Mathematics for Economists: Lecture 5

Juuso Välimäki

Aalto University School of Business

Spring 2021

Content of Lecture 5

- In Lecture 4, Implicit function theorem
- This Lecture:

1. Minima and maxima of functions
2. Necessary and sufficient conditions
3. Taylor's theorem and quadratic approximations
4. Quadratic forms

Minima and Maxima

- Global minima and maxima
- We say that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a global maximum at point $\hat{\boldsymbol{x}}$ if for all $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
f(\hat{\boldsymbol{x}}) \geq f(\boldsymbol{x}) .
$$

- Function f has a global minumum at $\hat{\boldsymbol{x}}$ if for all $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
f(\hat{\boldsymbol{x}}) \leq f(\boldsymbol{x}) .
$$

- Minimum and maximum points are called extrema or optimum points.
- Local extrema
- We define $B^{\varepsilon}(\hat{\boldsymbol{x}}):=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \quad\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|<\varepsilon\right\}$.
- The function \boldsymbol{f} has a local maximum (minimum) at $\hat{\boldsymbol{x}}$ if there exists an $\varepsilon>0$ such that for all $\boldsymbol{x} \in B^{\varepsilon}(\hat{\boldsymbol{x}})$, we have:

$$
f(\hat{\boldsymbol{x}}) \geq(\leq) f(\boldsymbol{x}) .
$$

Overall goal for this lecture

1. How do we know whether f has a maximum or a minimum at $\hat{\boldsymbol{x}}$?
2. How to find local minima and maxima?
3. When are local extrema also global extrema?

Necessary and sufficient conditions

- Suppose that we have the following statement ${ }^{\prime} A \Rightarrow B^{\prime}$
- We say that B is necessary for A.
- We say that A is sufficient for B.
- If $A \Longleftrightarrow B^{\prime}$, we say that B is necessary and sufficient for A.
- In this last case, we also say that A is true if and only if B is true, or that A and B are equivalent statements.

Necessary and sufficient conditions: Examples

1. Consider the statements $A=^{\prime} f(x)$ is a polynomial' and $B=^{\prime} f(x)$ is differentiable'.
2. Then A is sufficient for B and B is necessary for A.
3. We know that if A is true, then B is true.
4. We also know that if B is not true, then A is not true.
5. ' \boldsymbol{A} has a nonzero determinant' is necessary and sufficient for \boldsymbol{A} is invertible.

First-order necessary conditions for extrema

- Consider the partial derivatives of f at $\hat{\boldsymbol{x}}$:

$$
\frac{\partial f(\hat{\boldsymbol{x}})}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(\hat{x}_{1}, \ldots, \hat{x}_{i-1}, \hat{x}_{i}+h, \hat{x}_{i+1}, \ldots, \hat{x}_{n}\right)-f(\hat{\boldsymbol{x}})}{h} .
$$

- If $\frac{\partial f(\hat{x})}{\partial x_{i}}>0$, then for $|h|$ small, then

$$
f\left(\hat{x}_{1}, \ldots, \hat{x}_{i-1}, \hat{x}_{i}+h, \hat{x}_{i+1}, \ldots, \hat{x}_{n}\right)>f(\hat{\boldsymbol{x}}) \text { for } h>0
$$

and

$$
f\left(\hat{x}_{1}, \ldots, \hat{x}_{i-1}, \hat{x}_{i}+h, \hat{x}_{i+1}, \ldots, \hat{x}_{n}\right)<f(\hat{\boldsymbol{x}}) \text { for } h<0
$$

First-order necessary conditions for extrema

- Similarly, if $\frac{\partial f(\hat{x})}{\partial x_{i}}<0$, then for small $|h|$:

$$
f\left(\hat{x}_{1}, \ldots, \hat{x}_{i-1}, \hat{x}_{i}+h, \hat{x}_{i+1}, \ldots, \hat{x}_{n}\right)<f(\hat{\boldsymbol{x}}) \text { for } h>0
$$

and

$$
f\left(\hat{x}_{1}, \ldots, \hat{x}_{i-1}, \hat{x}_{i}+h, \hat{x}_{i+1}, \ldots, \hat{x}_{n}\right)>f(\hat{\boldsymbol{x}}) \text { for } h<0
$$

- We conclude that to have any kind of an extremum at $\hat{\boldsymbol{x}}$, we must have for all i :

$$
\frac{\partial f(\hat{\boldsymbol{x}})}{\partial x_{i}}=0
$$

- We say that the first-order necessary condition for an extremum at $\hat{\boldsymbol{x}}$ is that all partial derivatives are zero at $\hat{\boldsymbol{x}}$. This can be written with the gradient of f as:

$$
\nabla f(\hat{\boldsymbol{x}})=0
$$

Critical points of functions

- We say that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a critical point at $\hat{\boldsymbol{x}}$ if $\frac{\partial f(\hat{\boldsymbol{X}})}{\partial x_{i}}=0$ for all $i \in\{1, \ldots, n\}$.
- Example: $f(x, y, z)=x^{3} y+y^{2} z-z^{3} x-2 x-3 y+2 z$.

$$
\begin{aligned}
& \frac{\partial f(x, y, z)}{\partial x}=3 x^{2} y-z^{3}-2 \\
& \frac{\partial f(x, y, z)}{\partial y}=x^{3}+2 y z-3 \\
& \frac{\partial f(x, y, z)}{\partial z}=y^{2}-3 z^{2} x+2
\end{aligned}
$$

- This function has a critical point at $(\hat{x}, \hat{y}, \hat{z})=(1,1,1)$.
- Can you see if it is a minimum or a maximum? (I can't)
- Some critical points are neither minima nor maxima (think about $f(x)=x^{3}$ at $\hat{x}=0$).

Higher order derivatives: Functions of a real variable

- Consider now the derivative $f^{\prime}(x)$ as a function of $x \in \mathbb{R}$. If f^{\prime} is has a derivative at \hat{x}, we can form the difference quotient as before:

$$
\lim _{h \rightarrow 0} \frac{f^{\prime}(\hat{x}+h)-f^{\prime}(\hat{x})}{h}
$$

- If this limit exists, we call this derivative of the derivative the second derivative of f at \hat{x}. We denote the second derivative $f^{\prime \prime}(\hat{x})$.
- For any k, define the $k^{\text {th }}$ derivative at \hat{x} as the derivative of the $(k-1)^{s t}$ derivative.
- We denote this by $f^{(k)}(\hat{x})$. We say that f is k times continuously differentiable if $f^{(k)}(x)$ is a continuous function on the domain of f. We write $f \in C^{k}(\mathbb{R})$.

Higher order derivatives: Functions of a real variable

- If $f(x)=\ln x^{2}-1$ for $x>1$, then we can compute the first two derivatives:

$$
f^{\prime}(x)=\frac{2 x}{x^{2}-1}, f^{\prime \prime}(x)=\frac{2\left(x^{2}-1\right)-2 x 2 x}{\left(x^{2}-1\right)^{2}}
$$

- If $f(x)=e^{\frac{-1}{x^{2}}}$ for $x \neq 0$ and $f(x)=0$ for $x=0$, we have:

$$
f^{\prime}(x)=2 x^{-3} e^{\frac{-1}{x^{2}}}, f^{\prime \prime}(x)=-6 x^{-4} e^{\frac{-1}{x^{2}}}+4 x^{-6} e^{\frac{-1}{x^{2}}}
$$

- As you can see, these computations get somewhat heavy very quickly.

Higher order approximations: Motivation

- Both $f(x)=x^{2}$ and $f(x)=-x^{2}$ have a critical point at $\hat{x}=0$.
- For the first of these functions, the critical point is the global minimum since $x^{2} \geq 0$ for all x and $x^{2}>0$ for $x \neq 0$.
- For the second, $\hat{x}=0$ is the global maximum.
- To get more accurate information, we must look at the second derivatives of f. In the example above, $f^{\prime \prime}(0)=2$ in the first case and $f^{\prime \prime}(0)=-2$ in the second.
- Taylor's theorem allows us to determine minima and maxima based on the sign of the second derivative at a critical point.

Higher order approximations: Taylor's theorem

Theorem

Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$, and assume that it is $k+1$ times continuously differentiable at \hat{x}. Then

$$
f(\hat{x}+h)=f(\hat{x})+f^{\prime}(\hat{x}) h+\frac{1}{2} f^{\prime \prime}(\hat{x}) h^{2}+\ldots+\frac{1}{k!} f^{[k]}(\hat{x}) h^{k}+\frac{1}{(k+1)!} f^{[k+1]}(x) h^{k+1}
$$

for some x with $\hat{x}<x<\hat{x}+h$.

Taylor's theorem in practice

Taylor's theorem and the classification of critical points

- With the help of Taylor's theorem, we can classify all points with $f^{\prime}(\hat{x})=0$:

1. If the first / for which $f^{[l]}(\hat{x}) \neq 0$, is odd, then f does not have an extremum (i.e. minimum or maximum) at \hat{x}.
2. If the first / for which $f^{[l]}(\hat{x}) \neq 0$, is even and $f^{[l]}(\hat{x})<0$, then f has a local maximum at \hat{x}.
3. If the first I for which $f^{[l]}(\hat{x}) \neq 0$, is even and $f^{[l]}(\hat{x})>0$, then f has a local minimum at \hat{x}.

- To see why this is true, define I as above and divide the right-hand side of Taylor's theorem by $h^{\prime-1}$ and let $h \rightarrow 0$.
- The requirement $f^{\prime}(\hat{x})=0$ and $f^{\prime \prime}(\hat{x})<0$ is called the second-order sufficient condition for local maximum at \hat{x}.
- One more point should be kept in mind. The function f may have several local maxima and not all of them are maxima. We will have more to say about global extrema when we discuss convex and concave functions.

Second-order conditions and comparative statics

- Consider finding the $y \in \mathbb{R}$ that maximizes

$$
f(y ; x)
$$

where $x \in \mathbb{R}$ is an exogenous variable.

- Write the problem of maximizing with respect to y as follows:

$$
\max _{y} f(y ; x)
$$

- The first order necessary condition for optimum at (\hat{y}, \hat{x}) is:

$$
\frac{\partial f}{\partial y}(\widehat{y} ; \widehat{x})=0
$$

- A sufficient condition for local maximum is obtained from Taylor's theorem:

$$
f(\widehat{y}+d y ; \widehat{x})-f(\widehat{y} ; \widehat{x})=\frac{\partial f}{\partial y}(\widehat{y} ; \widehat{x}) d y+\frac{1}{2} \frac{\partial^{2} f}{\partial y \partial y}(\widehat{y} ; \widehat{x})(d y)^{2}+\text { h.o.t. }
$$

Definiteness and comparative statics

- If

$$
\frac{\partial^{2} f}{\partial y \partial y}(\hat{y} ; \hat{x})<0,
$$

then fhas a local maximum at $(\widehat{y} ; \widehat{x})$.

- Note that then also the function

$$
\frac{\partial f}{\partial y}(\widehat{y} ; \widehat{x})
$$

has a non-zero derivative w.r.t. the endogenous variable at $(\hat{y} ; \widehat{x})$ and we can apply the implicit function theorem y to get the optimal y as a function of x.

Definiteness and comparative statics

- Since

$$
\frac{\partial f}{\partial y}(y(x) ; x)=0
$$

for all x near \hat{x}, we get:

$$
\frac{\partial^{2} f(\widehat{y} ; \widehat{x})}{\partial y \partial y} d y+\frac{\partial^{2} f(\widehat{y} ; \widehat{x})}{\partial y \partial x} d x=0
$$

or

$$
\frac{d y}{d x}=-\frac{\frac{\partial^{2} f(\hat{y} \cdot \hat{x})}{\partial y \partial x}}{\frac{\partial^{2} f(\hat{y} \cdot \hat{x})}{\partial y \partial y}}
$$

- Since $\frac{\partial^{2} f(\hat{y} ; \hat{x})}{\partial y \partial y}<0$ by second-order condition for a maximum, we see that $\frac{d y}{d x}$ has the same sign as $\frac{\partial^{2} f(\hat{y} ; \hat{x})}{\partial y \partial x}$.

Approximating multivariate functions

- Gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $\hat{\boldsymbol{x}}$ is the column vector of its partial derivatives $\frac{\partial f(\hat{\boldsymbol{x}})}{\partial x_{i}}$.
- If these partial derivatives are differentiable, we can evaluate all the partial derivatives of the partial derivatives at $\hat{\boldsymbol{x}}$.
- We define the second derivative of f to be the derivative of its gradient. Hence the second derivative at point $\hat{\boldsymbol{x}}$ is given by the matrix $\operatorname{Hf}(\hat{\boldsymbol{x}})$ called the Hessian matrix of f :

$$
H f(\boldsymbol{x})=\left(\begin{array}{ccc}
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{1} \partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{n} \partial x_{n}}
\end{array}\right) .
$$

- Young's theorem: If f is twice continuously differentiable, then $\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{j} \partial x_{i}}$ for all \boldsymbol{x} and all i, j. In words, the Hessian matrix is symmetric.

Computing the Hessian: An Example

- Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-x_{2}^{3}+x_{1} x_{3}
$$

around $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$. The gradient is

$$
\nabla f\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{c}
2 x_{1}+x_{3} \\
-3 x_{2}^{2} \\
x_{1}
\end{array}\right)
$$

Compute

$$
\nabla f(0,0,0)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Computing the Hessian: An Example

- The Hessian matrix is given by:

$$
H f\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & -6 x_{2} & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Evaluate at $(0,0,0)$:

$$
H f(0,0,0)=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Multivariate Taylor's theorem for second order approximations

Taylor's theorem is also valid for functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Most useful for us is the second order approximation:

Theorem

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and assume that it is 3 times continuously differentiable at \hat{x}. Then

$$
f(\boldsymbol{x})=f(\hat{\boldsymbol{x}})+\nabla f(\hat{x}) \cdot(\boldsymbol{x}-\hat{\boldsymbol{x}})+\frac{1}{2}(\boldsymbol{x}-\hat{\boldsymbol{x}}) \cdot H f(\hat{\boldsymbol{x}})(\boldsymbol{x}-\hat{\boldsymbol{x}})+R(\boldsymbol{x}),
$$

where $\lim _{\boldsymbol{x} \rightarrow \hat{\boldsymbol{x}}} \frac{R(\boldsymbol{x})}{\|\boldsymbol{x}-\hat{\mathbf{x}}\|^{2}}=0$.

Classifying critical points with Taylor's approximation

- Recall that $\nabla f(\hat{\boldsymbol{x}})=0$ at any critical point $\hat{\boldsymbol{x}}$, and therefore we can determine if $f(\boldsymbol{x}) \leq f(\hat{\boldsymbol{x}})$ by examining the sign of the term:

$$
(\boldsymbol{x}-\hat{\boldsymbol{x}}) \cdot \operatorname{Hf}(\hat{\boldsymbol{x}})(\boldsymbol{x}-\hat{\boldsymbol{x}}) .
$$

- Hence we have identified as the key question the determination of the sign of $\boldsymbol{x} \cdot H f(\hat{\boldsymbol{x}}) \boldsymbol{x}$ for a symmetric matrix $H f(\hat{\boldsymbol{x}})$ for all possible \boldsymbol{x}.
- If it is strictly positive for all \boldsymbol{x}, we have a local minimum at $\hat{\boldsymbol{x}}$ (sufficient condition).
- If it is strictly negative, we have a local maximum at $\hat{\boldsymbol{x}}$.
- Conversely, if $\hat{\boldsymbol{x}}$ is a minimum (maximum), then $\boldsymbol{x} \cdot \operatorname{Hf}(\hat{\boldsymbol{x}}) \boldsymbol{x} \geq(\leq) 0$ for all \boldsymbol{x} (necessary condition).

Quadratic forms and classifying extrema of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- A quadratic form is a second-degree polynomial whose terms are all of second order. They can be written as:

$$
\boldsymbol{x} \cdot \boldsymbol{A x}
$$

for some symmetric matrix \boldsymbol{A}.

- A quadratic form is positive definite if for all $\boldsymbol{x} \neq 0, \boldsymbol{x} \cdot \boldsymbol{A} \boldsymbol{x}>0$. It is positive semidefinite if for all $\boldsymbol{x}, \boldsymbol{x} \cdot \boldsymbol{A x} \geq 0$.
- A quadratic form is negative definite if for all $\boldsymbol{x} \neq 0, \boldsymbol{x} \cdot \boldsymbol{A} \boldsymbol{x}<0$. It is negative semidefinite if for all $\boldsymbol{x}, \boldsymbol{x} \cdot \boldsymbol{A x} \leq 0$. In all other cases, we say that the quadratic form is indefinite.
- It may be helpful to write out the matrix products as summations:

$$
\boldsymbol{x} \cdot \boldsymbol{A} \boldsymbol{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

Classifying quadratic forms

- A first observation is that $\boldsymbol{e}^{i} \cdot \boldsymbol{A} \boldsymbol{e}^{i}=a_{i j}$. Therefore a quadratic form is indefinite if it has diagonal elements with different signs.
- Another easy case is when \boldsymbol{A} is a 2×2 matrix:

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

so that the quadratic form is:

$$
a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
$$

Classifying quadratic forms

-View this as a second degree function in x_{2}. If $c>0$, this function has a minimum at

$$
x_{2}=-\frac{b x_{1}}{c}
$$

- Substituting into the quadratic form:

$$
a x_{1}^{2}-2 \frac{b^{2} x_{1}^{2}}{c}+\frac{b^{2} x_{1}^{2}}{c}=\left(a-\frac{b^{2}}{c}\right) x_{1}^{2}
$$

- This is strictly positive if

$$
\begin{aligned}
\left(a-\frac{b^{2}}{c}\right) & >0 \text { or } \\
a c & >b^{2}
\end{aligned}
$$

- In other words, the quadratic form is positive definite if i) a, $c>0$ ja ii) $\operatorname{det} \boldsymbol{A}>0$.
$f\left(x_{1}, x_{2}\right)=-x_{2}^{2}-2 x_{1}^{2}$: maximum at $(0,0)$

$f\left(x_{1}, x_{2}\right)=x_{2}^{2}+x_{1}^{2}:$ minimum at $(0,0)$

$f\left(x_{1}, x_{2}\right)=x_{2}^{2}+x_{1}^{2}-10 x_{1} x_{2}:$ saddle at $(0,0)$

$f\left(x_{1}, x_{2}\right)=x_{2}^{2}-x_{1}^{2}$: saddle at $(0,0)$

Classifying quadratic forms

- The general case is tedious. We need to consider the leading principal minors $M(k)$ of \boldsymbol{A} :

$$
\begin{aligned}
& M_{1}=\operatorname{det} a_{11}, M_{2}=\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right), \\
& M_{3}=\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right), \ldots
\end{aligned}
$$

Classifying quadratic forms

- A quadratic form

$$
x \cdot A x
$$

is positive definite if $M_{i}>0$ for all i. It is negative definite if $M_{i}(-1)^{i}>0$ for all i, i.e. M_{i} is negative for odd i and positive for even i.

Classifying quadratic forms

- To analyze semidefiniteness of \boldsymbol{A}, more is needed. Define for all $1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq n$

$$
\boldsymbol{A}_{\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}}^{n}=\left(\begin{array}{ccc}
a_{i_{1} i_{1}} & a_{i_{1} i_{2}} \cdots & a_{i_{1} i_{n}} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
a_{i_{n} i_{1}} & a_{i_{n} i_{2}} \cdots & a_{i_{n} i_{n}}
\end{array}\right)
$$

and

$$
M_{\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}}^{n}=\operatorname{det}\left(\boldsymbol{A}_{\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}}^{n}\right) .
$$

Classifying quadratic forms

- The matrix \boldsymbol{A} is positive semidefinite if

$$
M_{\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}}^{n} \geq 0 \text { for all } n \text { and for all }\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} .
$$

It is negative semidefinite if

$$
M_{\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}}^{n} \leq 0 \text { for all odd } n \text { and for all }\left\{i_{1}, i_{2}, \ldots, i_{n}\right\},
$$

$$
M_{\left\{\left\{_{1}, i_{2}, \ldots, i_{n}\right\}\right.}^{\eta} \geq 0 \text { for all even } n \text { and for all }\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} .
$$

An example

- Consider the definiteness of

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & -1 \\
1 & -1 & 1
\end{array}\right)
$$

1. $M^{1}=\operatorname{det}\left(a_{11}\right)=2$.
2. $M^{2}=\operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)=3$.
3. $M^{3}=\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 1\end{array}\right)=(-1)^{3+3} \operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)+(-1)^{3+2} \operatorname{det}\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)+$
$(-1)^{3+1} \operatorname{det}\left(\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right)=3+1-1=3$.

Therefore \boldsymbol{A} is positive definite.

Next Lecture

- Economic applications
- Convex and concave functions
- Quasiconcave functions
- Economic applications of concavity and convexity

