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Components
of
Machine Learning




data: features, labels loss function

~ hypothesis space




Data Point = “Some Ski-Day Ahead”
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features: N AT
* snapshot in the morning | ‘

* morning temperature

e weather forecast

00960 Helsinki

8"

label:
* maximum daytime temperature (important for ski waxing)

1019 anon

Temparatur  Nederschiag Wind



Regression = ML with Numeric Labels

label values (predictions) can be
compared by distance measures

prediction 10 is closer to label value
y=11 than the prediction 100



Machine Learning = Fitting Models to Data
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data point

find predictor within hypothesis space
such that average loss is smallest



Low south of lake La

A Regression Problem

Forecast for ne;

Gulf of Finland

label y (max. daytime temp.) (— Decraasinn northaas
https://en.ilmatieteenlaitos.fi/
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feature x (morning temp.)



Get Some Weather Data (by Roope Tervo)

;: tervo Added simple zarr example for SILAM AWS data share 343426 on 2 Jul 2019

1 contributor

1005 lines (1005 sloc) 205 KB <> = Raw Blame History - >

This short example show how to get data fromm FMI Open Data multipointcoverage format. The format is used in INSPIRE
specifications and is somewhat complex. Anyway, it's the most efficient way to get large amounts of data.

Here we fetch all observations from Finland during two days.

This example is for "old" format WFS2. You may try to use new WFS3 beta service as well. It's available in:
http://beta.fmi.fi/data/3/wfs/sofp/

In [(7): import requests
import datetime as dt
import xml.etree.ElementTree as ET
import numpy as np
import re
import cartopy.crs as ccors
import matplotlib.pyplot as plt
from matplotlib import colorbar, colors

Required functions to get param names. Param keys are in the response document but longer names along with other metadata
need to be fetched separately.

https://github.com/fmidev/opendata-

resources/blob/master/examples/python/FMI WFS2 getobs
multipointcoverage example.ipynb



https://github.com/fmidev/opendata-resources/blob/master/examples/python/FMI_WFS2_getobs_multipointcoverage_example.ipynb

Hypothesis Spaces for
Regression
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Restrict to Linear Predictors




Parametrization of Linear Predictors//'

. g
~ w ("weight”)
- 1

~
Y ./
~

~
O O @ hix)=w*x+b
~

X
each linear predictor determined by two numbers, w and b |



Linear Predictors
* subset of predictors having the form h(x) = w*x+b
e each linear predictor determined by numbers w and b
e still infinitely many predictor maps!
* but we can handle them via numbers (nice)

* [inear predictors structured like Euclidean space (super nice !)



Linear Predictors with More Features

* data point with n different features xq,..., Xy,
* stack into vector (1D numpy array) x=(x4,..., X,,)
* linear predictor h(x) =w; *x; +....w,, *x,, + b

* number of features (and weights) can be billions |



The Weights in a Linear Predictor

h(x) = wix,

weight w; determines influence of x; on prediction h(x)

weight w, determines influence of x, on prediction h(x)

Wy X



Linear Predictors in Python
predictor h(x) = ] ~1 W; X; + b represented by Python object

sklearn.linear_model.LinearRegression

class sklearn.linear_model. LinearRegression(fit_intercept=True, normalize=False, copy _X=True, n_jobs=None) [source]

Ordinary least squares Linear Regression.

LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the
observed targets in the dataset, and the targets predicted by the linear approximation.

weights w stored in the attribute “LinearRegression.coeff ”

bias b stored in “LinearRegression.intercept_”



Polynomial Regression

e data point with single numeric feature z
e construct features x; = zY,..., x,, = z"~1
*linear predictor h(x) =wy * x; +.... w,, * x,,

* predictor function is polynomial in z !






How Many Data Points Can We Fit Perfectly?
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You Can Do Anything with Linear Predictors!

 consider data points with single numeric feature z

* construct new features x4, ..., Xy,

—1
1 for I—<z<?
° Y. = n n

0 for all other z.




You Can Do Anything with Linear Predictors!

* linear predictor in new fergtures IS non-linear in z!

(j-2)/n  (j-1)/n  j/n 1



How to Learn a Good Linear Predictor?



Learning a Linear Predictor

Y ® __ . h(x) = w*x+b
g —
—
5}(1') 7 -
- : :
/ . .
— ® ® (x® y®)

choose w,b to minimize average ”size” of prediction errors y® — $®

can be done with method “LinearRegression.fit()”



Measuring Error Size via Loss Functions
loss function L(¥, y)

loss function is design choice |

prediction error y — y



The Squared Error Loss
LY, y)=F —y)?

prediction errory — y



ID-Card of Linear Least Squares Regression

* features: real numbers

* [abels: numeric (typically modelled as real number)
* hypothesis space: linear predictor maps

* loss: squared loss

* instance of a linear regression method



ID-Card of Polynomial Regression

* features: real numbers

* [abels: numeric (typically modelled as real number)
* hypothesis space: polynomial predictor maps

* loss: squared loss

* instance of a linear regression method



The Squared Error Loss — Pros and Cons

@ smooth convex optimization problem for linear predictors
@ scalable optimization algorithms can handle big data

@ statistically optimal for Gaussian features and label

sensitive to outliers



Squared Error Loss Sensitive to Outliers

Y
_ h(x) = w*x+b
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— “outlier” @ (x®,y®)

min. squared error loss forces predictor towards outlier



The Absolute Error Loss
L, y)=[y -yl

prediction errory — y



Absolute Error Loss Robust to Outliers

_ = h{x) =w*x+b

absolute error loss “tolerates” larger error for outlier



|ID-Card of Mean Absolute Error Regression

e features: real numbers

* labels: numeric (typically modelled as real number)
* hypothesis space: linear predictor maps
*|loss: absolute error loss

*instance of a linear regression method



The Absolute Error Loss — Pros and Cons

@ robust to outliers
non-smooth optimization problem

computationally more challenging to find best

linear predictor



Best of Both Worlds - Huber Loss

absolute error loss

R4 prediction error y — y

squared error loss



Fitting Linear Predictor with Huber Loss
y h(x) = w*x+b

’ squared error loss
‘ y(l) _ 5;(1)
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sklearn.linear_model.HuberRe

.near_model. HuberReg resso»(epsilon=1.35,, max_iter=100, alpha=0.C
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So What?

* regression methods use numeric labels

* numeric labels allows to measure distances

* |oss functions measure size of error (distance)
e squared error loss computationally attractive

e absolute error loss robust to outliers



Thank You |

Machine Learning
With Python
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