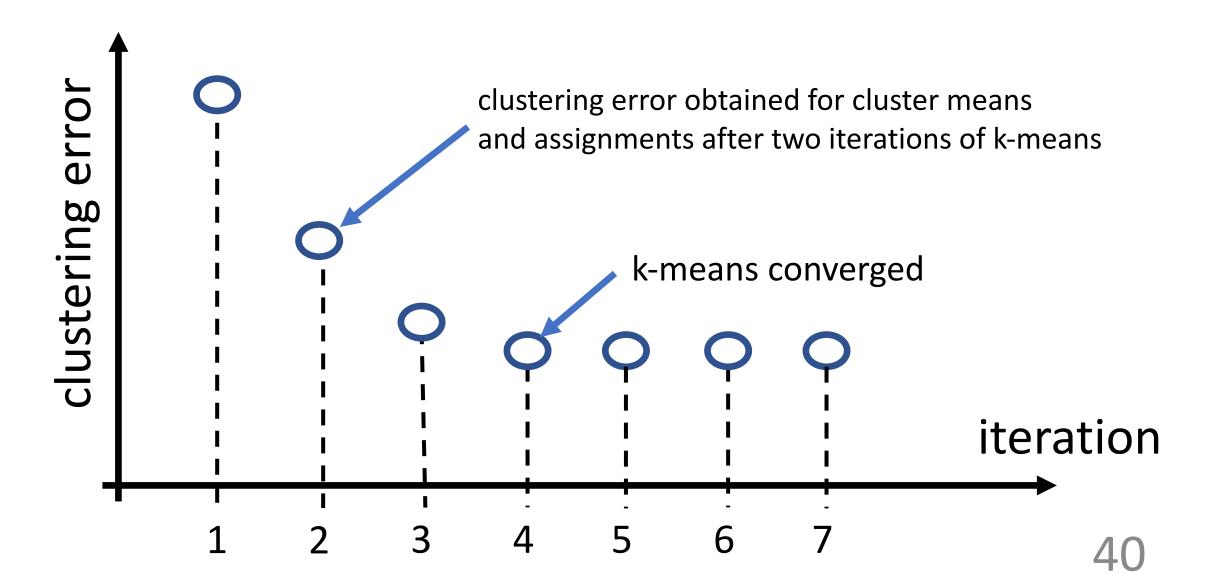
consider cluster means $m^{(c)}$ and assignments $\hat{y}^{(i)}$

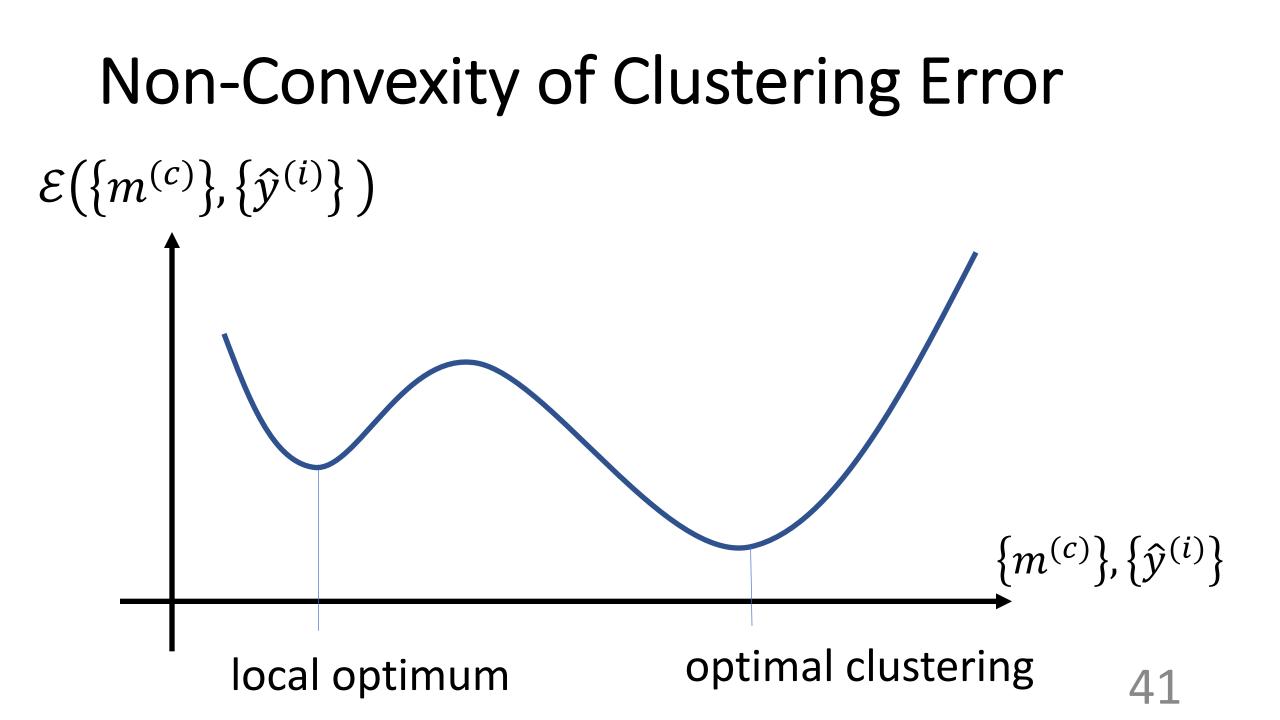
run one iteration of k-means

results in new cluster means $\widetilde{m}^{(c)}$ and assignments $\widetilde{y}^{(i)}$

 $\mathcal{E}(\{\widetilde{m}^{(c)}\},\{\widetilde{y}^{(i)}\}) \leq \mathcal{E}(\{m^{(c)}\},\{\widehat{y}^{(i)}\})$

k-Means as Iterative Optimization Method



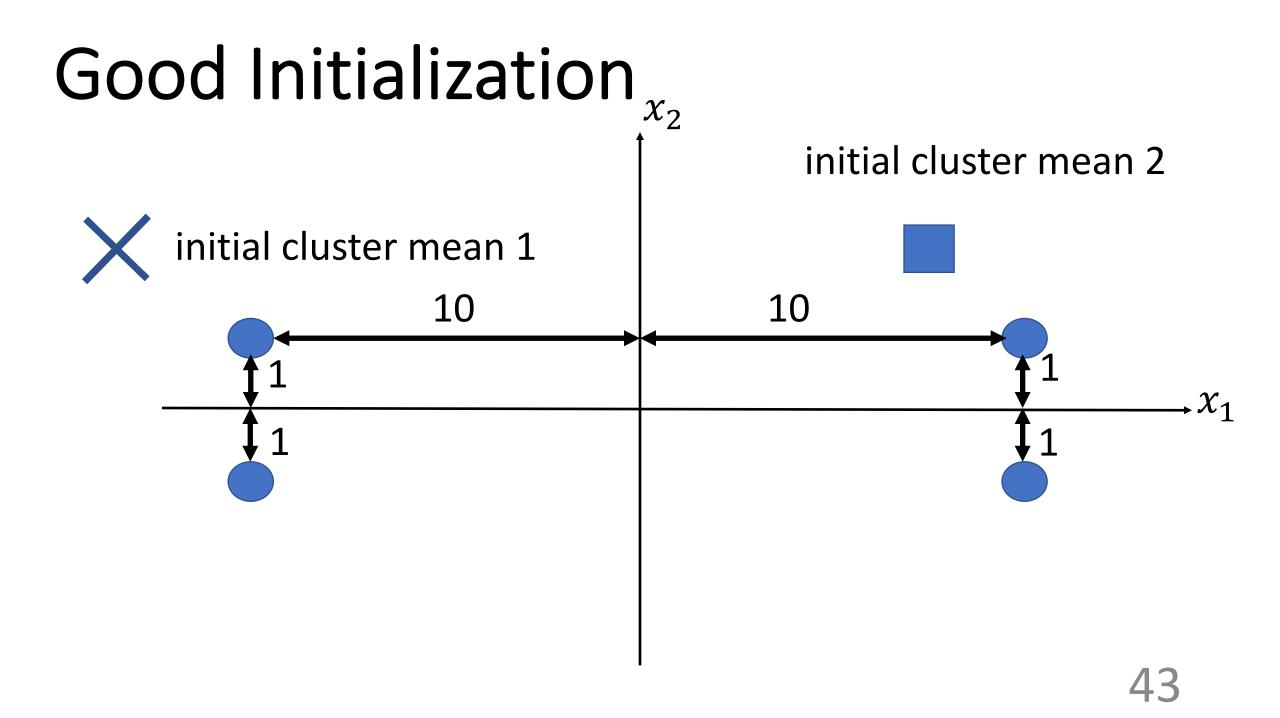


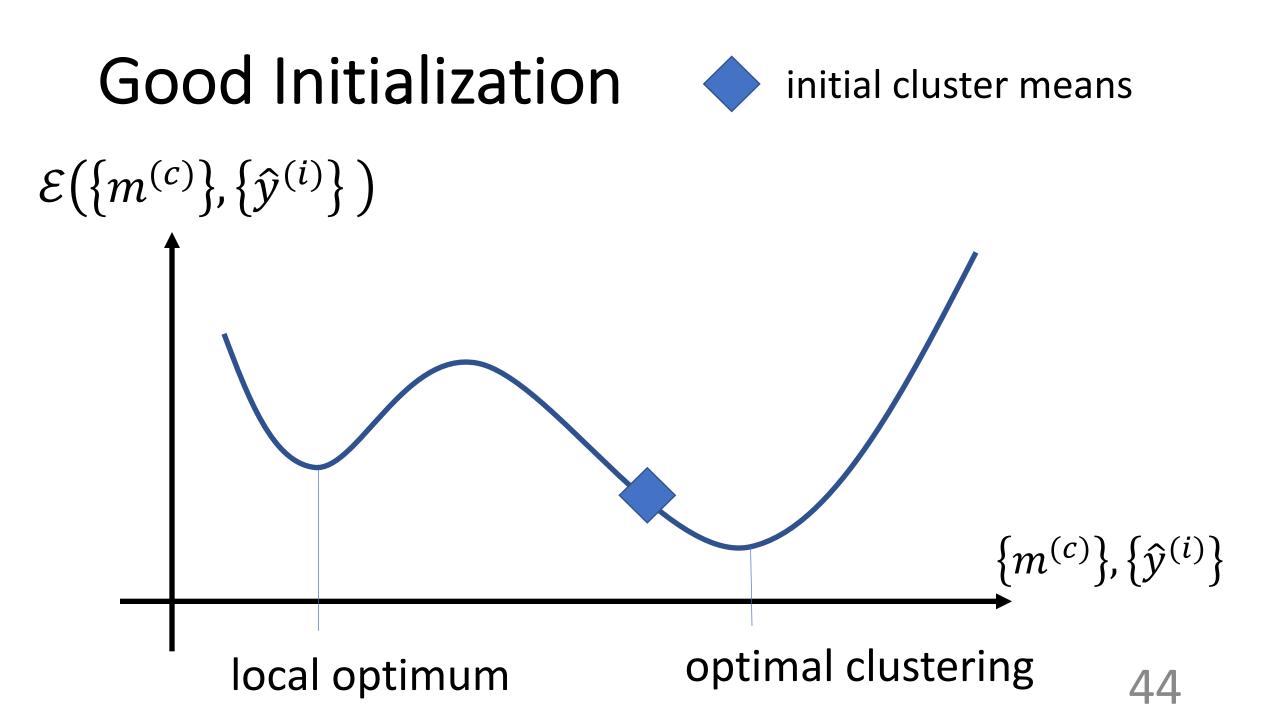
Initialization is Crucial

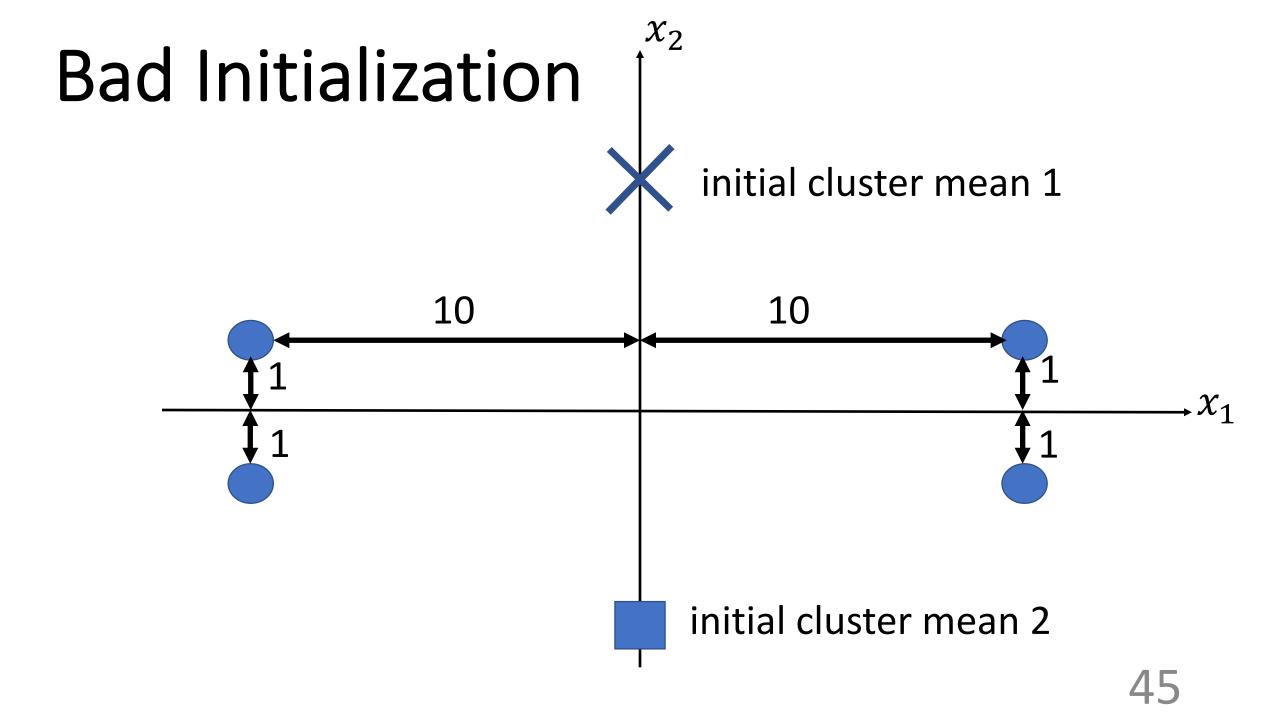
• k-means requires initial cluster means as inputs

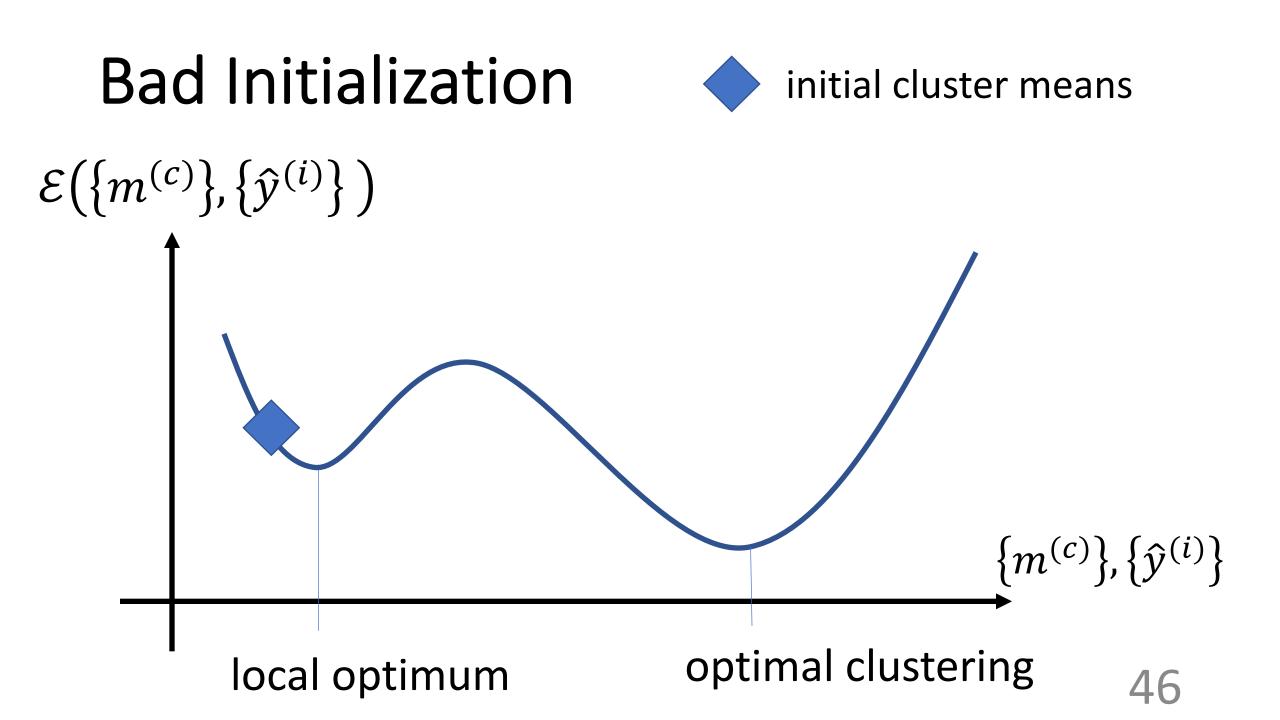
• k-means result depends crucially on init. means

• repeat k-means several times with different init.

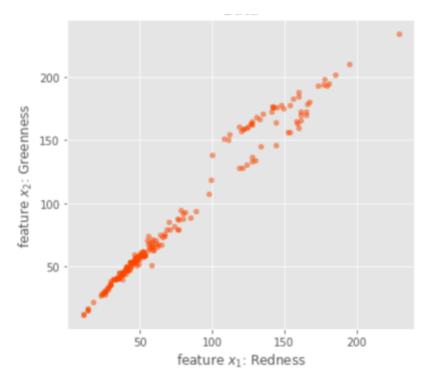








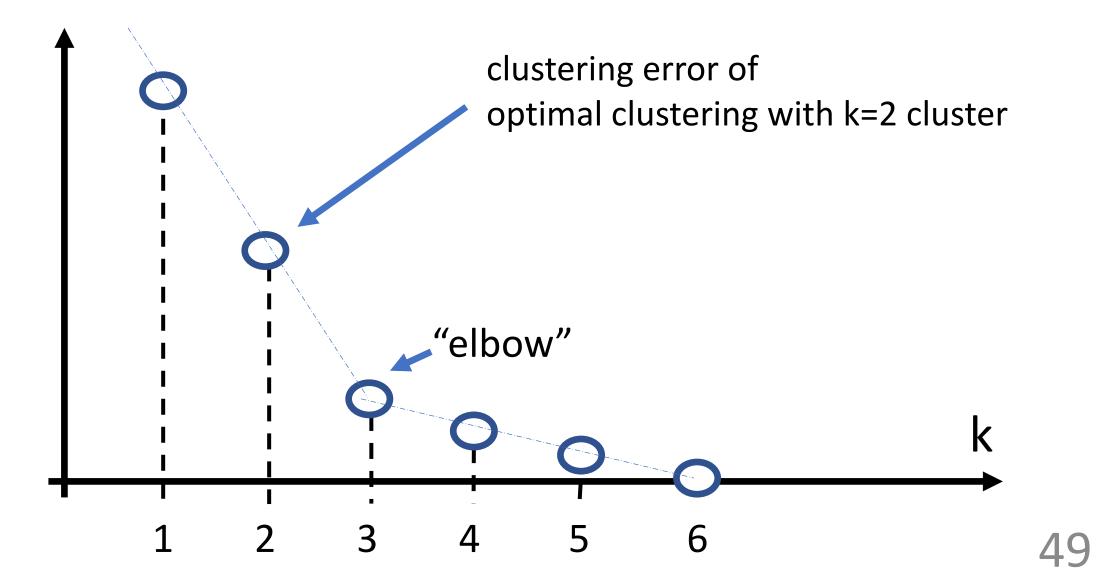
How to choose number k of clusters?



- defined by application (img. seg.)
- desired compression rate
- "elbow-method"

For/Background Segmentation k=2 Cluster 1 = Background, Cluster 2=Foreground

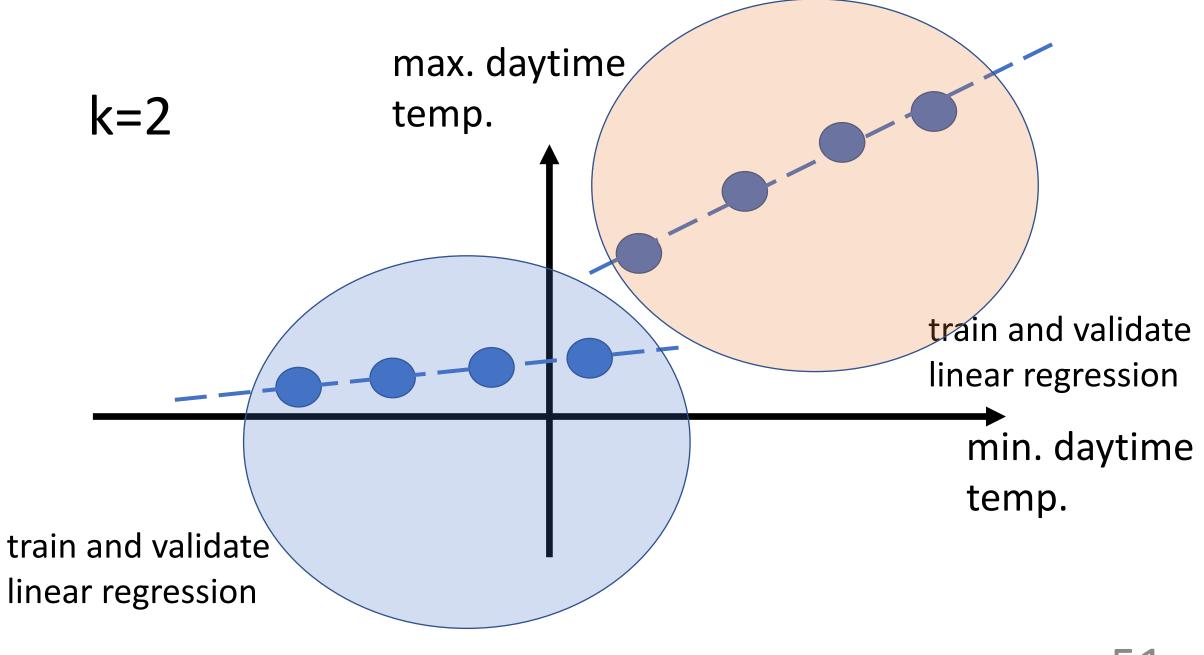
Elbow Method

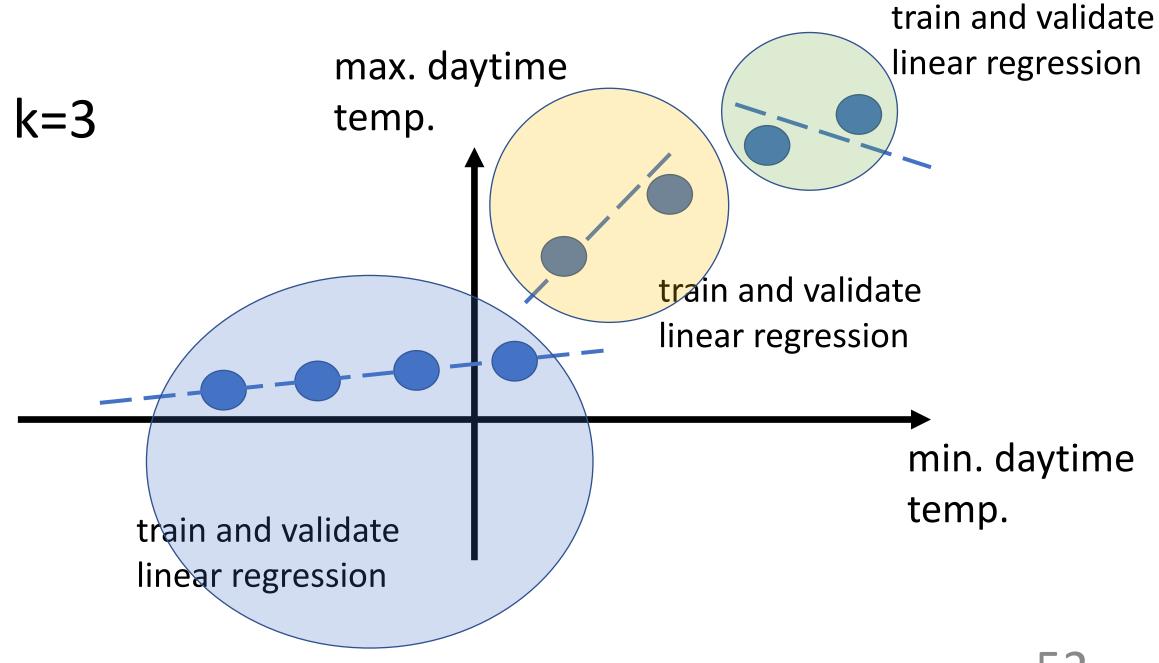


Choose k by Validation Error

clustering an be used as pre-processing for follow-up regression method

• try different values of k and pick the one resulting in smallest validation error





To Sum Up

- k-means partitions dataset into k clusters
- k-means iteratively minimizes clustering error
- k-means might deliver sub-optimal clustering
- repeat k-means with different initial cluster means
- number k of clusters needs to be given

Thank You!