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Chapter 1

Motor control

1.1 Introduction

This may come as a surprise for students of computer science: The way people
move their bodies is a central research question in the quest to develop better
computers. Although one may easily think computer use as a predominantly
cognitive or linguistic activity, in fact much of what we do is movement.
Understanding motor control will help you make computer use more e�cient,
enjoyable, and safe.

Motor control refers to the production of body motion with desired
characteristics. Consider swiping a touchscreen to turn the page, or an eSports
professional’s quick response to a competitor’s move. Basic research on motor
control studies the underpinning neural, psychological, and biomechanical
mechanisms. Researchers investigate, for example, how a bird species controls
the frequency and force used in flapping the wings, or what explains an athlete
runner’s superior reaction time. Applied research on motor control, on the
other hand, is interested in factors that help improve motor control in practical
settings. In the context of HCI, the emphasis is put on understanding the
design of better technology. In this Chapter, the focus is on engineering
models (Section X) that help, on the one hand, understand problems in
motor control deeper than intuition and, on the other, solve practical problems
related to design. We cover elementary motor control tasks ranging from
reactions to complex, carefully coordinated tasks like typing.

2



CHAPTER 1. MOTOR CONTROL 3

1.1.1 Research on motor control in HCI

Motor control has been a central topic in human factors and HCI research for
decades. Every method, device, and technique for input involves some way
of mapping users’ physical motion to a set of input message. There is no way
to interact with a computer – notwithstanding brain–computer interfaces –
that does not include physical motion of the human body. As we discuss in
Section X, to design an input method, designer have to make a larger number
of design decisions that a↵ect how easy and comfortable the implied motions
are. If we change something as innocent the CD gain function, the function
that maps the velocity of the sensor to the velocity of the cursor, you may
need to move your hand longer for the cursor to move the same distance. Also
visual design of an interface a↵ects motor control: the positions and sizes of
targets on the display a↵ect the type of motions we need to select them.

Research on motor control in HCI comprises three types of activities.
First, empirical research looks at motor control in computer input, with
the aim of understanding factors that a↵ect performance. In a typical study,
users are asked to perform a motor task to the best of their ability, and their
performance is measured and compared across conditions.

Second, modelling seeks to form mathematical and computer models
that link essential factors with metrics describing motor performance. These
models are typically expressed as regression models, like Hick–Hyman law
and Fitts’ law that we describe later in this Chapter. They contain terms that
describe the motor task or some conditions such as those related to the design,
and link them to some variable or variables of interest, like task completion
time. The focus in HCI is not that much on theoretical plausibility but on
practical validity, how they can be used to inform design and decision-making
in realistic contexts.

Third, innovation focuses on novel technological means to facilitate motor
control. This branch of research typically pursues demonstrated improvements
over existing means of input. For example, research on accessible interfaces
looks at input devices that allow people with cerebral palsy to control computer
cursor.

Quite di↵erent, yet mostly complementary scientific perspectives to the
topic exist. The performance view seeks to understand speed and accuracy
of produced motions. In the context of HCI, ’performance’ refers to the
capability of the user to successfully and e�ciently produce desired input
events. A central phenomenon is speed–accuracy trade-o↵ : the finding that
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movements cannot be produced faster without compromising their accuracy
and, vice versa, trying to be more accurate will compromise speed. Every
motor task has its own trade-o↵ function; the function that maps changes in
speed to accuracy. Another perspective is skill acquisition: how performance
develops over time, and what kinds of practice conditions are favorable. The
performance view can also take a robustness perspective: how reliably is the
user able to keep a certain level of performance when conditions change? This
can be studied by looking at the probability of errors during performance or
variability under changing circumstances. Reliability is particularly important
for mobile devices: a good design allows the user to maintain high performance
when on the move.

The information capacity view seeks to understand how e�ciently
messages can be conveyed via computer as an information channel (see
Section X). The benefit of information theory is that it provides a single frame
of converge to look at both speed and accuracy, as measured via concepts like
throughput.

The individual di↵erences view emphasizes the di↵erent capabilities
and motivations of people. Whereas performance-oriented research normally
looks at young, healthy adults, the goal of individual di↵erences research is to
understand the diversity of everyday motor control in HCI. It rejects the ”one
design fits all” approach and studies methods that adapt, allow customization
and personalization.

It is ethically important to enable all people to use computers to the best
of their ability. With increasing digitalization of services, low-level enablers
like input devices, have become a di↵erentiating factor between those who can
and those who cannot, with at-times severe implications to people’s ability
to participate in the society. In accessible design, the ethos is that design
that starts with the view that people are di↵erent will not only serve special
groups but all users.

1.1.2 Understanding motor tasks in HCI

A motor task is the elementary unit of research in motor control studies in HCI.
A motor task is a task where a desired state-change in the computer needs to
be produced by a movement, or movement sequence, with particular properties.
As we learn next, this is more complex that it sounds. To understand a motor
task, we need a bit of terminology that helps us see the contributing factors.
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Figure 1.1: Terminology to define a motor task in human–computer inter-
action: a control point with its movement degrees, the target, end-e↵ector
with its movement degrees, the transfer function, and feedback

Factors defined by the computing system

We start by looking at factors a↵ected by the computer:

• Control point: What is being controlled in the computer

• Degrees of freedom: How many degrees of freedom are there to move it

• Movement demands: How the control point must be moved to complete
the task

• Transfer function: How movement is mapped to changes in control point

• Feedback: What information is available for correcting movement

Control point refers to a step-change in the computer’s processing to
which control is being applied. Step can be either discrete or continuous. A
text prompt is a discrete control point: It allows the entry of a single letter
of a time in order to commit a string. The mouse cursor is in principle a
continuous control point. However, the resolution of the sensing device and
the display jointly determine how many discrete values it can e↵ectively take.

Degrees of freedom refers to the number of dimensions in which the control
point can be controlled. A slider is controlled in one dimension, its DOF =
1, whereas the mouse cursor is controlled in two dimensions, its DOF = 2.
There are input devices that have more than our regular DOFs, for example
a joystick with DOF = 6. A higher number of DOFs does not automatically
mean that performance will be higher, but most likely it will be harder to



CHAPTER 1. MOTOR CONTROL 6

learn, because the involved motor actions are more complex. DOFs can be
further analyzed in terms of movement types:

1. Translational movement refers to motion on a plane.

2. Rotational movement refers to angular motion around a pivot point.

Movement demands are the constraints for acceptable movement. These
can be set by the design of the input device or the environment. Motor
demands come in three types: spatial, temporal, and kinetic. Spatial demands
refer to requirements to keep movement within given spatially defined bounds.
For example, to press a button, the push-down movement must hit the key
cap of the button from the right angle. Temporal demands refer to time
within which movement must be finished, or the speed with which it must
be carried out. Kinetic demand refers to force that must be produced. For
example, mechanical and touch buttons have widely di↵erent temporal and
kinetic demands, however their spatial demands are similar.

Transfer function refers to the transduction of physical motion into move-
ment of the control point (Section X). The function is jointly constituted by
the full input sensing pipeline.

Feedback is critical for correcting performance and developing motor
skill. Feedback can be instantaneous or delayed. Instantaneous feedback will
provide feedback associated to motor action, while delayed will provide it at
an opportune moment later on, for example after a session has ended.

A complex motor task can consist of several concurrent or consecutive
atomic motor tasks. For example, entering a given phrase on a touchscreen
using index finger involves a sequence of motor tasks with changing spatial
target. Some tasks require carrying out tasks concurrently, for instance many
games require simultaneous control on keyboard and a pointing device.

Factors defined by the user

From the user perspective, the defining characteristics of a motor task are:

• End e↵ector: What part of the human body needs to be moved to
produce a desired change in the control point

• Performance objective: What does the user want to achieve in carrying
out the task



CHAPTER 1. MOTOR CONTROL 7

• Kinematic chain: What other parts of the body contribute to the control
of the end e↵ector

End e↵ector is the segment in body – such as a tip of a finger – that
must be moved in order to produce the desired e↵ect on the sensing device.
In computer vision -based hand tracking, we typically use finger tips as end
e↵ectors to pinch, point, rotate etc. When using a touchscreen device, the
end e↵ector coupled with the control point. When using an indirect pointing
device, such as a touchpad, the two are decoupled. 1

Performance objective is the subjective goal the user has when carrying
out the motor task. It can concern things like how fast, with how few errors,
or with what sort of energy use the task should be completed.

Kinematic chain is the chain of joints that contribute to the movement of
the end e↵ector. For example, to move the index finger as an end-e↵ector in
touchscreen interaction, the kinematic chain typically consists of the shoulder,
the elbow, and the wrist – assuming that the finger is locked. However, also
the position of the head is important, because it a↵ects visual feedback. Each
joint has its own degrees of freedom. The kinematic chain of reaching to
grasp an apple is shown in Figure 1.2. If you ’lock’ a joint, for example elbow,
the motor control challenge will change wildly. You can try for example using
a touchpad (e.g, on laptop) with a di↵erent kinematic chain; try using, say,
the forehead as the end-e↵ector. The impact on performance will be drastic.
Understanding the kinematic chain in input is important, it will help you
understand which muscles and muscle groups contribute to the task, and
how the visual system is positioned in relationship to the display to receive
feedback. Note that the DOFs of the kinematic chain may be di↵erent from
that of the input device. For example, the mouse has DOF = 2, but the
shoulder–elbow–wrist chain has 3 + 1 + 2 = 6 DOFs.

Chapter overview

In the rest of the Chapter, we discuss five fundamental motor tasks: simple
reaction, choice reaction, pointing, steering, and gesturing. Their main
di↵erences are given in Table 1.3. Each is associated with a motor challenge
common in HCI. We provide an engineering model for each.

1Note: although the term end e↵ector originates from studies of human motor control,
sometimes the term is mistakenly used in HCI literature to describe the control point (e.g.,
cursor).
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Figure 1.2: The kinematic chain and control dimensions in reaching to grasp
an apple. [Soures et al. 2007]

Motor task Target Degrees of 
freedom User's goal Example model

Simple 
reaction

An abrupt 
event in the 
environment

1 React by pressing a 
button Ratcliff

Choice 
reaction

Choice among 
N options N > 1 options Choose correct 

option Hick-Hyman

Pointing A spatially 
extended 

target

One or more Bring control point 
within target bounds Fitts

Steering A tunnel One or more Keep within bounds Accot-Zhai

Gesturing A shape One or more Reproduce 
movement shape Cao-Zhai

Figure 1.3: Five fundamental motor tasks in HCI
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Figure 1.4: Simple reaction is a task where the user must respond to a
prompt as quickly as possible by pressing a button. Choice reaction gener-
alizes this to the case where more than one response option is available.Image
source: Wikimedia Commons

1.2 Simple reaction

Simple reaction is perhaps the most elementary response type in HCI.: Some-
thing appears on the display or in the environment, and the user must respond
to it as quickly as possible. Consider the following examples:

• Getting rid of an annoying dialogue asking if you want to install a new
version of software

• Blocking an enemy’s move with a counter-move in a computer game

• Answering an incoming call on a mobile device

As opposed to choice reaction that is discussed next, only one response
alternative is available in simple reaction—this is why it is called simple. The
response can be stated by saying something aloud, pressing a button with
a finger, or even by thinking of a response in brain–computer interaction.
From a communication perspective, simple reaction carries a single bit of
information: that a response has taken place. Typing a phrase, for instance,
is far more complex, as one must consecutively select (choose) the right key
from a set of at least 26 alternative characters.

Performance in this task is measured in milliseconds as the time duration
between the onset of the event and the user’s response. Simple reaction
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Figure 1.5: Distribution of reaction times from an online reaction time service
[www.humanbenchmark.com; MUST BE ROTATED]

tasks is among the fastest human responses in human–computer interaction.
Typical responses, depending on the input and output modalities, are in
the range of few hundred milliseconds. However, within this rather narrow
range, relatively large di↵erences can be observed depending on the condition.
Figure [?] shows reaction time data from almost ten million responses in
an online service. Reaction time distributions are often Gaussian or skewed
Gaussians.

Simple reaction has been studied in psychology for over a century and the
involved cognitive processes are somewhat known. Some of the earliest studies
considered the vigilance of soldiers in World War II: After sleep deprivation,
or in a stressful event, how would reaction time be altered? Beyond military,
simple reaction has broad applications in studies of human factors, sleep
deprivation, psychological assessment, and in animal research. As a model,
we discuss the Ratcli↵ model, which provides both theoretical understanding
and practical applications to making interfaces that improve reaction time.
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1.2.1 Ratcli↵ Model

The Ratcli↵ model2 is an evidence accumulation model that predicts
the distribution of reaction times as a function of what happens after the
stimulus has appeared. The idea in evidence accumulation models is that
that perceptual evidence for and against responding accumulates until some
threshold is met and the motor response is launched.

• Stimulus onset: The event that one should respond to appears

• Perceptual encoding: The event is encoded as a candidate for one that
should be responded to

• Evidence accumulation: Every fixation samples more evidence pro/against
the decision to respond

• Decision: When enough evidence has accumulated to meet a decision
threshold, the corresponding motor action is launched

• Motor action: Launching the overt, movement response

Hence, between the stimulus and the observable response many things happen.
Evidence accumulation models can account for some e↵ects of user interface
design as well as various task-related, individual, and contextual factors. They
predict naturally occurring variation we can observe in performance when the
same reaction task is repeated.

The Ratcli↵ model assumes that simple reaction RT has two sources of
variation: decision time Td and nondecision time Ter. Nondecision time is
further broken down into two subcomponents x and y. The first nondecision
event is the perceptual encoding of the stimulus that lasts for some duration,
marked with x. After perceiving the stimulus, a stochastic decision process
starts. During this period evidence is accumulated (di↵used) in the brain
that the stimulus should be responded to. This evidence accumulation phase
is a↵ected by perceptual conditions like noise (e.g,. poor resolution, poor eye
sight) and the complexity of the visual scene. Finally, after su�cient evidence
has di↵used to surpass threshold a, the decision process stops and continues
to motor response process with duration y. Thus, reaction time is given as:

RT = Td + Ter = x+ Td + y (1.1)

2Ratcli↵ and Van Dongen 2011, Wagenmakers 2007
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Figure 1.6: The Ratcli↵ model explains simple reaction as a linear sum of
a decision task and two non-decision tasks. After perceiving the prompt, a
decision task starts. It is assumed to be a stochastic di↵usion process where
evidence accumulates toward threshold a, at which point the response is
emitted. [Figure adopted from Ratcli↵ and Van Dongen 2011, PNAS ]
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Figure 1.6 illustrates the model.
Understanding this decision process is the key to understanding how user

interfaces improve users’ reaction time. The duration of the decision process
Td is user- and task dependent and varies across trials. The drift rate (or the
accumulation of evidence) is assumed to be normally distributed with mean
v and SD ⌘. 3 The two nondecision components x and y are summed to Ter

and treated together in the model. They can also change according to the
user interface. For example, an auditory prompt may take longer to register
than a simple visual symbol. This nondecision component is also assumed to
vary across trials with SD st.

The standard way of plotting the predictions is the hazard rate function. It
gives the probability that the decision process terminates in the next instant of
time, given that it has survived to that time. Formally h(t) = f(t)/(1�F (t)),
where f(t) is the probability density function and F (t) is the cumulative
density function. Figure 1.7 shows three examples assuming the same decision
threshold a:

• Slow but perfect responder : In the top-most figure, drift rate v is
mediocre (0.4) with no variation (⌘ = 0). The shape of the function
is ”perfect” in the sense that it is only achievable by a user who can
decide the stimulus with no hesitation.

• Fast responder : Here drift rate v is higher but there is more variation
(⌘ = 0.3). This yields a much faster response, peaking around 300 ms.

• Slow responder : Here drift rate v is mediocre (0.4) but there is some
variation (⌘ = 0.3). The hazard distribution has a long tail. This kind
of variation could be produced for example by sleep deprivation or by
noisy, hard-to-interpret display.

Consider an application 4 to driving. A user is seated in a driving simulator
and has to brake when the lead vehicle breaks. In one of the conditions, the
user was simultaneously speaking to a phone. Braking time increased. About
30 milliseconds were attributable to st; that is, their detection of braking
lights slowed down. The rest about 100 msec were attributed to reduced

3The di↵usion process is given by dX(t) = vdt+ sdW (t), where dX(t) is the change in
the accumulated evidence X for a time interval dt, v is drift rate, and sdW (t) are zero-mean
random increments with infinitesimal variance s2dt.

4Ratcli↵ and Strayer 2013 Psychon Bull Rev
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Figure 1.7: Three hazard function examples. For comparison, notice the
di↵erent scales of axes [Figure adopted from Ratcli↵ and Van Dongen 2011,
PNAS ]

drift rate. This result indicated that phone conversation retards evidence
accumulation, hampering the driver’s ability to respond to abrupt events.
This observation challenges the intuition that it is safe to talk while driving
because eyes can be kept on the road.

1.3 Choice reaction

In a choice reaction task, instead of one response option like in simple reaction,
n options are available. When a cue (stimulus) appears, the user must execute
the corresponding response as quickly as possible by pressing the associated
key. Each cue is associated to a single response; however, cues can appear with
di↵erent probabilities. Fingers are supposed to be resting on the associated
keys, in order to minimize e↵ect of pointing in the response.

Performance in choice reaction tasks is measured as choice reaction time
(CRT): It is the time that has elapsed from presentation of the cue to the
response. Errors – choosing wrong response or not responding – can be dealt
with either by insisting on correct response, or by allowing errors to happen
and reporting error rate alongside with CRT.

Choice reaction is a generalization of simple reaction. When n = 1, we
have the simple reaction. When n = 2, we have the 2-alternative forced choice
(2AFC) task, there are two response options and one must be chosen. 2AFCs
are common in HCI. Consider an incoming call, for example; It forces the user
to pick between Answer and Reject call options. When n increases beyond
two, we find an interesting and practically important relationship between n
and CRT.
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1.3.1 Hick–Hyman Law

The Hick–Hyman law is a statistical relationship between n and CRT dis-
covered independently by William Edmund Hick and Ray Hyman. The law
states that when the number of response options increases, choice reaction
time increases. Trying to be faster than what the law suggests will lead to
errors. By allowing more time for responding, fewer errors will occur.

Formally, given n equally probable response options, the average CRT
follows approximately:

CRT = a+ b · log2(n) (1.2)

where a and b are empirical constants, determined by fitting the line to data.
One can be added to n in cases there is uncertainty about whether to respond
or not:

CRT = a+ b · log2(n+ 1) (1.3)

Not-to-respond is just one more option.
Parameter b controls how strongly the increase in n a↵ects CRT:

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

log2(n)

C
R
T

(s
)

b = 0.3
b = 0.15

Why is there a binary logarithm in the standard formulation? According
to one theory, it reflects binary search from the part of the user. When a cue
appears, the user first picks one half of the options and reject the other half,
then picks half of the remaining options, and so on, until finally identifying
the correct response. This form also links Hick–Hyman law to information
theory, see Section X.
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Figure 1.8: You need to show 32 items to the user. According to Hick–Hyman
law, which of the designs is fastest to use? [Adopted from Liu et al. CHI2020]

Another interpretation of the law is that it denotes uncertainty about
the stimulus. In the case of choices with unequal probabilities, the law can
be expressed as:

CRT = a+ bH (1.4)

where

H =
nX

i

pi log2(1/pi + 1) (1.5)

and pi marks the probability of response option i. Even though there is a
large number of options available, if only a small subset is e↵ectively in use
(i.e., the sum of their probabilities is close to 1), CRT can be low.

Applications: Hick–Hyman law is one of the two laws – the other is
Fitts’ law – that Card, Moran, and Newell (1983) introduced to HCI as
design principles that can be used to improve the usability of user interfaces.
However, it saw relatively much less applications than Fitts’ law. Why?
Because the implication of Hick–Hyman law appears trivial: it states that
less is better. If you can design an interface that has fewer responses, users
will be quicker responding to it.

However, contrary to a common misunderstanding, the law does not imply
that interface elements should be organized hierarchically or into pages [Liu
et al. CHI2020]. The law predicts that there is a benefit for showing all
elements at once. Consider the design example in Figure 1.8. Because of
the logarithmic term, the best design, contrary to our intuition is Design
a). Hence the design principle should be ’more is better’. However, when
other factors are considered, the situation is not so simple. There are benefits
to pagination and hierarchy, which are not governed by Hick–Hyman law.
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Information foraging theory explains that well organized hierarchies help
users save time by skipping whole sections of elements (see Section X). Visual
search time and pointing also start taking time when the number of elements
increases.

The second form of the law, which states CRT as a function of entropy H,
implies that decreasing uncertainty will improve performance. But how to
achieve this in practice? Stimulus–response compatibility has a strong
e↵ect on CRT. When stimuli and responses are ’compatible’, they are ordered
or otherwise structured in a consistent way. Some simple mapping exists, for
example cues have the same spatial order as responses. This means that the
response should be similar to the stimulus itself, such as turning a steering
wheel to turn the wheels of the car. The action the user performs is similar to
the response the driver receives from the car. Abby Liu and colleagues showed
that in HCI tasks where compatibility is high, the Hick–Hyman slope almost
flattens out. It is generally desirable to find consistent mappings between
stimuli and responses.

Design and training also have an e↵ect on the slope b and intercept a of
the model. The Hick–Hyman law governs novice-to-intermediate range of
performance. When the user receives extensive practice on responding to
the task, the slope diminishes, eventually flattening out. With thousands of
practice trials on the same task, response time can be e↵ectively constant
when n is smaller than ten [Mowbray].

The scope of the law in HCI tasks is quite limited. When n > 10, task
completion time becomes dominated by other factors. Experimental research
in psychology assumes that CRT is measured in conditions that minimize
the e↵ect of visual search and pointing. The n end-e↵ectors are supposed
to rest on the n keys associated with the n responses. In applications like
gaming, fingers may already rest on top of the relevant keys, thus virtually
eliminating the e↵ect of pointing. However, in real-world conditions, when n
increases beyond two, CRT may include also a component of visual search
(Section X) and pointing (Section X). This happens when the target needs
to be found and the end e↵ector moved to select the option. Minimizing the
need for searching or pointing will allow expert users to respond faster. This
can be achieved by placing keys needed for response selection close to each
other, like for example in gaming keyboards and mice. We conclude that the
applicability of Hick–Hyman law in HCI is limited. It should be considered
only in cases where the user’s fingers are already on the n buttons, when
stimulus–response mapping is not perfect, and when the user is not an expert
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Figure 1.9: In pointing, the goal is to move the end-e↵ector (here: tip of
thumb) to contact a spatially extended target with appropriate force. Image
source: pxhere.com

in the task.

1.4 Pointing

Aimed movements are movements where success is defined by external con-
straints. In order to elicit a desired message, the movement must be coordi-
nated in space or time in a defined way. The di↵erence to simple reaction
and choice reaction is that they make no assumption about movement, only
about available options.

Aimed movements are perhaps the most common and elementary type of
action in computer use. To elicit the right command, we need to move the
body in the right way and at the right time. For example, to send character
’a’, a su�ciently small body part must land exactly on the cap of the button
with su�cient (but not excess) force. With the exception of brain computer
interfaces, most UIs are operated by aimed movements. Two fundamental
types of movement constraints can be distinguished.

• Spatially constrained aimed movements are restricted at the end or
during the movement to a specified region or point. Discrete aimed
movements are movements to spatially bounded targets. An example is
moving a mouse cursor on top of a button to select it. This movement
type is prevalent in HCI, it is in fact one of the prime paradigms used
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to communicate intentions and commands to a computer. Consider for
example buttons, widgets, links, icons and so on. Continuous aimed
movements, in contrast, require keeping the control point within a
bounding box during the whole duration of the movement. For example,
driving a car requires continuously steering it so as to keep it on the
lane. We discuss steering and gesturing in the two next sections.

• Temporally constrained aimed movements must hit a target defined in
time. The target can be hit during a specific interval, or the goal is to
be as close to the target as possible. An example of the latter is playing
notes on a piano, and and example of the former jumping over obstacles
in a video game. Often these two types of constraints occur together. In
an interception task, we need to catch a moving object by (1) placing a
selector on its future path and (2) pressing the button when the object
is within the selector’s e↵ective region. Consider for example hitting a
tennis ball served by the opponent or sniping an enemy player in a first
person shooter game.

Pointing is a discrete, spatially constrained aimed movement. The goal
is to move the control point on top of an area denoting the target. If the
control point ends up missing the area, the movement is considered having
missed the target. Typically there are two performance objectives: be as
fast as possible and do not miss the target; i.e. keep the error rate below
a threshold. While an area target is the most common target type in HCI,
three other tasks are studied in literature:

• A point target: The target is defined as a point in space. User’s accuracy
is measured as Euclidian distance of the end point from the point.

• A line/surface target: The target is a line in space, and the user’s goal
is to move the control point to cross the line. Performance is measured
in terms of movement time. When the target is a line segment (with
finite length), accuracy can be measured as hit/miss.

• A postural/angular target: Joints must be rotated to a particular angle.

DOFs in regular HCI tasks are 1 (e.g., slider), 2 (e.g., touchscreen pointing)
or 3 (e.g., control in a VR space).
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Figure 1.10: The original experimental setup of Paul Fitts manipulated
movement D and target width W in a reciprocal tapping task. The two
metal plates were to be hit with a stylus in an alternating sequence as fast
as possible.[Figure adopted from I.S. Mackenzie 1992, Human–Computer
Interaction]

1.4.1 Fitts’ law

Fitts’ law is a well-known predictive model for pointing. Given param-
eters describing the pointing task, in particular distance to target and its
size, it predicts average movement time (MT), the time from the beginning
of the movement to bring the control point on top of the target. Fitts’
law is considered one of the most successful engineering models in HCI
[Seow2005;Gori;Liu].

The discovery of the model was a combination of theoretical insight with
rigorous empirical work. Paul Fitts was an American psychologists working for
the military in the era following WW2. In a series of controlled experiments
he asked his subjects to move a stylus in hand back and forth between two
metal plates as fast as possible, while measuring this takes. Inspired by
Shannon’s information theory, Fitts hypothesized that human motor system
is capacity-limited. In other words, it could not express more information
than the capacity of the brain and nervous system would allow. Any attempt
to express more would lead increase noise and therefore compromise the
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accuracy of movement.
The key concept was motor noise: ”Information capacity is limited only

by the amount of statistical variability, or noise, that is characteristic of
repeated e↵orts to produce the same response” [ref]. This observation was
insightful. Instead of measuring a single movement, several attempts at the
same movement would be observed, in order to understand characteristic
noise. Doing this over several conditions would allow characterizing how noise
changes.

The experimental task, shown in Figure 1.10, is called reciprocal tapping
task. In the study, Fitts systematically manipulated D and W – distance
and width of target, respectively. The found a logarithmic relationship of
movement demands and MT :

MT = a+ bID = a+ b⇥ log2(
2D

W
), (1.6)

where

• MT is movement time, or the duration of the time it takes from the
onset of the movement to when it ends,

• a and b are positive empirical parameters that are case-specific,

• D is movement distance and

• W is width of target.

Fitts’ original data from 1954 is given in Table 1.1. It tabulates MT
as a function of D and W . The insight that Paul Fitts made is that while
there is no obvious relationship between MT and neither D nor W , they can
be combined into a single term that does. Index of di�culty is a term
describing the di�culty of the motor task and given as

ID = log2(2D/W ) (1.7)

Can you figure out why ID describes ’motor di�culty’, why are tasks
with higher ID motorically harder? Two illustrating examples are given
in Figure 1.11. You can approach this question by thinking what happens
when distance increases and when width is decreased. Both increase ID and
therefore also MT . In other words, other things being equal, targets that are
further away or smaller are harder and therefore slower to point. In other
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MT D W ID Predicted MT
180 2 2 1 107
212 2 1 2 202
203 4 2 2 202
281 2 0.5 3 297
260 4 1 3 297
279 8 2 3 297
392 2 0.25 4 392
372 4 0.5 4 392
357 8 1 4 392
388 16 2 4 392
484 4 0.25 5 486
469 8 0.5 5 486
481 16 1 5 486
580 8 0.25 6 581
595 16 0.5 6 581
731 16 0.25 7 676

Table 1.1: Data for Fitts’ original stylus pointing task. Model prediction is
MT = 12.8 + 94.7⇥ ID, where ID = log2(2D/W ).
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Figure 1.11: Rapid (top) and slow (bottom) selection tasks according to Fitts’
law.

words, movement time is related to the inverse of spatial error. ID also makes
computations simpler: instead of the non-linear relationship, we can now deal
with a simpler, linear relationship.

Fitts’ model for the obtained data is shown in Figure 1.12. Averaging
MT data obtained in each ID condition, and fitting empirical parameters
a and b, Fitts found the relationship in Equation 1.6. After computing ID,
parameters a and b are estimated, yielding in this case:

MT = 12.8 + 94.7⇥ ID,R2 = .967 (1.8)

The fit of the model was unreasonably high for psychological models, and is
often around R2 > 0.8 and even R2 > 0.9, for reasons we return to.

ID has a deeper interpretation in information theory. Fitts’ was interested
in the information capacity of the human motor system. ID represents the
number of bits required to select a target with width W within a set of n
contiguous regions that evenly partition the interval [0, 2A]. For example,
if A = 16 and W = 4, then n = 8 and ID = 3 [Myers88]. Within this
interpretation, a is the noninformational parameter, a constant added to every
movement. Such constant cost can be due to initialization or termination of
the movement. b is the informational factor for ID.
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Figure 1.12: A Fitts’ law model of stylus pointing. The plot shows observed
movement time MT versus index of di�culty ID. The linear trend depicts
the model MT = 12.8 + 94.7⇥ ID. Model fit is R2 = .967. Data presented
in Table ??

E↵ective width

Analyzing the information-theoretical relation further, Scott MacKenzie and
colleagues [] provided a widely used variant:

MT = a+ b log2

✓
D

We
+ 1

◆
, (1.9)

where We is e↵ective width, referring to the empirical the spread of end-
points around target center. While W refers to the actual width of the target,
We is the target that users can hit most of the time, its e↵ective width. You
can think of e↵ective width as motor noise that we can measure when a user
is repeatedly carrying out the motor task.

E↵ective width can be computed from observed end points, assuming they
are normally distributed. When end-points are normally distributed, standard
deviation can be used to determine We. The typical cut-o↵ is � = 4.6, which
amounts to 4 % of end-points. In other words, e↵ective width We would here
determine the width of the target that would be hit 94 % of time. The idea
is shown in Figure 1.13. Because the cut-o↵ defines acceptable proportion of
errors, it should be decided case-by-case.

This formulation makes the relationship of the model with speed–accuracy
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Figure 1.13: E↵ective width denotes the target size that the user would be
able to hit X% of time, where X is usually set to 96 %. E↵ective width is
computed by assuming that end points are normally distributed and setting
a cut-o↵ based on standard deviation. Image source: I.S. Mackenzie 1992,
Fitts’ law

trade-o↵ clearer. If the user tries to be faster, actual target width may not
change, but e↵ective width will increase. When ID increases – in other words,
the task becomes harder – either noise (e↵ective width) will increase or the
user will have to be slower.

Model variants

Fitts’ law is a candidate for the most tested scientific model in HCI research.
It has been evaluated in a number of user groups, input devices, and contexts,
including under water! It has weathered numerous challenges to its theoretical
and mathematical assumptions; however, judging from the amount of papers
presenting Fittsian models, it is still very much relevant and timely.

An important variant adopted from psychology is the iterative corrections
model [ref]. The idea is that any pointing movement consists of several ballistic
movements, in-between of which there are corrections. A ballistic movement
itself cannot be modified after triggering it, however the next one can be
planned considering sensory feedback. These redirections are ’corrections’,
thus the term ’iterative corrections’. Detailed kinematic recordings, however,
showed only one or at most two corrections. Moreover, considerable variation



CHAPTER 1. MOTOR CONTROL 26

has been found in the duration of the initial sub-movement, thus the idea of
equal durations is violated.

An extension of the idea was proposed by the psychologist David E. Meyer
[ref]. The stochastic optimised sub-movement model defines MT as a function
of not only D and W , but also the number of sub-movements n:

MT = a+ b
✓
D

W

◆1/n

, (1.10)

where n is an upper limit on sub-movements. The authors found empirically
that n = 2.6 minimizes RMSE. Several extensions have been proposed to
compute also end-point variability similar to the concept of e↵ective width.

These two models assume intermittent feedback control. Intermittent
control means that control actions cannot be carried out any time but only
after ’locked’ periods. In this case, the ballistic part of a motor action cannot
be altered, but there is a window of time afterwards to make corrections. The
two models assume that such corrections are based on the error at the start
of that action. Meyer’s momdel also assumes that the neuromotor system is
noisy, and that this noise increases with the velocity of the sub-movements.
This causes the primary sub-movement to either undershoot or overshoot
the target. One known shortcoming of the model is that the number of sub-
movements is fixed. For a given D and W , the sequence of sub-movements
would always be the same, and it is not possible to explain why the target is
missed at times.

Applications

Pointing models are arguably the most successful engineering models in HCI
research. They are used for designing better layouts, interaction techniques,
and input devices. By exposing how user performance is a↵ected by design-
relevant factors, and by o↵ering a unified account of both speed and accuracy,
Fitts’ law has become the core of our understanding of aimed movements.
Fitts’ law has also provided a basis for empirical comparisons of input de-
vices [Mackenzie04], and it has driven innovation in interaction techniques
[expandingtargets]. As a computationally inexpensive model, it has been
incorporated into algorithmic approaches to design. Good examples are the
key-target-resizing technique used in virtual keyboards [] and layout opti-
mization algorithms that have challenged Qwerty as the dominant keyboard
layouts [BiZhai,Karrenbauer2014].
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Figure 1.14: Fitts’ law models allow the comparison of user interfaces. Here,
stylus shows superior performance over the mouse. Data from [Mackenzie92]

Fitts’ law permits rigorous empirical comparison of input methods. Con-
sider the problem of comparing two input devices. Figure 1.14 shows a plot
comparing data from [MackenzieThesis] for stylus vs. mouse in the reciprocal
selection task. The plot shows that stylus is better throughout the ID range,
it is thus preferable. However, if there was a crossover point, it would be
exposed by the model, even if there was no observation at that ID point.

The concept of ID is powerful here. It collapses two parameters describing
a motor task into a single variable which is linearly correlated with MT .
The alternative, called the naive-but-tempting approach by Shumin Zhai
[Zhai2004], would be to measure speed and accuracy in a pointing task.
However, comparison would be limited to the selected observation point.
Conducting a Fitts’ law study invites us to systematically vary D and W ,
and the model will provide a point of reference – the a and b parameters, for
comparing the input methods across the full scope of the motor task.

But Fitts’ law is not limited to empirical comparison. Fitts’ law can be
used analytically – that is, prior to collecting empirical data – in two ways:

• Predict mean MT for a pointing task; however, empirical parameters a
and b must be known. They can be obtained for example from literature.
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• Compare pointing tasks: When a and b are equal, they can be ignored,
because MT will be determined by ID only.

ID – the index of di�culty – thus o↵ers a handy entry point to analyzing
a motor task. As we learned, increasing ID is associated with increasing MT .
All other things being equal,

• An increase in D will increase MT

• A decreases in W will decrease MT

• If D or W changes, MT can be kept constant by changing the other.

However, when no other considerations are in play, implications are trivial:
targets should be made as large and close as possible. The situation gets more
interesting when there are multiple targets and their respective positions and
sizes should be determined. Here, you cannot simply make all targets very
large. In Section X, we discuss application in the optimization of layouts and
in Section X we discuss interaction techniques exploiting Fitts’ law.

Discussion: What Fitts’ law can/cannot do

Fitts’ law is best viewed as a regression model that intrapolates between
observation points. However, the obtained model is fragile: Even small changes
in the task, user, or conditions can insist on re-obtaining the parameters.
When D or W are set to extreme values, many things that a↵ect motor
control change: the muscles we use, posture, and visual feedback. The a and b
parameters stay stable when such defining conditions are kept relatively stable.
The need to collect an extensive dataset for every change in an interface
makes it hard to use it in design, although analytical uses are possible, as
pointed out above.

Fitts’ law is a simplification of what happens in pointing. Because it
models mean MT in ID conditions, it e↵ectively hides variability other
than in end points. Variability is inherent in all motor control, a↵ected
by factors like movement strategy [], feedback [], and the involved muscle
groups []. Sometimes a reparametrization is not enough, but one needs a
di↵erent variant with di↵erent terms [FFits]. This is frustrating, because
there is no a priori principle to anticipate when Fitts’ law fits and when it
does not. Another criticism is that a mere statistical relationship between
design and performance outcomes o↵ers very little insight in user interface
design [Mueller2017].
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Figure 1.15: In a discrete aimed movement, only the end point of the movement
matters: whether it hits the target or not. In steering, the movement trajectory
must be kept within spatial bounds, ’a tunnel’ of given width.

1.5 Steering

In a discrete aimed movement, only the end point of the movement matters:
whether it hits the target or not. In steering, by contrast, the movement
trajectory must be kept within spatial bounds, ’a tunnel’ of given width.
If the control point slips across the bounds of the tunnel, the movement is
considered an error. Steering is common in HCI, in menu selection, games,
etcetera, there are visible or invisible tunnels within which the cursor must
be kept of the event is lost. Figure 1.16 shows an example.

1.5.1 Accot–Zhai steering law

Johnny Accot and Shumin Zhai presented a model of steering at CHI 1999,
which has been later dubbed the steering law.

They derive the model from Fitts’ law by assuming an infinite number of
targets on the way between the origin and target. First, assume that there is a
single movement from A to B to be made. Fitts’ law predicts that movement
time will be a function of movement distance and the width of B. Assume
now that this distance is split into two equally long movements A-B and B-C.
Total time now is the sum of the two movements. Then assume that the
distance is split into N movements. When N approaches infinity, the authors
derive the model

MT = a+ b
D

W
(1.11)

where W is the width of the tunnel, D its distance, and a and b empirical
parameters.
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Figure 1.16: Two steering tasks captured by the Accot–Zhai steering law.

The model applies to tunnels where curvature stays constant. When the
input device, users, or other conditions change, a and b must be re-calibrated.

1.6 Gesturing

Gestural interfaces, discussed in Section X, are based on continuous shapes as
input. Consider for example handwriting as text input: in order for a letter to
be recognizable by the decoder, the shape must obey certain segment lengths
and curves.

1.6.1 Viviani power law of curvature

The models discussed thus far in this chapter predict task completion time.
A limitation of the Accot–Zhai steering law is that it does not account for
complex shapes or changing shapes. Consider for example tracing a shape or
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Figure 1.17: Try drawing letter ’d’ with stylus or pen. The Viviani power
law of curvature predicts momentary velocity v when drawing smooth curved
trajectories like this. R is radius of the curvature.

drawing. But what happens during movement? We need to understand that
in order to understand gestures, where curvature is changing.

The Viviani power law of curvature (PLoC) [ref] is a kinematics model
for smooth curved trajectories. Kinematics models cover aspects of motion
during pointing: position, velocity, acceleration, or jerk—however, without
consideration of the time-varying phenomena that produce them. They
predict the moment-by-moment motion or its properties, such as radius of
curvature or tangential velocity at any point. This makes kinematics models
useful for modeling gestures.

PLoC pertains to handwriting and drawing behavior, in particular when
the trajectories are smooth; that is, they do not have sharp corners. PLoC
relates the radius of curvature r(s) at any point s along the trajectory with
its corresponding tangential velocity v(s):

v(t) = kr� (1.12)

where k is an empirical gain factor and � an empirical parameter. The model
states that the larger curvature, the slower the motion of the end e↵ector will
be at that point.

Now, the total time for a full segment S, assuming only smooth curvature
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(no corners), can be computed as:

T =
1

k

Z S

0
r(s)��ds (1.13)

In a study using stylus as the input device, K = 0.0153 and ? = 0.586. The
model has reached high fit with empirical data in drawing, with and without
visual guidance.

What happens if the movement is physically larger or smaller? Isochrony
is the empirical observation that average velocity of movements increases
with distance [?]. Thus, movement distance is a weak predictor of movement
time in a trajectory. Users simply move larger distances faster. The Viviani
PLoC has been shown to cover isochrony. The power law -like pattern has
been argued to be due to pattern generators in the neuromotor system that
operate in an oscillatory fashion [SchaalSternad2001].

1.6.2 Cao–Zhai CLC model

The Cao–Zhai CLC model predicts completion time for complex gesture
shapes. Presented by Xiang Cao and Shumin Zhai in 2007, it is based on the
assumption that a continuous gesture can be decomposed into components,
each of which can be captured by a lower-level model [ref].

• Curves: To compute T (curve), Viviani PLoC can be used when mo-
mentary R is known. In a simplified version o↵ered by the authros,
curves are assumed to have a constant radius: T (curve) = ↵

k r
1��, where

↵ is the angle of the curve. Lines: Time needed to complete a line
depends on the length of the line L. Cao and Zhai o↵er a power model:
T (line) = mLn. People tend to be faster with longer lines, and this is
captured in a power-like relationship between production time and line
length. Corners: Corners contribute only little to total time, around
40 ms on average by the authors. To simplify computations, it can be
ignored.

To apply the model, the gesture is first segmented into three types of
elements: (smooth) curves, (approximately) straight lines, and corners. Figure
1.18 shows the three types. Total time to perform the gesture is simply the
sum of durations spent in those elements:

T =
X

T (curve) +
X

T (line) +
X

T (corner) (1.14)
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CLC Model [Cao and Zhai 07]
(Curve Line Corner)

Wednesday, May 8, 13

Figure 1.18: The Cao–Zhai CLC model is applied by segmenting a shape into
three constitutive types: corners, lines, and curves. We apply a predictive
model for each to produce an estimate of total completion time as their linear
sum.

R2 > 0.9

Wednesday, May 8, 13

Figure 1.19: Examples of gestural shapes and polylines that can be analyzed
using the CLC model

The model achieves a high model fit for tasks where users are asked to
draw gestures repeatedly as fast as they can. In some cases it overestimates
total time, which is partially attributed to corner-cutting behavior. After
initial trials, users learn not to draw the full shape, as asked, but they cut
corners, leading to shorter completion time.
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1.7 Motor skill

1.7.1 Motor chunking and schemata

1.7.2 Complex motor skills

1.7.3 Typing

1.8 Discussion

Exercises

Exercise 1. Learning to understand motor control problems in HCI takes
a bit of practice. Fill in this table. Analyze the motor task of entering text
with index finger using a virtual keyboard a touchscreen-based mobile device.
How would it change if the input device was changed to a physical keyboard?

Text entry on a virtual keyboard Text entry on a physical keyboard
Control point
DOFs
Movement demands
End e↵ector
Performance objecive
Kinematic chain
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