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Introduction

A

Based on the original article by Ryu et.al
(2020)

Nitrogen is a typical fertilizer in agriculture as it
cannot obtained from air by cereal

Legumes obtain N, via mutualism with
nitrogen-fixing bacteria (rhizobia) in their root
nodules

o endophytes: live inside roots
o epiphytes: live on root surface

Some legume root rhizobia endophytes also
found in cereal roots but unable to fix N,

outside the nodules
o Could they be?
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Introduction: nif genes

e Nitrogen fixation (nif) genes are
organized as clusters

e Conserved genes include those
encoding nitrogenase and cofactor
biosynthesis

e Nif genes are under stringent
regulatory control due to metabolic

and energy resources
o nitrogenase can take 20% of
the cell mass
o each ammonium requires
approx. 40 ATPs to be
produced

e Nitrogenase is O2 sensitive
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Motivation

e Different cereals are the main calorie source of

the world’s population
e Reducing the need for N2 fertilizers would be
beneficial
o economically
o environmentally
o energetically
e Aim: engineering inducible nitrogenase activity
In cereal root node bacteria
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Strategy

Evaluation of native and engineered clusters from diverse
sources transferred to different species
o side-by side comparisons of activity

Best candidates of high levels of inducible nitrogenase
activity and reduced oxygen sensitivity selected
Regulatory control replaced by synthetic, genetically

encoded on/off sensors for nif transcription regulation
o sensors responding to natural root exudates

Plants engineered to release chemical signals from their
roots ( opine, rhizopine..)
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Methods

e Bioinformatics and protein engineering from ground up

(refactoring)
o DNA synthesis, DNA fragment amplification, yeast assembly,
cloning into plasmid backbones
o Part libraries
e Culturing
o In organism appropriate conditions
o In presence of oxygen, ammonium
e Quantifying transfers and evaluating performance
o RNA-seq
o Ribosome profiling
o Acetylene reduction assay (ARA)
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Transfer of native nif clusters to new hosts

e Goal: Assessing the performance of native nif clusters in E.
coli, P. protegens Pf-5 and symbiotic rhizobia

What succeeded.: What failed:
e gene cluster transfer to e E.coli as host |

other bacterial hosts e Increasing protein

possible expression in R. sp IRBG74
e Protein expression in hosts by increasing nif expression

e K. oxytoca most promising
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Transfer of K. oxytoca nif to R. sp
IRBG74

e Goal: genetic refactoring — eliminate native regulation and
placing the system under the control of synthetic sensors
and circuits

What was achieved: What failed:

nif activity in v2.1

v2.1 terminators

v2.1 not active in R. sp
low activity with v3.2
iInduction had an optimum

e good promoter induction in v2.1

e V3.2 activein R. sp

e translation rate close to K.
oxytoca
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Refactoring a gene cluster

Native Gene Cluster
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Refactored Gene Cluster
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Removing ammonium repression of
A. caulinodans

e Goal 1: transfer A. caulinodans nif to R. sp. IRBG74
e Goal 2: modify the regulation controlling nif to be placed under the
control of synthetic sensors

What was achieved: What failed:
e controller co-expressing NifA e transfer of A. caulinodans nif
and RpoN recovers activity e WT strain 95% repressed by
e 50% activity recovered in ammontum

presence of ammonium
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Refactored nf clusterv2 .
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Controlling nif In P. protegens

e Goal: to remove ammonium repression of the cluster or it
being constitutively on by placing cluster under synthetic

control
What succeeded: What failed:
e DAPG, aTc, 30C6HSL and e K. oxytoca cluster sensitive to
cuminic acid sensors functional oxygen

e inducible clusters showed little
ammonium repression

e P. stutzeri and A. vinelandii
clusters showed tolerance for
oxygen (0,5-1%)



Control of N fixation with agriculturally
relevant sensors What succeeded:

e Goal: to test induction of the e salicylic acid sensor for A.
cluster with agriculturally relevant caulinodans had a 1,000-fold
substances induction of nitrogenase

o sugars, hormones, flavonoids, e Arabinose and naringenin
antimicrobials, chemical sensors for P. protegens Pf-5 led

to nitrogenase activity

e Sensorsin A. caulinodans for
octopine and nopaline produced
highly inducible nitrogenase
activity

What failed:

A? oot e DAPG sensor for R. sp. had weak
induction of nitrogenase



Discussion

e Comparison of diverse species, natural nif clusters and
engineering strategies
o can be used towards designing a bacterium that can deliver fixed
nitrogen to a cereal crops

e The goal was to obtain inducible nitrogenase activity in a strain
that can associate with cereals

e RNA sequencing and ribosome profiling were used to compare
the function of nif parts in their native and new hosts
A? et

| Engineering



Discussion

e Most promising endophyte:
o variant of A. caulinodans: nifA knocked out of the genome and a mutant

NifA and RpoN are supplemented on a plasmid

e Most promising epiphyte:
o P. protegens Pf-5: transfer of A. vinelandii nif cluster and placement of

nifA of P. stuzeri under inducible control

e In both: nitrogenase can be placed under inducible control in
response to cereal-root exudates, phytohormones and putative
sighaling molecules that could be released by genetically modified

plants

Aalto University
School of Chemical

| Engineering



Discussion

e native K. oxytoca nif cluster performs similarly when
transferred

e refactored cluster that uses codon optimization and disrupts
operons and translational coupling had varying expression
levels

— disrupting operons and translational coupling does not impact
their function in native host but affects the activity after transfer
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Path forward

e First step towards building strains that can efficiently deliver fixed nitrogen to
cereals

e Additional genetic engineering required to:
o maximize the ability of the microorganism to catabolize carbon sources from the plant

o increase the flux of fixed nitrogen delivery
m redirection of metabolism
m introducing transporters
m  optimization of electron transfer

e Other possibility: genetically engineer the plant to produce orthogonal carbon
sources and then transfer the corresponding catabolism pathway into bacterium

— synthetic symbiosis
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Thank youl!
Questions?
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