Mathematics for Economists: Lecture 4

Juuso Välimäki

Aalto University School of Business
Spring 2021

三

Content of Lecture 4

- In Lecture 3, Linear approximations of non-linear functions
- This Lecture:

1. Linear approximation of vector valued functions
2. Implicit function theorem
3. Comparative statics of economic models

Linear approximation of vector-valued functions

- What is a vector valued function?
- A function whose values take the form of a column vector
- Each component in the vector is a (possibly) multivariate function

$$
\boldsymbol{f}=\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right) .
$$

- What is an economic example: the vector of demands

$$
\boldsymbol{x}\left(p_{1}, \ldots, p_{n}, l\right)=\left(\begin{array}{c}
x_{1}\left(p_{1}, \ldots, p_{n}, l\right) \\
x_{2}\left(p_{1}, \ldots, p_{n}, l\right) \\
\vdots \\
x_{n}\left(p_{1}, \ldots, p_{n}, l\right)
\end{array}\right)
$$

- The domain of this function is $\left\{\left(p_{1}, \ldots, p_{n}, I\right) \mid p_{i}>0\right.$ for all i, and $\left.I>0\right\}$.
- The values of this function are in $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \geq 0\right.$ for all $\left.i\right\}$.

Linear approximation of vector-valued functions

- How do we find a linear approximation?
- Vector of linear approximations to component functions

$$
D_{\boldsymbol{x}} \boldsymbol{f}=\left(\begin{array}{c}
D_{\boldsymbol{x}} f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
D_{\boldsymbol{x}} f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
D_{\boldsymbol{x}} f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right) .
$$

Linear approximation of vector-valued functions

- Writing in full:

$$
D_{\boldsymbol{x}} \boldsymbol{f}=\left(\begin{array}{cccc}
\frac{\partial f_{1}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1}} & \frac{\partial f_{1}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{2}} & \ldots & \frac{\partial f_{1}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{n}} \\
\frac{\partial f_{2}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1}} & \frac{\partial f_{2}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{2}} & \ldots & \left.\frac{\partial f_{2}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{n}}\right) \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{n}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1}} & \frac{\partial f_{n}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{2}} & \ldots & \frac{\partial f_{n}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{n}}
\end{array}\right) .
$$

- We get the linear approximation at $\hat{\boldsymbol{x}}$ by evaluating the derivative matrix at $\hat{\boldsymbol{x}}$:

$$
D_{\boldsymbol{x}} f(\hat{\boldsymbol{x}})=\left(\begin{array}{c}
D_{\boldsymbol{x}} f_{1}(\hat{\boldsymbol{x}}) \\
D_{\boldsymbol{x}} f_{2}(\hat{\boldsymbol{x}}) \\
\vdots \\
D_{\boldsymbol{x}} f_{n}(\hat{\boldsymbol{x}})
\end{array}\right)
$$

Linear approximation of vector-valued functions: numerical example

- Consider the following vector-valued function:

$$
\boldsymbol{f}(x, y, z)=\binom{f_{1}(x, y, z)}{f_{2}(x, y, z)}=\binom{x+y^{2}+\frac{1}{z}}{-x+\sqrt{y}+2 z}
$$

- To compute the derivative at $(x=1, y=1, z=1)$, compute first the matrix of partial derivatives:

$$
D_{x, y, z} f(x, y, z)=\left(\begin{array}{ccc}
1 & +2 y & -\frac{1}{z^{2}} \\
-1 & \frac{1}{2 \sqrt{y}} & 2
\end{array}\right)
$$

- Evaluating at $(1,1,1)$ gives

$$
D_{x, y, z} f(1,1,1)=\left(\begin{array}{ccc}
1 & 2 & -1 \\
-1 & \frac{1}{2} & 2
\end{array}\right)
$$

Chain rule for multivariate functions:

- Recall the chain rul: If $y=f(x)$ and $z=g(y)$, then for $h(x)=g(f(x))$:

$$
h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)
$$

- Consider now a similar situation where $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, and $\boldsymbol{g}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ and $\boldsymbol{h}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}))$. Let $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$.
- By the linear approximation at $\hat{\boldsymbol{x}}$ to \boldsymbol{f}, we get:

$$
\boldsymbol{f}(\hat{\boldsymbol{x}}+\Delta \boldsymbol{x}) \approx \boldsymbol{f}(\hat{\boldsymbol{x}})+D_{\boldsymbol{x}} \boldsymbol{f}(\hat{\boldsymbol{x}}) \Delta \boldsymbol{x}
$$

- Similarly

$$
\boldsymbol{g}\left(\boldsymbol{f}(\hat{\boldsymbol{x}})+D_{\boldsymbol{x}}(\hat{\boldsymbol{x}}) \Delta \boldsymbol{x}\right) \approx \boldsymbol{g}(\boldsymbol{f}(\hat{\boldsymbol{x}}))+D_{\boldsymbol{y}} \boldsymbol{g}(f(\hat{\boldsymbol{x}})) D_{\boldsymbol{x}} \boldsymbol{f}(\hat{\boldsymbol{x}}) \Delta \boldsymbol{x}
$$

- Hence we have:

$$
D_{\boldsymbol{x}} \boldsymbol{h}(\hat{\boldsymbol{x}})=D_{\boldsymbol{y}} \boldsymbol{g}(\boldsymbol{f}(\hat{\boldsymbol{x}})) D_{\boldsymbol{x}} \boldsymbol{f}(\hat{\boldsymbol{x}}) \Delta \boldsymbol{x}
$$

Chain rule: Homogenous functions

- Homogenous functions are an important class of functions for many economic applications.
- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is homogenous of degree k if for all $\lambda>0$ and \boldsymbol{x},

$$
\begin{equation*}
f(\lambda \boldsymbol{x})=\lambda^{k} f(\boldsymbol{x}) \tag{1}
\end{equation*}
$$

- A production function $F: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$gives the production level $F(K, L)$ for each possible choice of capital input K and labor input L.
- We say that a production function has constant returns to scale if it is homogenous of degree 1 .
- In this case, scaling all inputs in the same proportion scales the output in the same proportion.

Chain rule: Homogenous functions

Proposition

If f is homogenous of degree k , then

$$
D_{\boldsymbol{x}} f(\boldsymbol{x}) \boldsymbol{x}=k f(\boldsymbol{x}),
$$

or writing out the partial. derivatives:

$$
\sum_{i=1}^{n} x_{i} \frac{\partial f(\boldsymbol{x})}{\partial x_{i}}=k f(\boldsymbol{x})
$$

Chain rule: Homogenous functions

Proof.

Consider the two sides of equation (1) as a function $h(\lambda)$ of λ. On the left-hand side, we have a composite function of the vector valued function $\boldsymbol{g}(\lambda)=\lambda \boldsymbol{x}$ and f so that $h(\lambda)=f(\boldsymbol{g}(\lambda))$ holds for all λ. We can take derivatives with respect to λ on both sides. Left-and side gives:

$$
D_{\boldsymbol{x}} f(\boldsymbol{g}(\boldsymbol{x})) D \boldsymbol{g}_{\lambda} \boldsymbol{x}=D_{\boldsymbol{x}} f(\lambda \boldsymbol{x}) \boldsymbol{x}
$$

The right-hand side is a polynomial in λ with derivative:

$$
k \lambda^{k-1} f(\boldsymbol{x})
$$

Setting $\lambda=1$, and equating the two sides gives the result.

Chain rule: Homogenous functions

- Why is this an important result?
- We shall see that if capital and labor are chosen optimally in a firm, then the marginal products (i.e. the partial derivatives of the production function) satisfy $M P_{K}=r$ and $M P_{L}=w$, where w is the market wage rate and r is the market rate for renting capital.
- We get from Euler's theorem that $Y=F(K, L)=r K+w L$. In other words, capital and labor compensations exhaust the entire output.

Product rule: An economic example

- A consumer decides how to allocate her budget of $I>0$ between goods x_{1} and x_{2} sold at prices $p_{1}, p_{2}>0$. Her demand for the goods is a vector valued function:

$$
\boldsymbol{x}(\boldsymbol{p}, l)=\binom{x_{1}\left(p_{1}, p_{2}, l\right)}{x_{2}\left(p_{1}, p_{2}, l\right)}
$$

- She uses her entire budget on the two goods, i.e. for all p_{1}, p_{2}, l,

$$
\boldsymbol{p} \cdot \boldsymbol{x}(\boldsymbol{p}, l)=I, \text { or } p_{1} x_{1}\left(p_{1}, p_{2}, l\right)+p_{2} x_{2}\left(p_{1}, p_{2}, l\right)=I .
$$

- Can we say something useful with the derivatives of this function?

Product rule: An economic example

- Since the equation holds for all $\left(p_{1}, p_{2}, l\right)$, the partial derivative of the left-hand side with respect to e.g. I has to be 1:

$$
p_{1} \frac{\partial x_{1}\left(p_{1}, p_{2}, I\right)}{\partial I}+p_{2} \frac{\partial x_{2}\left(p_{1}, p_{2}, I\right)}{\partial I}=1
$$

or

$$
\frac{p_{1} x_{1}}{l} \frac{\partial x_{1}\left(p_{1}, p_{2}, l\right)}{\partial l} \frac{l}{x_{1}}+\frac{p_{2} x_{2}}{l} \frac{\partial x_{2}\left(p_{1}, p_{2}, l\right)}{\partial l} \frac{l}{x_{2}}=1 .
$$

Writing $\alpha_{i}=\frac{p_{i} x_{i}}{l}$ for the consumption share of good i and $\varepsilon_{l}^{x_{i}}$ for the income elasticity of good i, we get:

$$
\alpha_{1} \varepsilon_{l}^{x_{1}}+\alpha_{2} \varepsilon_{l}^{x_{2}}=1,
$$

i.e. the weighted average of the income elasticities (using the consumption shares as weights) is 1.

Product rule: An economic example

- If we want to use the vector notation, we have:

$$
D_{\boldsymbol{p}}(\boldsymbol{p} \cdot \boldsymbol{x}(\boldsymbol{p}, I))=\boldsymbol{x}(\boldsymbol{p}, I)^{\top}+\boldsymbol{p} \cdot D_{p} \boldsymbol{x}(\boldsymbol{p}, I)=0
$$

and

$$
D_{I} \boldsymbol{p} \cdot \boldsymbol{x}(\boldsymbol{p}, I)=\boldsymbol{p} \cdot D_{I} \boldsymbol{x}(\boldsymbol{p}, I)=1
$$

- It is a somewhat challenging exercise to relate the partial derivatives with respect to prices to price elasticities as we did with income. Again you need to make use of the consumption shares.

Comparative statics: motivating examples

Figure: Exogenous variable shifting demand and supply

Comparative statics: motivating examples

- In Principles 1, we argued that at optimal consumption,

$$
M R S_{x_{1}, x_{2}}(\hat{\boldsymbol{x}})=\frac{p_{1}}{p_{2}}
$$

where p_{i} is the price of good i.

- We have also the budget constraint:

$$
p_{1} x_{1}+p_{2} x_{2}=w
$$

where w is the total budget.

$$
\begin{array}{r}
p_{2} \frac{\partial u\left(x_{1}, x_{2}\right)}{\partial x_{1}}-p_{1} \frac{\partial u\left(x_{1}, x_{2}\right)}{\partial x_{2}}
\end{array}=0,
$$

- Again for many u, no explicit solution is possible.
- Still, how do the optimal consumptions change when some of the p_{1}, p_{2},w change?

Linear implicit function theorem

- Because of linearity, this is not really needed since the system can be solved explicitly
- Consider the system of equations:

$$
\begin{array}{r}
a_{11} y_{1}+\ldots+a_{1 n} y_{n}+b_{11} x_{1}+\ldots+b_{1 m} x_{m}=0 \\
\\
a_{n 1} y_{1}+\ldots+a_{n n} y_{n}+b_{n 1} x_{1}+\ldots+b_{n m} x_{m}= \\
0
\end{array}
$$

- In matrix form:

$$
\boldsymbol{f}(\boldsymbol{y} ; \boldsymbol{x})=\boldsymbol{A} \boldsymbol{y}+\boldsymbol{B} \boldsymbol{x}=0
$$

where \boldsymbol{A} is an $n \times n$ matrix and \boldsymbol{B} is an $n \times m$ matrix, $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)$.

Linear implicit function theorem

- Assume that the system is solved at (\hat{y}, \hat{x}) :

$$
\boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})=0 \text { or } \boldsymbol{A} \widehat{\boldsymbol{y}}+\boldsymbol{B} \widehat{\boldsymbol{x}}=0
$$

and consider the effect of a small change
$(d \boldsymbol{y} ; d \boldsymbol{x})=\left(d y_{1}, \ldots, d y_{n} ; d x_{1}, \ldots, d x_{m}\right)$ on the value of f :

$$
\begin{aligned}
\boldsymbol{f}(\widehat{\boldsymbol{y}} & +d y, \widehat{\boldsymbol{x}}+d \boldsymbol{x})-\boldsymbol{f}(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}})=A d \boldsymbol{y}+B d \boldsymbol{x} \\
& =D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}}) d \boldsymbol{y}+D_{\boldsymbol{x}} f(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}}) d \boldsymbol{x}
\end{aligned}
$$

where $D_{\boldsymbol{y}} \boldsymbol{f}(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})$ consists of the partial derivatives of \boldsymbol{f} w.r.t. the endogenous variables \boldsymbol{y} and $D_{\boldsymbol{x}} \boldsymbol{f}(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})$ w.r.t. the exogenous variables x.

Linear implicit function theorem

- For

$$
\boldsymbol{f}(\boldsymbol{y} ; \boldsymbol{x})=0
$$

to hold at $(\boldsymbol{y}, \boldsymbol{x})=(\widehat{\boldsymbol{y}}+d \boldsymbol{y}, \widehat{\boldsymbol{x}}+d \boldsymbol{x})$, the change must be zero:

$$
D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}}) d \boldsymbol{y}+D_{\boldsymbol{x}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}}) d \boldsymbol{x}=0
$$

- In other words,

$$
d \boldsymbol{y}=-D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})^{-1} D_{\boldsymbol{x}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}}) d \boldsymbol{x}=-\boldsymbol{A}^{-1} \boldsymbol{B} d \boldsymbol{x}
$$

- This equation has a solution for all $d \boldsymbol{x}$ if and only if \boldsymbol{A}^{-1} exists, i.e. if $\boldsymbol{A}=D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})$ has full rank.
- The generalization of this result for the non-linear case in a neighborhood of $(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})$ is called the implicit function theorem.

Linear implicit function theorem: Example

Consider the linear system around $\left(\hat{y}_{1}, \hat{y}_{2}, \hat{x}\right)=(2,5,-3)$:

$$
\begin{aligned}
2 y_{1}+y_{2}+3 x & =0 \\
y_{1}-y_{2}-x & =0
\end{aligned}
$$

Compute the value of the function at $\left(\hat{y}_{1}+d y_{1}, \hat{y}_{2}+d y, \hat{x}+d x\right)$:

$$
\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right)\binom{2+d y_{1}}{5+d y_{2}}+\binom{3}{-1}(3+d x)=\binom{0}{0}
$$

or

$$
\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right)\binom{d y_{1}}{d y_{2}}=\binom{-3}{1} d x
$$

By Cramer's rule:

$$
d y_{1}=\frac{\operatorname{det}\left(\begin{array}{cc}
-3 & 1 \\
1 & -1
\end{array}\right) d x}{\operatorname{det}\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right)}=\frac{-2}{3} d x, \quad d y_{2}=\frac{\operatorname{det}\left(\begin{array}{cc}
2 & -3 \\
1 & 1
\end{array}\right) d x}{\operatorname{det}\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right)}=\frac{-5}{3} d x
$$

Implicit function for $y: f(x, y)=x^{2}+y^{2}=0$

Figure: What's the slope of the tangent at (\hat{x}, \hat{y}) ?

Implicit function theorem for $n=m=1$
We start this section with an example of a univariate function.

$$
\begin{equation*}
f(y, x)=x y+\ln (x y+x)=0 \tag{2}
\end{equation*}
$$

- Note that $(\hat{y}, \widehat{x})=(0,1)$ satisfies equation 2.
- What is the impact of a small change $d x$ in \hat{x} on the value of y satisfying the equation.
- We are interested in all points (y, x) near $(0,1)$ satisfying equation 2.
- Let's assume that such a $y(x)$ exists for all x near \hat{x}.
- Assume also that $y(x)$ has a derivative at \hat{x}. We can then write:

$$
g(x)=f(y(x), x)=x y(x)+\ln (x y(x)+x)=0
$$

for all x near $\hat{x}=1$.

- We see that the original equation has been reduced to an equation in a single variable x.
- Since the composite function is constant in $x(=0)$, the composite function g must have a zero derivative in x near $\hat{x}=1$.
- By the chain rule:

$$
\begin{aligned}
& g^{\prime}(x)=\frac{\partial f(y ; x)}{\partial y} y^{\prime}(x)+\frac{\partial f(y ; x)}{\partial x} \\
= & \left(x+\frac{x}{x y+x}\right) y^{\prime}(x)+y+\frac{y+1}{x y+x} .
\end{aligned}
$$

- By requiring $g^{\prime}(1)=0$, we get:

$$
y^{\prime}(1)=-\frac{\frac{\partial f(0,1)}{\partial x}}{\frac{\partial f(0,1)}{\partial y}}=-\frac{1}{2}
$$

- Notice that this is a valid computation only if $\frac{\partial f(0,1)}{\partial y} \neq 0$.

One-dimensional implicit function theorem

Theorem

Let $f(y, x)$ be a continuously differentiable in a neighborhood of (\hat{y}, \hat{x}) and $f(\hat{y}, \hat{x})=0$. If $\frac{\partial f(\hat{y}, \hat{x})}{\partial y} \neq 0$, then there exists a continuously differentiable function $y(x)$ in a neighborhood $B_{\hat{x}}$ of \hat{x} such that:

1. $f(y(x), x)=0$ for all $x \in B_{\hat{x}}$,
2. $y(\hat{x})=\hat{y}$,
3. The derivative of y at \hat{x} satisfies:

$$
y^{\prime}(\hat{x})=-\frac{\frac{\partial f(\hat{y}, \hat{x})}{\partial x}}{\frac{\partial f(\hat{y}, \hat{x})}{\partial y}}
$$

The textbook has a proof of this theorem.

The Implicit function theorem

- Consider now a continuously differentiable non-linear function

$$
\boldsymbol{f}: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}
$$

in a neighborhood of the point $(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}}) \in \mathbb{R}^{n+m}$, where

$$
\boldsymbol{f}(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}})=0
$$

- Use the derivative of $\operatorname{Df}(\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}})$ to approximate \boldsymbol{f} at $(\hat{\boldsymbol{y}}+d \boldsymbol{y}, \hat{\boldsymbol{x}}+d \boldsymbol{x})$:

$$
\boldsymbol{f}(\widehat{\boldsymbol{y}}+d \boldsymbol{y}, \widehat{\boldsymbol{x}}+d \boldsymbol{x})-f(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}})=D \boldsymbol{f}(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}})) d \boldsymbol{x}, d \boldsymbol{y})=D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}}) d \boldsymbol{y}+D_{\boldsymbol{x}} \boldsymbol{f}(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}}) d \boldsymbol{x}
$$

- Suppose we have a solution to the system at $(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})$:

$$
D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}}) d \boldsymbol{y}+D_{\boldsymbol{x}} \boldsymbol{f}(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}}) d \boldsymbol{x}=0
$$

- Since $D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})$ ja $D_{\boldsymbol{x}} f(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})$ are matrices, we continue here exactly as in the linear case.
- With differential calculus, we have reduced the really complicated non-linear problem to the much simpler linear case locally, i.e. in a neighborhood of the solution point $(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})$.

The Implicit function theorem: An example

- Consider the following system:

$$
\begin{aligned}
& f_{1}\left(y_{1}, y_{2} ; x_{1}, x_{2}\right)=y_{1} y_{2}^{2}-x_{1} x_{2}+x_{2}+1=0, \\
& f_{2}\left(y_{1}, y_{2} ; x_{1}, x_{2}\right)=y_{1}+\frac{x_{1}}{y_{2}}+x_{2}-5=0 .
\end{aligned}
$$

- Analyze the system of equations in a neighborhood of the point

$$
\left(\widehat{y}_{1}, \widehat{y}_{2} ; \widehat{x}_{1}, \widehat{x}_{2}\right)=(1,1,2,2) .
$$

The Implicit function theorem: An example

- Check first that the equation is satisfied at (1, 1, 2, 2) and form the appropriate matrices of partial derivatives:

$$
\begin{gathered}
D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})=\left(\begin{array}{cc}
\frac{\partial f_{1}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})}{\partial y_{1}} & \frac{\partial f_{1}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})}{\partial y_{2}} \\
\frac{\partial f_{2}(\hat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})}{\partial y_{1}} & \frac{\partial f_{2}(\hat{y} ; \hat{\boldsymbol{x}})}{\partial y_{2}}
\end{array}\right)=\left(\begin{array}{cc}
\widehat{y}_{2}^{2} & 2 \widehat{y}_{1} \widehat{y}_{2} \\
1 & \frac{-\widehat{x}_{1}}{\widehat{y}_{2}^{2}}
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right), \\
D_{\boldsymbol{x}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})=\left(\begin{array}{cc}
\frac{\partial f_{1}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})}{\partial x_{1}} & \frac{\partial f_{1}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})}{\partial x_{2}} \\
\frac{\partial f_{2}(\hat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})}{\partial x_{1}} & \frac{\partial f_{2}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
-\widehat{x}_{2} & 1-\widehat{x}_{1} \\
\frac{1}{\hat{y}_{2}} & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right) .
\end{gathered}
$$

The Implicit function theorem: An example

- We see that $\operatorname{det}\left(D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})\right) \neq 0$, and therefore the matrix $D_{\boldsymbol{y}} \boldsymbol{f}(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})$ has full rank and an inverse matrix $\left[D_{y} f(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})\right]^{-1}$
- Exercise: Show that

$$
\left[D_{y} f(\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}})\right]^{-1}=\frac{-1}{4}\left(\begin{array}{cc}
-2 & -2 \\
-1 & 1
\end{array}\right),
$$

and therefore:

$$
d \boldsymbol{y}=\frac{1}{4}\left(\begin{array}{cc}
-2 & -2 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right) d x .
$$

Implicit function theorem

Figure: Implicit function theorem: exogenous changes in x. Red curves after change.

Failure of implicit function theorem

Figure: $D_{\boldsymbol{y}} \boldsymbol{f}\left(\hat{y}_{1}, \hat{y}_{2} ; \hat{x}\right)$ does not have full rank. Solid curves drawn for \hat{x}.

The Implicit function theorem: Main theorem

We are now ready for the main theorem in this section.

Theorem

Let $\boldsymbol{f}: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ be continuously differentiable in a neighborhood $B^{\varepsilon}(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}})$, of ($\hat{\boldsymbol{y}}, \hat{\boldsymbol{x}}$) and

$$
\boldsymbol{f}(\widehat{\boldsymbol{y}}, \widehat{\boldsymbol{x}})=0
$$

If $\operatorname{det}\left(D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})\right) \neq 0$, then there exists a continuously differentiable function $\boldsymbol{y}(\boldsymbol{x})$ defined in a neighborhood $B^{\delta}(\widehat{\boldsymbol{x}})$ of $\hat{\boldsymbol{x}}$ such that :

1. $\boldsymbol{f}(\boldsymbol{y}(\boldsymbol{x}), \boldsymbol{x})=0$ for all $\boldsymbol{x} \in B^{\delta}(\widehat{\boldsymbol{x}})$,
2. $\boldsymbol{y}(\widehat{\boldsymbol{x}})=\widehat{\boldsymbol{y}}$,
3. The derivative of the function \boldsymbol{y} satisfies:

$$
D \boldsymbol{y}(\widehat{\boldsymbol{x}})=-\left(D_{\boldsymbol{y}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})\right)^{-1} D_{\boldsymbol{x}} \boldsymbol{f}(\widehat{\boldsymbol{y}} ; \widehat{\boldsymbol{x}})
$$

The Implicit function theorem: Main theorem

- Proving this theorem is beyond the scope of this course.
- Assuming points 1. and 2. above, point 3. is an application of the chain rule in the vector-valued multivariate case.
- It is nothing more than a local version of the linear implicit function theorem.
- Parts 1. and 2. require some more sophisticated mathematics. Proving the existence of the implicit function $y(x)$ near \hat{x} requires the use of a fixed point theorem (similar to the case of showing the existence of local solutions to differential equations).
- We will see more examples once we have more tools from optimization available.

Next lecture:

- Higher order Taylor approximations
- Quadratic forms
- Minima and maxima of non-linear functions
- Applications: Least squares estimators, Cost minimization

