Mathematics for Economists

Instructor: Juuso Valimaki

Teacher Assistant: Amin Mohazab

amin.mohazabrahimzadeh@gmail.com

Solutions to the problem set 2:

Question 1

a)

First we try to obtain the derivative using the chain rule:

$$
\begin{aligned}
\frac{d}{d t} f(x, y)=\frac{\partial f}{\partial x} & x^{\prime}(t)+\frac{\partial f}{\partial y} y^{\prime}(t) \\
& =\left(12 x(t) y^{2}(t)+y(t)\right) *(20 t)+\left(12 x^{2}(t) y(t)+x(t)\right) *\left(3 t^{2}+2\right) \\
& =\left(12\left(10 t^{2}+1\right)\left(t^{3}+2 t\right)^{2}+\left(t^{3}+2 t\right)\right) *(20 t) \\
& +\left(12\left(10 t^{2}+1\right)^{2}\left(t^{3}+2 t\right)+10 t^{2}+1\right) *\left(3 t^{2}+2\right)
\end{aligned}
$$

Now by plugging $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ to $\mathrm{f}(\mathrm{x}, \mathrm{y})$ and taking the derivative:

$$
\begin{aligned}
f(x(t), y(t))= & x y(1+6 x y)=\left(10 t^{2}+1\right)\left(t^{3}+2 t\right)\left[1+6\left(10 t^{2}+1\right)\left(t^{3}+2 t\right)\right] \\
& =\left(10 t^{5}+21 t^{3}+2 t\right)\left[1+60 t^{5}+126 t^{3}+12 t\right] \\
\Rightarrow & f^{\prime}(t)=\left(50 t^{4}+63 t^{2}+2\right)\left[1+60 t^{5}+126 t^{3}+12 t\right]+ \\
& \left(10 t^{5}+21 t^{3}+2 t\right)\left[300 t^{4}+378 t^{2}+12\right]= \\
& \left(50 t^{4}+63 t^{2}+2\right)\left(\left[1+120 t^{5}+252 t^{3}+24 t+1\right]\right)
\end{aligned}
$$

b)

$$
\begin{gathered}
f(x, y)=8 x^{3}+2 x y-3 x^{2}+y^{2}+1 \\
\frac{d f}{d x}=0 \rightarrow 24 x^{2}+2 y-6 x=0 \\
\frac{d f}{d y}=0 \rightarrow 2 x+2 y=0 \rightarrow x=-y
\end{gathered}
$$

using the last equation we have

$$
24 x^{2}-8 x=0 \rightarrow 8 x(3 x-1)=0
$$

so

$$
\begin{gathered}
x=0, y=0 \\
x=\frac{1}{3}, y=-\frac{1}{3}
\end{gathered}
$$

for the second equation:

$$
\begin{gathered}
f(x, y)=x+2 e^{y}-e^{x}-e^{2 y} \\
\frac{d f}{d x}=0 \rightarrow 1-e^{x}=0 \rightarrow x=0 \\
\frac{d f}{d y}=0 \rightarrow 2 e^{y}-2 e^{2 y}=0 \rightarrow e^{y}=e^{2 y} \rightarrow y=0
\end{gathered}
$$

c)

Since y is the endogenous function, we can write:

$$
f(x, y(x, z), z)=y^{3}(x, z) x^{2}+z^{3}+x y(x, z) z-3=0
$$

To use implicit function theorem, we need two conditions to be satisfied:

- Function f should be continuously differentiable at the point $(1,1,1)$, which is clearly satisfied
- And $\frac{\partial f(x, y, \hat{y})}{\partial y} \neq 0$. To see if we have this condition:
$\frac{\partial f(x, y, z)}{\partial y}=3 y^{2} x^{2}+x z$ which is equal to 4 at $(1,1,1)$ so we can use the implicit function theorem here. Taking a derivative from function f to x we have:

$$
f^{\prime}(x, z)=\frac{\partial f}{\partial x}+y_{x}^{\prime} \frac{\partial f}{\partial y}+z_{x}^{\prime} \frac{\partial f}{\partial z}
$$

But we know that the derivative of z with respect to x is equal to zero, so:

$$
f^{\prime}(x, z)=\frac{\partial f}{\partial x}+y_{x}^{\prime} \frac{\partial f}{\partial y}=0 \Rightarrow y_{x}^{\prime}=\frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=-\frac{3}{4}
$$

Question 2:

a) We have the system of equations:

$$
\begin{gathered}
\frac{\alpha}{y_{1}}-y_{3} z_{1}=0 \\
\frac{\beta}{y_{2}}-y_{3} z_{2}=0 \\
z_{1} y_{1}+z_{2} y_{2}-z_{3}=0
\end{gathered}
$$

Now at the point:

$$
\left(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)=(1,1,1, \alpha, \beta, \alpha+\beta)
$$

We have:

$$
\begin{gathered}
\alpha-\alpha=0 \\
\beta-\beta=0 \\
\alpha+\beta-(\alpha+\beta)=0
\end{gathered}
$$

So the system is satisfied at this point.
b) Lets write the system of the equations in the following form:

$$
\begin{gathered}
f_{1}\left(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)=\frac{\alpha}{y_{1}}-y_{3} z_{1}=0 \\
f_{2}\left(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)=\frac{\beta}{y_{2}}-y_{3} z_{2}=0 \\
f_{3}\left(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)=z_{1} y_{1}+z_{2} y_{2}-z_{3}=0
\end{gathered}
$$

And we know that the equations are satisfied at the point:

$$
\left(y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)=(1,1,1, \alpha, \beta, \alpha+\beta)
$$

So we make the matrices of the partial derivatives:

$$
\begin{aligned}
D_{y} f(\hat{y}, \widehat{z})=\left[\begin{array}{lll}
\frac{\partial f_{1}(\hat{y}, \hat{z})}{\partial y_{1}} & \frac{\partial f_{1}(\hat{y}, \hat{z})}{\partial y_{2}} & \frac{\partial f_{1}(\hat{y}, \hat{z})}{\partial y_{3}} \\
\frac{\partial f_{2}(\hat{y}, \hat{z})}{\partial y_{1}} & \frac{\partial f_{2}(\hat{y}, \hat{z})}{\partial y_{2}} & \frac{\partial f_{2}(\hat{y}, \hat{z})}{\partial y_{3}} \\
\frac{\partial f_{3}(\hat{y}, \hat{z})}{\partial y_{1}} & \frac{\partial f_{3}(\hat{y}, \hat{z})}{\partial y_{2}} & \frac{\partial f_{3}(\hat{y}, \hat{z})}{\partial y_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{\alpha}{\hat{y}_{1}^{2}} & 0 & -\hat{z}_{1} \\
0 & -\frac{\beta}{\hat{y}_{2}^{2}} & -\hat{z}_{2} \\
\hat{z}_{1} & \hat{z}_{2} & 0
\end{array}\right]=\left[\begin{array}{ccc}
-\alpha & 0 & -\alpha \\
0 & -\beta & -\beta \\
\alpha & \beta & 0
\end{array}\right] \\
\operatorname{det}\left(D_{y} f(\hat{y}, \hat{z})\right)=-\alpha \beta(\alpha+\beta)
\end{aligned}
$$

And since

$$
\begin{gathered}
\alpha, \beta>0 \\
\operatorname{det}\left(D_{y} f(\hat{y}, \widehat{z})\right) \neq 0
\end{gathered}
$$

So we have the necessary condition to use the implicit function theorem to obtain $\frac{d y}{d z}$.
Now we have:

$$
d y=\left[D_{y} f(\hat{y}, \widehat{z})\right]^{-1}\left[D_{z} f(\hat{y}, \widehat{z})\right] d z
$$

Question 3:

$$
\pi(q)=p(q) q-c(q)
$$

Where $p(q)$ is the inverse demand function and is equal to:

$$
p(q)=a-b q
$$

And $c(q)$ is the cost function of the firm and it is equal to:

$$
c(q)=\delta q^{2}
$$

a)

$$
\begin{gathered}
\pi(q)=p(q) q-c(q)=q(a-b q)-\delta q^{2} \\
\frac{d \pi}{d q}=a-2 b q-2 \delta q=0 \Rightarrow q^{*}=\frac{a}{2(b+\delta)}
\end{gathered}
$$

b) Now we have the per unit tax, so the profit function is:

$$
\begin{gathered}
\pi(q)=(1-\tau) p(q) q-c(q)=(1-\tau) q(a-b q)-\delta q^{2} \\
\frac{d \pi}{d q}=(1-\tau)(a-2 b q)-2 \delta q=0
\end{gathered}
$$

using the implicit function theorem, we have:

$$
f=(1-\tau)(a-2 b q)-2 \delta q=0
$$

and the partial derivative of q with respect to τ is:

$$
\frac{\partial q}{\partial \tau}=-\frac{\frac{\partial f}{\partial \tau}}{\frac{\partial f}{\partial q}}=(-1) \frac{a-2 b q}{2 b(1-\tau)+2 \delta}
$$

It is obvious that the denominator is always positive since $0<\tau<1$, but what can we say about the numerator $a-2 b q$? what is the revenue of the firm after selling q ?

$$
\text { Revenue }=p . q=(1-\tau) q(a-b q) \rightarrow M R=(1-\tau)(a-2 b q)>0
$$

And we know that the marginal revenue of the firm in operation is always positive. Consequently, the partial derivative of q with respect to τ is always negative so the amount of the optimal production will decrease as the result of the tax implementation.

Question 4:

a)

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2} ; c_{1}, c_{2}\right)=\frac{x_{1}}{x_{1}+x_{2}}-c_{1} x_{1} \\
& f_{2}\left(x_{1}, x_{2} ; c_{1}, c_{2}\right)=\frac{x_{2}}{x_{1}+x_{2}}-c_{2} x_{2}
\end{aligned}
$$

we first compute the partial derivatives with respect to x_{1}, x_{2} :

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial x_{1}}=\frac{x_{1}+x_{2}-x_{1}}{\left(x_{1}+x_{2}\right)^{2}}-c_{1}=\frac{x_{2}}{\left(x_{1}+x_{2}\right)^{2}}-c_{1} \\
& \frac{\partial f_{2}}{\partial x_{2}}=\frac{x_{2}+x_{1}-x_{2}}{\left(x_{1}+x_{2}\right)^{2}}-c_{2}=\frac{x_{1}}{\left(x_{1}+x_{2}\right)^{2}}-c_{2}
\end{aligned}
$$

b)
the system of equations:

$$
\begin{aligned}
& \frac{x_{2}}{\left(x_{1}+x_{2}\right)^{2}}-c_{1}=0 \\
& \frac{x_{1}}{\left(x_{1}+x_{2}\right)^{2}}-c_{2}=0
\end{aligned}
$$

we can easily write the above equations as follows:

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right)^{2}=\frac{x_{2}}{c_{1}} \\
& \left(x_{1}+x_{2}\right)^{2}=\frac{x_{1}}{c_{2}}
\end{aligned}
$$

so

$$
\frac{x_{2}}{c_{1}}=\frac{x_{1}}{c_{2}} \rightarrow x_{2}=\frac{x_{1} c_{1}}{c_{2}}
$$

putting it into the second equation $\left(\frac{\partial f_{2}}{\partial x_{2}}=0\right)$, we will have:

$$
\begin{aligned}
& \frac{x_{1}}{\left(x_{1}+\frac{x_{1} c_{1}}{c_{2}}\right)^{2}}=c_{2} \rightarrow \frac{1}{x_{1}\left(1+\frac{c_{1}}{c_{2}}\right)^{2}}=c_{2} \\
& x_{1}=\frac{1}{c_{2}\left(\frac{c_{1}+c_{2}}{c_{2}}\right)^{2}} \rightarrow x_{1}=\frac{c_{2}}{\left(c_{1}+c_{2}\right)^{2}}
\end{aligned}
$$

and

$$
x_{2}=\frac{c_{1}}{\left(c_{1}+c_{2}\right)^{2}}
$$

c)

$$
\begin{aligned}
& g_{1}=\frac{x_{1}^{r}}{x_{1}^{r}+x_{2}^{r}}-c x_{1} \\
& g_{2}=\frac{x_{2}^{r}}{x_{1}^{r}+x_{2}^{r}}-c x_{2}
\end{aligned}
$$

deriving the partial derivative with respect to x_{1}, we have:

$$
\frac{\partial g_{1}}{\partial x_{1}}=\frac{\left(r x_{1}^{r-1}\right)\left(x_{1}^{r}+x_{2}^{r}\right)-\left(r x_{1}^{r-1}\right) x_{1}^{r}}{\left(x_{1}^{r}+x_{2}^{r}\right)^{2}}=\frac{\left(r x_{1}^{r-1}\right) x_{2}^{r}}{\left(x_{1}^{r}+x_{2}^{r}\right)^{2}}
$$

so the system of the equations is:

$$
\begin{aligned}
& \frac{\partial g_{1}}{\partial x_{1}}=\frac{\left(r x_{1}^{r-1}\right) x_{2}^{r}}{\left(x_{1}^{r}+x_{2}^{r}\right)^{2}}-c=0 \\
& \frac{\partial g_{2}}{\partial x_{2}}=\frac{\left(r x_{2}^{r-1}\right) x_{1}^{r}}{\left(x_{1}^{r}+x_{2}^{r}\right)^{2}}-c=0
\end{aligned}
$$

c, d)

$$
\begin{gathered}
g_{1}=\frac{x_{1}^{r}}{x_{1}^{r}+x_{2}^{r}}-c x_{1} \\
g_{2}=\frac{x_{2}^{r}}{x_{1}^{r}+x_{2}^{r}}-c x_{2} \\
\frac{\partial g_{1}}{\partial x_{1}}=\frac{r x_{1}^{r-1}\left(x_{1}^{r}+x_{2}^{r}\right)-r x_{1}^{r-1} x_{1}^{r}}{\left(x_{1}^{r}+x_{2}^{r}\right)^{2}}-c=\frac{r x_{1}^{r-1} x_{2}^{r}}{\left(x_{1}^{r}+x_{2}^{r}\right)^{2}}-c
\end{gathered}
$$

so the partial derivatives are:

$$
\begin{aligned}
& \frac{\partial g_{1}}{\partial x_{1}}=\frac{r x_{1}^{r-1} x_{2}^{r}}{\left(x_{1}^{r}+x_{2}^{r}\right)^{2}}-c=0 \\
& \frac{\partial g_{2}}{\partial x_{2}}=\frac{r x_{2}^{r-1} x_{1}^{r}}{\left(x_{1}^{r}+x_{2}^{r}\right)^{2}}-c=0
\end{aligned}
$$

by solving the derived system of equations, we will have:

$$
x_{1}^{r-1} x_{2}^{r}=x_{2}^{r-1} x_{1}^{r} \rightarrow x_{1}=x_{2}
$$

putting it in either of the equations, we get:

$$
\frac{r x_{1}^{2 r-1}}{4 x_{1}^{2 r}}=c \rightarrow \frac{r}{4 x_{1}}=c \rightarrow x_{1}=\frac{r}{4 c}
$$

and

$$
x_{1}=x_{2}=\frac{r}{4 c}
$$

so

$$
c x=\frac{r}{4}<\frac{1}{2}
$$

e)

We know that the payoff of going to the war for each country is:

$$
\pi\left(x_{1}, x_{2}, c_{1}, c_{2}\right)=\frac{x_{i}}{x_{1}+x_{2}}-c x_{i}
$$

since $x_{1}=x_{2}$, the first part is equal to $\frac{1}{2}$ and obviously the second part which is the cost of going to the war shouldn't be greater than $\frac{1}{2}$,otherwise they have no intentions to do that.

$$
\pi=\frac{1}{2}-c x
$$

Now consider the case where $r>2$. consequently $c x=\frac{r}{4}>\frac{1}{2}$ and the payoff of going to the war (with any amount of army size) will be negative for the countries.

It will be really useful to plot the two cases of the profit function for firm 1. Assume that firm 2 behave according to the equilibrium $x_{2}=\frac{r}{4 c}$ and $\mathrm{c}=0.005$ and we plot the profit function for two values of $r, r=0.5$ and $r=4$.

Figure 1
As you see in Figure 1, for $0<r<1$ the function is convex and it is easy to obtain the x_{1}^{*}. In the second case where $r>2$, the function f is decreasing at first and it has a local maxima which brings us the negative profit.

