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Legal Aspects of Machine Learning

Machine Learning Methods

non-sensitive data 
(e.g.. from wikidata.org)

sensitive data 
protected!



Components 
of 
Machine Learning

Quick Refresher



data: features, labels loss function

hypothesis space



Data Point = “Some Ski-Day Ahead”
features: 
• snapshot in the morning
• morning temperature
• weather forecast

label: 
• maximum daytime temperature (important for ski waxing)



Regression = ML with Numeric Labels

label values (predictions) can be 
compared by distance measures  

prediction 10 is closer to label value 
y=11 than the prediction 100



data point

loss

predictor 1

find predictor within hypothesis space 
such that average loss is smallest 

predictor 2

predictor 3

predictor 4

Machine Learning ≈ Fitting Models to Data



A Regression Problem 

feature x (morning temp.)

label y (max. daytime temp.) 

𝑥("), 𝑦(")

$𝑦(")
𝑦(") − $𝑦(")

https://en.ilmatieteenlaitos.fi/

predictor !𝑦 =h(x)



Get Some Weather Data  (by Roope Tervo) 

https://github.com/fmidev/opendata-
resources/blob/master/examples/python/FMI_WFS2_getobs_
multipointcoverage_example.ipynb

https://github.com/fmidev/opendata-resources/blob/master/examples/python/FMI_WFS2_getobs_multipointcoverage_example.ipynb


Hypothesis Spaces for 
Regression



How Many Predictors Are There ? 

feature x

label y



Restrict to Linear Predictors 

x

y



Parametrization of Linear Predictors

x

y
1

w (”weight”)

b (“bias”, “offset” or “intercept”)

h(x) = w*x+b

each linear predictor determined by two numbers, w and b !



Linear Predictors

• subset of predictors having the form h(x) = w*x+b

• each linear predictor determined by numbers w and b

• still infinitely many predictor maps!

•but we can handle them via numbers (nice) 

• linear predictors structured like Euclidean space (super nice !)



Linear Predictors with More Features

•data point with n different features 𝑥!,…, 𝑥"

• stack into vector (1D numpy array) x=(𝑥!,…, 𝑥")

• linear predictor h(x) = 𝑤! * 𝑥! +…. 𝑤" * 𝑥" + b

•number of features (and weights) can be billions ! 



The Weights in a Linear Predictor
𝑥!

+
𝑤!

𝑥# 𝑤#

ℎ 𝒙 = 𝑤!𝑥! +𝑤# 𝑥#

weight 𝑤! determines influence of 𝑥! on prediction h(x)

weight 𝑤" determines influence of 𝑥" on prediction h(x)



Linear Predictors in Python
predictor h(x) = ∑!"#$ 𝑤! 𝑥! + b represented by Python object

weights w stored in the attribute “LinearRegression.coeff_”

bias b stored in “LinearRegression.intercept_”



Polynomial Regression 

•data point with single numeric feature z

• construct features 𝑥! = 𝑧$,…, 𝑥" = 𝑧"%!

• linear predictor h(x) = 𝑤! * 𝑥! +…. 𝑤" * 𝑥"

•predictor function is polynomial in z !



Polynomial Predictors

z

y



How Many Data Points Can We Fit Perfectly?

z

y



You Can Do Anything with Linear Predictors! 
• consider data points with single numeric feature z

• construct new features 𝑥#, … , 𝑥$

• 𝑥! = )1 𝑓𝑜𝑟
!%#
$
≤ 𝑧 ≤ !

$
0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑧.

z

1j/n(j-1)/n

𝑥#

1



You Can Do Anything with Linear Predictors! 
• linear predictor in new features is non-linear in z!

z

1j/n(j-1)/n

ℎ 𝑥!, … , 𝑥$ ='
#%!

$

𝑤#𝑥#

𝑤$
𝑤$%&

(j-2)/n



How to Learn a Good Linear Predictor?



Learning a Linear Predictor

x

y
h(x) = w*x+b

𝑥("), 𝑦(")

$𝑦(")
𝑦(") − $𝑦(")

choose w,b to minimize average ”size” of prediction errors 𝑦(") − $𝑦(")

can be done with method “LinearRegression.fit()”



Measuring Error Size via Loss Functions

prediction error !𝑦 − 𝑦

loss function ℒ(!𝑦, 𝑦)

loss function is design choice !



The Squared Error Loss

prediction error !𝑦 − 𝑦

ℒ(!𝑦, 𝑦)= !𝑦 − 𝑦 #



ID-Card of Linear Least Squares Regression

• features: real numbers

• labels: numeric (typically modelled as real number) 

• hypothesis space: linear predictor maps 

• loss: squared loss

• instance of a linear regression method



ID-Card of Polynomial Regression

• features: real numbers

• labels: numeric (typically modelled as real number) 

• hypothesis space: polynomial predictor maps 

• loss: squared loss

• instance of a linear regression method



The Squared Error Loss – Pros and Cons

smooth convex optimization problem for linear predictors   

scalable optimization algorithms can handle big data 

statistically optimal for Gaussian features and label 

sensitive to outliers 



Squared Error Loss Sensitive to Outliers

x

y
h(x) = w*x+b

𝑥("), 𝑦(")

$𝑦(")

𝑦(") − $𝑦(")

min. squared error loss forces predictor towards outlier 

“outlier” 



The Absolute Error Loss

prediction error !𝑦 − 𝑦

ℒ(!𝑦, 𝑦)= !𝑦 − 𝑦



Absolute Error Loss Robust to Outliers

x

y h(x) = w*x+b

𝑥("), 𝑦(")

$𝑦(")

𝑦(") − $𝑦(")

absolute error loss “tolerates” larger error for outlier 

“outlier” 



ID-Card of Mean Absolute Error Regression

• features: real numbers

• labels: numeric (typically modelled as real number) 

•hypothesis space: linear predictor maps 

• loss: absolute error loss

• instance of a linear regression method



The Absolute Error Loss – Pros and Cons

robust to outliers 

non-smooth optimization problem

computationally more challenging to find best 

linear predictor 



Best of Both Worlds - Huber Loss 

prediction error !𝑦 − 𝑦

squared error loss

absolute error loss



Fitting Linear Predictor with Huber Loss 

x

y h(x) = w*x+b

𝑥("), 𝑦(")

$𝑦(")

𝑦(") − $𝑦(")

“outlier” 

squared error loss



So What?

• regression methods use numeric labels 

• numeric labels allows to measure distances 

• loss functions measure size of error (distance)

• squared error loss computationally attractive 

• absolute error loss robust to outliers 



Thank You ! 


