Control of nitrogen fixation in bacteria that associate with cereals

Ryu, M.H., Zhang, J., Toth, T., Khokhani, D., Geddes, B.A., Mus, F., Garcia-Costas, A., Peters, J.W., Poole, P.S., Ané, J.M. and Voigt, C.A., 2020

Sanni Haahti, Krista Karttunen, Julia Manninen & Sharon Saarinen

17.5.2021

Introduction

- Based on the original article by Ryu *et.al* (2020)
- Nitrogen is a typical fertilizer in agriculture as it cannot obtained from air by cereal
- Legumes obtain N₂ via mutualism with nitrogen-fixing bacteria (rhizobia) in their root nodules
 - endophytes: live inside roots
 - epiphytes: live on root surface
- Some legume root rhizobia endophytes also found in cereal roots but unable to fix N₂ outside the nodules
 - Could they be?

Figure https://www.permaculturereflections.com/rhi zobium-symbiosis-with-woody-plantsleguminous-nitrogen-fixing-trees/

Introduction: nif genes

- Nitrogen fixation (*nif*) genes are organized as clusters
- Conserved genes include those encoding nitrogenase and cofactor biosynthesis
- Nif genes are under stringent regulatory control due to metabolic and energy resources
 - nitrogenase can take 20% of the cell mass
 - each ammonium requires approx. 40 ATPs to be produced
- Nitrogenase is O2 sensitive

Motivation

- Different cereals are the main calorie source of the world's population
- Reducing the need for N2 fertilizers would be beneficial
 - \circ economically
 - environmentally
 - energetically
- Aim: engineering inducible nitrogenase activity in cereal root node bacteria

- Evaluation of native and engineered clusters from diverse sources transferred to different species
 - \circ side-by side comparisons of activity
- → Best candidates of high levels of inducible nitrogenase activity and reduced oxygen sensitivity selected
- → Regulatory control replaced by synthetic, genetically encoded on/off sensors for *nif* transcription regulation
 - sensors responding to natural root exudates
- Plants engineered to release chemical signals from their roots (opine, rhizopine..)

Methods

- Bioinformatics and protein engineering from ground up (refactoring)
 - DNA synthesis, DNA fragment amplification, yeast assembly, cloning into plasmid backbones
 - Part libraries
- Culturing
 - in organism appropriate conditions
 - in presence of oxygen, ammonium
- Quantifying transfers and evaluating performance
 - RNA-seq
 - Ribosome profiling
 - Acetylene reduction assay (ARA)

Transfer of native nif clusters to new hosts

• Goal: Assessing the performance of native *nif* clusters in *E. coli, P. protegens* Pf-5 and symbiotic rhizobia

What succeeded:

- gene cluster transfer to other bacterial hosts possible
- Protein expression in hosts
- K. oxytoca most promising

What failed:

- E. coli as host
- Increasing protein expression in R. sp IRBG74 by increasing *nif* expression

Transfer of *K. oxytoca nif* to *R. sp* IRBG74

 Goal: genetic refactoring → eliminate native regulation and placing the system under the control of synthetic sensors and circuits

What was achieved:

- good promoter induction in v2.1
- v3.2 active in R. sp
- translation rate close to *K.* oxytoca

What failed:

- *nif* activity in v2.1
- v2.1 terminators
- v2.1 not active in R. sp
- low activity with v3.2
- induction had an optimum

Refactoring a gene cluster

J H D K TY E N X U S V Remove Non-Coding DNA Eliminate Non-Essential Genes Remove Transcription Factors Randomize Codons

Nif gene cluster From K. oxytoca

- The genes are colored by function:
 - blue: nitrogenase
 - green: cofactor biosynthesis (shading corresponds to operons)
 - yellow: e- transport
 - gray: unknown

1 kb

Native Gene Cluster

Organize into Operons Add Synthetic Regulation Control with Synthetic Circuits

_►

 \otimes

Promoter

Spacer

Gene

Terminator

Origin

Resistance Marker

Ribosome Binding Site

Degradation Tag

Ŷ

Aalto University School of Chemical Engineering

Removing ammonium repression of *A. caulinodans*

- Goal 1: transfer *A. caulinodans nif* to *R. sp.* IRBG74
- Goal 2: modify the regulation controlling *nif* to be placed under the control of synthetic sensors

What was achieved:

- controller co-expressing NifA and RpoN recovers activity
- 50% activity recovered in presence of ammonium

What failed:

- transfer of A. caulinodans nif
- WT strain 95% repressed by ammonium

С

Refactored nif cluster v2.1

h

Aalto University School of Chemical Engineering

Controlling nif in P. protegens

• Goal: to remove ammonium repression of the cluster or it being constitutively on by placing cluster under synthetic control

What succeeded:

- DAPG, aTc, 3OC6HSL and cuminic acid sensors functional
- inducible clusters showed little ammonium repression
- P. stutzeri and A. vinelandii clusters showed tolerance for oxygen (0,5-1%)

What failed:

• *K. oxytoca* cluster sensitive to oxygen

Control of N fixation with agriculturally relevant sensors What succeeded:

- Goal: to test induction of the cluster with agriculturally relevant substances
 - sugars, hormones, flavonoids, Ο antimicrobials, chemical

- salicylic acid sensor for A. caulinodans had a 1,000-fold induction of nitrogenase
- Arabinose and naringenin sensors for P. protegens Pf-5 led to nitrogenase activity
- Sensors in A. caulinodans for octopine and nopaline produced highly inducible nitrogenase activity

What failed:

DAPG sensor for R. sp. had weak induction of nitrogenase

Discussion

- Comparison of diverse species, natural nif clusters and engineering strategies
 - can be used towards designing a bacterium that can deliver fixed nitrogen to a cereal crops

• The goal was to obtain inducible nitrogenase activity in a strain that can associate with cereals

• RNA sequencing and ribosome profiling were used to compare the function of nif parts in their native and new hosts

Aalto University School of Chemical Engineering

Discussion

- Most promising endophyte:
 - variant of A. caulinodans: nifA knocked out of the genome and a mutant NifA and RpoN are supplemented on a plasmid
- Most promising epiphyte:
 - *P. protegens Pf-5*: transfer of *A. vinelandii nif* cluster and placement of *nifA* of *P. stuzeri* under inducible control
- In both: nitrogenase can be placed under inducible control in response to cereal-root exudates, phytohormones and putative signaling molecules that could be released by genetically modified plants

Discussion

native K. oxytoca nif cluster performs similarly when transferred

 refactored cluster that uses codon optimization and disrupts operons and translational coupling had varying expression levels

 \rightarrow disrupting operons and translational coupling does not impact their function in native host but affects the activity after transfer

Path forward

- First step towards building strains that can efficiently deliver fixed nitrogen to cereals
- Additional genetic engineering required to:
 - maximize the ability of the microorganism to catabolize carbon sources from the plant
 - increase the flux of fixed nitrogen delivery
 - redirection of metabolism
 - introducing transporters
 - optimization of electron transfer
- Other possibility: genetically engineer the plant to produce orthogonal carbon sources and then transfer the corresponding catabolism pathway into bacterium

 \rightarrow synthetic symbiosis

Thank you! Questions?

