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Convex and concave functions

In this last section of Part I of the course, we take a first look at the ex-
tremely important question of convexity and concavity of functions. These
notions revolve around quite general geometric notions in Rn and you will
see applications in many different areas of economic theory (in particular
under the title of ’duality theory’. For us now, the most immediate ques-
tions relate to the curvature of non-linear functions and their extrema. The
really useful observation for optimization is that for concave functions,
the first-order necessary conditions for minima and maxima are also suf-
ficient. In particular, if f is concave and Df(x̂) = 0, then f has a global
maximum atx̂.

Basic definitions

We start with a definition of convex sets.

Definition 1. A set X is convex if for all x,y ∈ X and for all λ ∈ [0, 1], we
have:

λx + (1− λ)y ∈ X.

We call λx + (1− λ)y a convex combination of x and y.

[Convex set] [Non-convex set]

Figure 1: Graphical interpretation of convex sets.
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Figure 2: A convex function f(x)

On the real line, convex sets are intervals a ≤ x ≤ b for some −∞ ≤
a ≤ b ≤ ∞. In Rn, convex sets are sets X with the property that when you
connect linearly two points in X , the entire connecting line is also in X .
Hence a disk in the plane is convex and a cube in the three dimensional
space are convex, but the circle in the plane is not, a disk with the center
removed is not, a doughnut in three dimensions is not etc.

Consider a real-valued function f : X → R, where X is a convex set.

Definition 2. The function f is convex if for all x,y ∈ X and for all λ ∈
[0, 1], we have:

f (λx + (1− λ)y) ≤ λf (x) + (1− λ) f (y) .

f is concave if

f (λx + (1− λ)y) ≥ λf (x) + (1− λ) f (y) .

Observations:

• If f (x) is convex, then −f (x) is concave.

• If f (x) is convex, then af (x) is convex if a > 0.

• If f (x) and g (x) are convex, then h (x) = f (x) + g (x) is convex.
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• If f (x) and g (x) are convex, then h (x) = f (x) g (x) is not necessar-
ily convex. (Give an example for both cases, i.e. where the product
of convex functions is convex and where it is not).

• Exercise: Assume that f : X → R is convex and g : R → R is also
convex. Is g(f(x)) convex? What if g is increasing and convex?

• (Optional Exercise): Assume that f : X → R is a convex function.
Show that the set

{(x, y) ∈ Rn+1 | x ∈ X, y ≥ f(x)}

is a convex set.

• If f (x) and g (x) are convex, then h (x) = max{f (x) , g (x)} is con-
vex.

Proof: Since by assumption, f and g are convex, we have:

f (λx + (1− λ)y) ≤ λf (x) + (1− λ) f (y)

and
g (λx + (1− λ)y) ≤ λg (x) + (1− λ) g (y) .

By definition,

h (λx + (1− λ)y) = max{f (λx + (1− λ)y) , g (λx + (1− λ)y)}
≤ max{λf (x) + (1− λ) f (y) , λg (x) + (1− λ) g (y)}
≤ λmax{f (x) , g (x)}+ (1− λ) max{f (y) , g (y)}
= λh (x) + (1− λ)h (y) .

The first inequality follows from the convexity of f and g.The second
follows by choosing the larger of f(·), g(·) for x,y. The last equality
is just the definition of h.

• The same result is true for an arbitrary set of convex functions. Let
f (x;α) be convex in xfor all α. Then

g (x) = max
α

f (x;α)

is convex. The proof is identical to the one above.
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Figure 3: The minimum of linear functions (in red) is concave

• Since linear functions are convex, this result holds for any set of lin-
ear functions.

• Since
max{f (x) , g (x)} = −min{−f (x) ,−g (x)},

and since −f is concave when f is convex, we get:

g (x) = min
α
f (x;α)

is concave if f (x;α) is concave in x for all α.

Example 1 (Profit function of a firm). A competitive firm sells output y at
price p0 and buys inputs x = (x1, ..., xn) at input prices (p1, ..., pn) .

Its profit is
p0y − Σn

i=1pixi.

The maximization problem is then

max
y,x∈F

p0y − Σn
i=1pixi,

where F is the feasible set determined by technological possibilities.
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The profit function of the firm gives the maximum achievable profit
amongst the feasible set at input and output prices p.

π (p) = π (p0, p1, ..., pn) = max
y,x∈F

p0y − Σn
i=1pixi

Since the profit from a fixed feasible production is a linear function of
the prices p, the profit function is the maximum over linear functions and
therefore convex in p.

Example 2 (Expenditure minimization). LetX be the feasible set for inputs
x = (x1, ..., xn) and p = (p1, ..., pn) be the input prices. The expenditure
function

e (p;X) = min
x∈X

p · x = min
x∈X

Σn
i=1pixi

is a concave function by the same argument as above.

These two examples show that convexity and concavity play a key role
in economic applications. We shall see more applications when we discuss
constrained optimization and value functions of optimization problems.
Is there an economic intuition for the maximum of linear functions being
convex? We’ll return to this after some further characterizations of convex
functions.

Convexity and concavity of differentiable functions

When f : R → R, and f is convex and differentiable, it it is easy to see by
drawing a picture that for all x, y we have:

f (y)− f (x) ≥ f ′ (x) (y − x) .

This just says that the graph (x, f/x)) of a convex function f is above all of
its tangent lines.

Proposition 1. A differentiable function f : R→ R is convex if and only if

f (y)− f (x) ≥ f ′ (x) (y − x) for all x, y.

Proof. i) Let f be convex. Then for all x, y:

f (λx+ (1− λ) y)

= f (x+ (1− λ) (y − x))

≤ λf (x) + (1− λ) f (y)

= f (x) + (1− λ) (f (y)− f (x))
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or
f (x+ (1− λ) (y − x))− f (x)

(1− λ)
≤ f (y)− f (x) ,

or
(y − x)

f (x+ (1− λ) (y − x))− f (x)

(1− λ) (y − x)
≤ f (y)− f (x) .

Letting λ→ 1, we get:

(y − x) f ′ (x) ≤ f (y)− f (x) .

ii) Assume that

f (y)− f (x) ≥ f ′ (x) (y − x) for all x, y.

Then

f (x)− f (λx+ (1− λ) y) ≥ (1− λ) f ′ (λx+ (1− λ) y) (x− y)

and
f (y)− f (λx+ (1− λ) y) ≥ −λf ′ (λx+ (1− λ) y) (x− y) .

Multiply the first inequality by λ and the second by (1− λ)and sum to-
gether to get the definition of convex functions.

Consider next f : X → R, where X is a convex subset of Rn.

Proposition 2. A differentiable function f : X → R is convex if and only if

f (y)− f (x) ≥ Df (x) (y − x) .

Proof. We start with a preliminary result: f is convex if and only if gx,y (λ) :=
f ((1− λ)x + λy) is convex for all x,y. In other words, convexity is equiv-
alent to convexity along convex combinations. The proof of this is left as a
relatively easy exercise.

By the chain rule,

g′x,y (λ) = Σn
i=1

∂f (x + λ (y − x))

∂xi
(yi − xi)

= Df (x + λ (y − x)) (y − x) .

By the previous theorem, gx,y (λ) is convex if and only if

gx,y (1)− gx,y (0) ≥ g′x,y (0) .
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In other words if and only if

f (y)− f (x) ≥ Df (x) (y − x) .

This is the multidimensional generalization to the geometric notion
that the graphs of convex functions lie above their tangent lines. Can you
formulate this condition in terms of level curves and gradients? What is
the corresponding result to concave functions?

Exercise: Using this condition, show that if f is convex (concave) on
the convex set X and Df(x̂) = 0, then x̂ is a global minumum (maximum)
of f on X

Second derivatives and convexity

Start again with functions of a single variable. By Taylor’s theorem,

f (y) = f (x) + f ′ (x) (y − x) +
1

2
f ′′ (x) (y − x)2 +

1

6
f ′′′ (x) (y − x)3 + h.o.t.

In order to have
f (y)− f (x) ≥ f ′ (x) (y − x)

for |y − x| small, we must have

f ′′ (x) ≥ 0.

In other words, convex functions have a positive second derivative.
Taylor’s theorem with a remainder term of second degree:

f (y) = f (x) + f ′ (x) (y − x) +
1

2
f ′′ (z) (y − x)2

for some z ∈ [x, y]. If f ′′ is everywhere non-negative, we get:

f (y)− f (x) ≥ f ′ (x) (y − x)

for all y, x and f is therefore convex.
Let’s generalize now to f : X → R, where X is a convex subset of Rn n.
We use again the function

gx,y (λ) = f ((1− λ)x + λy) = f (x + λ (y − x))
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and consider the second derivatives of g.
Convexity corresponds to positive semidefiniteness of the Hessian ma-

trix. Concavity corresponds to negative semidefiniteness of the Hessian
matrix. Hence we see an immediate connection between convexity and
the second order conditions for optimality.

Quasiconvex and quasiconcave functions

Even though the name suggests something extremely technical and te-
dious, quasiconcavity is actually one of the most important notions for
functions in economic theory. We begin with the definitions and proper-
ties of quasiconcave functions, but at the end of this section, I will discuss
why this is such a useful definitions for economic modeling.

Definition 3.

A function f on a convex set X is quasiconcave if for all x,y ∈ X and for all
λ ∈ [0, 1]

f (λx + (1− λ)y) ≥ min{f (x) , f (y)}.

f is quasiconvex is for all x,y ∈ X and for all λ ∈ [0, 1]

f (λx + (1− λ)y) ≤ max{f (x) , f (y)}.

Exercise: f is quasiconcave, then −f is quasiconvex.
We can make some observations:

• If f is quasiconcave, then af is quasiconcave if a > 0.

• If f and g are quasiconcave f + g is not necessarily quasiconcave.

• All monotone (i.e. all increasing and all decreasing) functions of a
single variable are both quasiconcave and quasiconvex.

• All concave functions are quasiconcave. Show this as an exercise.

• Not all quasiconcave functions are concave.

• If f is a quasiconcave function and g is a strictly increasing function,
then h (x) = g (f (x)) is a quasiconcave function.
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Proof:

h(λx + (1− λ)y) = g (f (λx + (1− λ)y))

≥ g (min{f (x) , f (y)})
= min{g (f (x)) , g (f (y))}
= min{h (x) , h (y)}.

Exercise: where was the increasing property of g used in the proof?

An upper contour set of function f for value α is denoted by U (f ;α)
and defined as:

U (f ;α) := {x ∈ X|f(x) ≥ α}.

Interpretation: if f is a utility function, U(f ;α) is the better side of the
indifference curve giving utility level α.

Proposition 3. A function f is quasiconcave if and only if U (f ;α) is a
convex set for all α.

Proof. i) Assume that f is quasiconcave and x,y ∈ U (f ;α) . Then f (x) ≥
α, f (y) ≥ α and by quasiconcavity of f ,

f (λx + (1− λ)y) ≥ min{f (x) , f (y)} ≥ α.

In other words
λx + (1− λ)y ∈ U (f ;α) ,

and therefore U (f ;α) is convex.
ii) Assume that U (f ;α) is a convex set for all α. Then

x,y ∈ U (f,min{f (x) , f (y)}) ,

and
λx + (1− λ)y ∈ U (f,min{f (x) , f (y)}) .

But then by the definition of U (f ;α):

f (λx + (1− λ)y) ≥ min{f (x) , f (y)}.
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u(x1, x2) = ū

u(x1, x2) > ū

Figure 4: The better than set for a quasiconcave. utility function is convex

Let me make a methodological point here. For economic modeling,
the exact mathematical form of the utility function is unimportant since
many different functions represent the same preferences as discussed be-
fore. The meaningful properties for an economic model relate to the pref-
erences, i.e. to the indifference curves. As a result, an assumption on the
shape of these curves or their upper contour sets are meaningful. The
convexity of upper contour sets of utility functions is a meaningful prop-
erty and it is often assumed in models of consumer choice. Notice that the
shapes of the upper contour sets remain unchanged when going from u(x)
to v(u(x)) for a strictly increasing v. This follows from the observation that

U(v(u); v(α)) = U(u;α) for all α.

We end this subsection with a useful special case of quasiconcave func-
tions:

Definition 4. A function f on a convex set X is strictly quasiconcave if for
all x,y ∈ X and for all λ ∈ (0, 1)

f (λx + (1− λ)y) > min{f (x) , f (y)}.
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The following exercise shows why strict quasiconcavity is very useful
for optimization problems.

Exercise: show that if a strictly quasiconcave function has a maximum,
then the maximum is unique.

Quasiconcavity and differentiability

A differentiable function f on a convex set X is quasiconcave if and only
if for all x,y ∈ X :

f (y) ≥ f (x)⇒ Df (x) (y − x) ≥ 0.

Exercise: Compare this to the definition of concavity for differentiable
functions and relate this condition to the geometry of upper contour sets
and tangent planes to the upper contour sets.

The second order conditions for quasiconcavity based on bordered Hes-
sian matrices are extremely complex and contain little economic intuition.
The textbook on pages 527-531 gives an introduction to this.

With these preliminaries, we are ready for constrained optimization in
Part II of this course.

11


