Mathematics for Economists: Lecture 3

Juuso Välimäki

Aalto University School of Business

Spring 2021

Content of Lecture 3

- In Lecture 2, Gaussian elimination and linear models in economics
- This Lecture:

1. Linear approximation of functions of a real variable: the derivative
2. Visualizing multivariate functions
3. Linear approximations to multivariate functions
4. Linear approximations and partial derivatives
5. Directions of increase and level curves
6. Non-linear models in economics: first examples

Linear approximation of univariate functions

Approximate $f(x)=x \sin (5 x)$ by its tangent at $x=0.5$. Not a great success:

Linear approximation of univariate functions

The function is a bit less variable over the interval $[0,1]$:

Linear approximation of univariate functions
On the interval $[0.48,0.52]$, it looks almost linear:

Linear approximation of univariate functions

- Recall the definition of the derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at x_{0} :

$$
D f\left(x_{0}\right)=\frac{d f\left(x_{0}\right)}{d x}=f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

- If the limit exists, we also have (from the definition of limits) that for all $\varepsilon>0$, there is a $\delta>0$ such that:

$$
\frac{\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)-D f\left(x_{0}\right) h\right|}{|h|}<\varepsilon,
$$

whenever $|h|<\delta$.

- We say then that $D f\left(x_{0}\right) h$ approximates $f(x)-f\left(x_{0}\right)$ well near x_{0}.
- $D f\left(x_{0}\right) h$ is a linear (in h) approximation of the changes in the value of the function near x_{0}.
- We want to generalize this idea to multivariate functions.

Graphing functions of two variables

A linear function: $z=2 x-3 y$.

The graph of $f(x, y)=\cos (x) \cos (y)$

2-d slices of the 3-d graph

Figure: Cross sections of $f(x, y)$ in the x and y direction at $\left(x_{0}, y_{0}\right)$.

Level curves of a bivariate function

Figure: Some level curves of f.

All in one picture

Figure: The graph of f together with some of its cross sections and level curves.

Linear functions

- Recall that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be linear if for all $\lambda \in / R$ and for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, i) $f(\lambda \boldsymbol{x})=\lambda f(\boldsymbol{x})$, ii) $f(\boldsymbol{x}+\boldsymbol{y})=f(\boldsymbol{x})+f(\boldsymbol{y})$.
- For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, let $f\left(\boldsymbol{e}^{i}\right)=a_{i}$, where $\boldsymbol{e}^{i}=\left(e_{1}^{1}, \ldots, \boldsymbol{e}_{n}^{1}\right)$ is the $i^{\text {th }}$ unit vector, i.e. $e_{j}^{i}=0$ if $i \neq j$ and $e_{i}^{i}=1$.
- Then we have

$$
f(\boldsymbol{x})=\sum_{i=1}^{n} f\left(x_{i} \boldsymbol{e}^{i}\right)=\sum_{i=1}^{n} x_{i} f\left(\boldsymbol{e}^{i}\right)=\sum_{i=1}^{n} a_{i} x_{i}=\boldsymbol{a} \cdot \boldsymbol{x}
$$

where $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$.

- For $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, let $f\left(\boldsymbol{e}^{i}\right)=\boldsymbol{a}^{i} \in \mathbb{R}^{m}$. By the same reasoning as above, any linear \boldsymbol{f} takes the form:

$$
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}
$$

where the $i j^{\text {th }}$ element of \boldsymbol{A} is the $i^{\text {th }}$ row element of \boldsymbol{a}^{j}.

Linear approximation of multivariate functions

- If we want to find a linear approximation to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ near \boldsymbol{x}_{0}, we look for a vector \boldsymbol{a} such that $\frac{\left|f\left(\boldsymbol{x}_{0}+h\right)-f\left(\boldsymbol{x}_{0}\right)-\boldsymbol{a} \cdot \boldsymbol{x}\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|}$ is small whenever $\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|$ is small.
- If such an a exists, we call it the derivative $D_{\boldsymbol{x}} f\left(\boldsymbol{x}_{0}\right)$ of f at \boldsymbol{x}_{0} and we say that f is differentiable at \boldsymbol{x}_{0}.
- When the derivative exists, we have for small $\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|$:

$$
f(\boldsymbol{x})-f\left(\boldsymbol{x}_{0}\right) \approx D_{\boldsymbol{x}} f\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
$$

- Our next task is to identify the components of $D_{\boldsymbol{x}} f\left(\boldsymbol{x}_{0}\right)$.

Partial derivatives

- Consider changes in the direction of a coordinate axis: $\boldsymbol{x}=\boldsymbol{x}_{0}+h \boldsymbol{e}^{i}$.
- Since all the other coordinates of \boldsymbol{x} remain fixed, we can compute:

$$
\lim _{h \rightarrow 0} \frac{f\left(\boldsymbol{x}_{0}+h \boldsymbol{e}^{i}\right)-f\left(\boldsymbol{x}_{0}\right)}{h}
$$

exactly as in the case of univariate functions,

- We call this limit the $i^{\text {th }}$ partial derivative of f at \boldsymbol{x}_{0} and denote it by:

$$
D_{x_{i}} f\left(\boldsymbol{x}_{0}\right):=: \frac{\partial f\left(\boldsymbol{x}_{0}\right)}{\partial x_{i}}:=\lim _{h \rightarrow 0} \frac{f\left(\boldsymbol{x}_{0}+h \boldsymbol{e}^{i}\right)-f\left(\boldsymbol{x}_{0}\right)}{h}
$$

Partial derivatives

Recall the picture from before:

Figure: Partial derivatives of f at $\left(x_{0}, y_{0}\right)$.

From partial derivatives to linear approximation

- But this is all we need if a linear approximation exists!
- A linear approximation in the direction $\Delta \boldsymbol{x}=\boldsymbol{e}^{i}$ must coincide with $\frac{\partial f\left(\boldsymbol{x}_{0}\right)}{\partial x_{i}}$.
- But each direction $\Delta \boldsymbol{x}$ can be written as:

$$
\Delta \boldsymbol{x}=\sum_{i=1}^{n} x_{i} \boldsymbol{e}^{i},
$$

so by linearity we get for all $\Delta \boldsymbol{x}$ that

$$
f\left(\boldsymbol{x}_{0}+\Delta \boldsymbol{x}\right)-f\left(\boldsymbol{x}_{0}\right)=D_{\boldsymbol{x}} f\left(\boldsymbol{x}_{0}\right) \cdot \Delta \boldsymbol{x}+\text { h.o.t. }
$$

where $D_{\boldsymbol{x}} f\left(\boldsymbol{x}_{0}\right)$ is the row vector of partial derivatives

$$
D_{\boldsymbol{x}} f(\boldsymbol{x})=\left(\frac{\partial f\left(\boldsymbol{x}_{0}\right)}{\partial x_{1}}, \ldots, \frac{\partial f\left(\boldsymbol{x}_{0}\right)}{\partial x_{n}}\right)
$$

- A linear approximation exists and f is differentiable at \boldsymbol{x}_{0} if all of its partial derivatives exist at \boldsymbol{x}_{0} and are continuous in \boldsymbol{x}.

Planar approximation to a non-linear surface

Figure: Linear approximation to f at point P.

Computing the derivative: an example

- Compute at $\left(x_{1}, x_{2}, x_{3}\right)=(1,2,1)$ the derivative of the following function:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \ln x_{2}+\sqrt{x_{2} x_{3}}
$$

- Since we have a real-valued function f, its derivative is the row vector of its partial derivatives evaluated $x=\left(x_{1}, x_{2}, x_{3}\right)$:

$$
\begin{aligned}
D_{\boldsymbol{x}} f(\boldsymbol{x})= & \left(\frac{\partial f\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{1}}, \frac{\partial f\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{2}}, \frac{\partial f\left(x_{1}, x_{2}, x_{3}\right)}{\partial x_{3}}\right) \\
& =\left(\ln x_{2}, \frac{x_{1}}{x_{2}}+\frac{1}{2} x_{2}^{-\frac{1}{2}} x_{3}^{\frac{1}{2}}, \frac{1}{2} x_{2}^{\frac{1}{2}} x_{3}^{-\frac{1}{2}}\right)
\end{aligned}
$$

Evaluating at (1, 2, 1)

$$
D_{x} f(1,2,1)=\left(\ln 2, \frac{1}{2}+\frac{1}{2 \sqrt{2}}, \frac{\sqrt{2}}{2}\right)
$$

Utility functions: marginal utilities

- Utility function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ assigns a numerical value $u(\boldsymbol{x})$ for each possible (positive) consumption vector $\boldsymbol{x} \in \mathbb{R}_{+}^{n}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{x} \geq 0\right\}$.
- $u(\boldsymbol{x}) \geq u(\boldsymbol{y})$ if and only if the consumer considers \boldsymbol{x} at least as good as \boldsymbol{y}
- Consider first the case with two goods, i.e. $n=2$.
- Partial derivatives of the utility function are called the marginal utilities denoted by $M U_{x_{i}}$.

$$
M U_{x_{i}}\left(\hat{x}_{1}, \hat{x}_{2}\right):=\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{i}}
$$

- If $\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}}>0$, then $u\left(\hat{x}_{1}+h, \hat{x}_{2}\right)>u\left(\hat{x}_{1}, \hat{x}_{2}\right)$ for small $h>0$, and we say that utility is strictly increasing in good 1 at (\hat{x}_{1}, \hat{x}_{2}).
- If this holds at all $\left(x_{1}, x_{2}\right)$, we say simply that utility is strictly increasing. Typically it is assumed that utility is strictly increasing in all goods.

Utility functions: marginal utilities

- For small consumption changes ($\Delta x_{1}, \Delta x_{2}$), we can approximate the change in utility by using the derivative $D_{x} u\left(\hat{x}_{1}, \hat{x}_{2}\right)$:

$$
\begin{gathered}
u\left(\hat{x}_{1}+\Delta x_{1}, \hat{x}_{2}+\Delta x_{2}\right)-u\left(\hat{x}_{1}, \hat{x}_{2}\right)=D_{x} u\left(\hat{x}_{1}, \hat{x}_{2}\right)\left(\Delta x_{1}, \Delta x_{2}\right) \\
=\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}} \Delta x_{1}+\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}} \Delta x_{2} .
\end{gathered}
$$

- Recall from Principles 1 that $\left(\hat{x}_{1}+\Delta x_{1}, \hat{x}_{2}+\Delta x_{2}\right)$ and (\hat{x}_{1}, \hat{x}_{2}) are on the same indifference curve if they are equally good to the consumer:

$$
u\left(\hat{x}_{1}+\Delta x_{1}, \hat{x}_{2}+\Delta x_{2}\right)=u\left(\hat{x}_{1}, \hat{x}_{2}\right) .
$$

- But then we have:

$$
\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}} \Delta x_{1}+\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}} \Delta x_{2}=0
$$

or

$$
\Delta x_{2}=-\frac{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}}}{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}}} \Delta x_{1} \text {. }
$$

Utility functions: MRS

- The consumer is willing to give up $\frac{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}}}{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}}}$ units of good 2 to get an additional unit of good 1 at $\left(\hat{x}_{1}, \hat{x}_{2}\right)$.
- Hence marginal rate of substitution at $\left(\hat{x}_{1}, \hat{x}_{2}\right)$ is captured in the ratio of marginal utilities:

$$
M R S_{x_{1}, x_{2}}\left(\hat{x}_{1}, \hat{x}_{2}\right)=\frac{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}}}{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}}}=\frac{M U_{x_{1}}\left(\hat{x}_{1}, \hat{x}_{2}\right)}{M U_{x_{2}}\left(\hat{x}_{1}, \hat{x}_{2}\right)} .
$$

Utility functions: MRS

- If $n>2$ we can ask how many (small) units of good j the consumer would be willing to give up in order to get an additional (small) unit of good i.
- If all the other goods remain fixed at $\hat{\boldsymbol{x}}$ and

$$
u\left(\hat{\boldsymbol{x}}+\Delta x_{i} \boldsymbol{e}^{i}+\Delta x_{j} \boldsymbol{e}^{j}\right)=u(\hat{\boldsymbol{x}})
$$

then

$$
\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{i}} \Delta x_{i}+\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{j}} \Delta x_{j}=0
$$

and we have:

$$
M R S_{x_{i}, x_{j}}(\hat{\boldsymbol{x}})=\frac{\frac{\partial u(\hat{\boldsymbol{x}})}{\partial x_{i}}}{\frac{\partial u(\hat{\boldsymbol{x}})}{\partial x_{j}}}=\frac{M U_{x_{i}}(\hat{\boldsymbol{x}})}{M U_{x_{j}}(\hat{\boldsymbol{x}})}
$$

The gradient

- The gradient of the utility function denoted by $\nabla u(\boldsymbol{x})$ is the transpose of its derivative:

$$
\nabla u(\boldsymbol{x})=\left(\frac{\partial u(\boldsymbol{x})}{\partial x_{1}}, \ldots, \frac{\partial u(\boldsymbol{x})}{\partial x_{n}}\right)
$$

- Does the gradient have any particular interpretation?
- A first observation is that when $n=2$, the gradient is orthogonal to the indifference curve:

$$
\left(1,-\frac{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}}}{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}}}\right) \cdot\left(\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}}, \frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}}\right)=\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}}-\frac{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{1}}}{\frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}}} \frac{\partial u\left(\hat{x}_{1}, \hat{x}_{2}\right)}{\partial x_{2}}=0 .
$$

The gradient

- The gradient at \boldsymbol{x} gives the direction in which the utility function increases the fastest near \boldsymbol{x}.
- To see this, consider the change in the utilityusing the linear approximation:

$$
u(\hat{\boldsymbol{x}}+\Delta \boldsymbol{x})-u(\hat{\boldsymbol{x}})=D_{\boldsymbol{x}}(\hat{\boldsymbol{x}}) \Delta \boldsymbol{x}+\text { h.o.t. }
$$

- For a unit length (or norm) of $\Delta \boldsymbol{x}$, the change in utility is maximized at

$$
\Delta \boldsymbol{x}=\frac{1}{\|\nabla u(\hat{\boldsymbol{x}})\|} \nabla u(\hat{\boldsymbol{x}})
$$

by Cauchy's inequality.

Computing marginal utilities and the MRS

- Linear utility:

$$
u(\boldsymbol{x})=\boldsymbol{a} \cdot \boldsymbol{x}=\sum_{i=1}^{n} a_{i} x_{i}
$$

Then $M U_{x_{i}}(\boldsymbol{x})=a_{i}$ for all i and all \boldsymbol{x}, and $M R S_{x_{i}, x_{j}}=\frac{a_{i}}{a_{j}}$ for all $i \neq j$ and all \boldsymbol{x}.

- Quasilinear utility:

$$
u\left(x_{1}, x_{2}\right)=v\left(x_{1}\right)+x_{2}
$$

for some increasing function v.

$$
M U_{x_{2}}=1, M U_{x_{1}}=M R S_{x_{1}, x_{2}}=v^{\prime}\left(x_{1}\right)
$$

For example if $v\left(x_{1}\right)=\ln \left(x_{1}\right)$, then

$$
M U_{x_{1}}=M R S_{x_{1}, x_{2}}=\frac{1}{x_{1}}
$$

Computing marginal utilities and the MRS

- Cobb-Douglas utility:

$$
u\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha} \text { for } \alpha \in(0,1)
$$

In this case,

$$
M U_{x_{1}}\left(x_{1}, x_{2}\right)=\alpha\left(\frac{x_{2}}{x_{1}}\right)^{1-\alpha}, \quad M U_{x_{2}}\left(x_{1}, x_{2}\right)=(1-\alpha)\left(\frac{x_{1}}{x_{2}}\right)^{\alpha},
$$

and therefore:

$$
M R S_{x_{1}, x_{2}}=\frac{\alpha\left(\frac{x_{2}}{x_{1}}\right)^{1-\alpha}}{(1-\alpha)\left(\frac{x_{1}}{x_{2}}\right)^{\alpha}}=\frac{\alpha x_{2}}{(1-\alpha) x_{1}}
$$

Computing marginal utilities and the MRS

- For $n>2$, we have:

$$
u(\boldsymbol{x})=\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \text { for } \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1
$$

Denote $y=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$. Then

$$
M U_{x_{i}}=\alpha_{i} \frac{y}{x_{i}},
$$

and therefore

$$
M R S_{x_{i}, x_{j}}(\boldsymbol{x})=\frac{\alpha_{i} x_{j}}{\alpha_{j} x_{i}}
$$

Exercise: Compute the marginal utilities for $u(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} \ln x_{i}$.

Computing marginal utilities and the MRS

- Constant elasticity of substitution utility (CES utility function): for $\rho<1$ and $\rho \neq 0$,

$$
u\left(x_{1}, x_{2}\right)=\left(a_{1} x_{1}^{\rho}+a_{2} x_{2}^{\rho}\right)^{\frac{1}{\rho}}
$$

Denote $y\left(x_{1}, x_{2}\right)=\left(a_{1} x_{1}^{\rho}+a_{2} x_{2}^{\rho}\right)$ and we have $u\left(x_{1}, x_{2}\right)=y\left(x_{1}, x_{2}\right)^{\frac{1}{\rho}}$. We get by chain rule that

$$
M U_{x_{i}}\left(x_{1}, x_{2}\right)=\frac{1}{\rho} y\left(x_{1}, x_{2}\right)^{\frac{1-\rho}{\rho}} \rho a_{i} x_{i}^{\rho-1}
$$

Therefore the marginal rates of substitution are quite simple:

$$
M R S_{x_{1}, x_{2}}\left(x_{1}, x_{2}\right)=\frac{a_{1}}{a_{2}}\left(\frac{x_{1}}{x_{2}}\right)^{\rho-1}
$$

Next Lecture

- Vector valued multivariate functions
- Implicit function theorem
- Comparative statics in economic models

