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Content of Lecture 5

» In Lecture 4, Implicit function theorem

» This Lecture:
1. Minima and maxima of functions
2. Necessary and sufficient conditions
3. Taylor’s theorem and quadratic approximations
4. Quadratic forms



Minima and Maxima

» Global minima and maxima

» We say that a function f : R” — R has a global maximum at point X if for all
X c R,
f(Xx) > f(x).

» Function f has a global minumum at X if for all x € R",
f(X) < f(x).

» Minimum and maximum points are called extrema or optimum points.
» Local extrema
> We define B5(X) .= {x e R"| | x—X| <e}.
» The function f has a local maximum (minimum) at X if there exists an > 0 such
that for all x € B°(X), we have:

f(X) = ()f(x).



Overall goal for this lecture

1. How do we know whether f has a maximum or a minimum at x?
2. How to find local minima and maxima?
3. When are local extrema also global extrema?



Necessary and sufficient conditions

Suppose that we have the following statement'A = B’
We say that B is necessary for A.

>

>

> We say that A is sufficient for B.

» If’A < B/, we say that B is necessary and sufficient for A.
>

In this last case, we also say that A is true if and only if B is true, or that A and
B are equivalent statements.



Necessary and sufficient conditions: Examples

o~ wDn

. Consider the statements A ='f(x) is a polynomial’ and B = "f(x) is

differentiable’.

Then A is sufficient for B and B is necessary for A.

We know that if A is true, then B is true.

We also know that if B is not true, then A is not true.

’A has a nonzero determinant’ is necessary and sufficient for A is invertible.



First-order necessary conditions for extrema

» Consider the partial derivatives of f at X:

of(x) _ i F(X1, .0 Xizq, Xi + 0, K, -, Xn) — F(X)
= |im .
OX; h—0 h

> If 8(;()(’;‘) > 0, then for |h| small, then

f()l\(1,...,),\(,',1,5\(,' + h, ),\(/+1,...,5\(n) > f()/\() for h > 0,

and
f(),\(1,...,5\(,'_1,5\(,' + h, )?;+1,...,$(n) < f()/\() for h < 0.



First-order necessary conditions for extrema

af(x)

» Similarly, if < 0, then for small |Al:

f()A(1 s e )/\(,'_1 , 5\(,' + h, )A(,'_H y e )A(n) < f()A() for h > 0,
and
f(),\(1 e Xilq1, X + h, 5\(,'4_1 , ...,)A(n) > f()A() for h < 0.
» We conclude that to have any kind of an extremum at X, we must have for all i

Of(X)

o =

» We say that the first-order necessary condition for an extremum at X is that all
partial derivatives are zero at X. This can be written with the gradient of f as:

V() = 0.



Critical points of functions

> We say that a function f : R" — R has a critical point at X if 220 = 0 for all
ie{l,..,n}
» Example: f(x,y,2) = x3y + y?z — z28x — 2x — 3y + 2z.
3f()g)i’az) —3x%y — 2% _2,
af(gyy D rayz-s,
Bf(x,y,z) 2 2
o =Y 82

» This function has a critical point at (X, y,2) = (1,1,1).
» Can you see if it is @ minimum or a maximum? (I can’t)

> Some critical points are neither minima nor maxima (think about f(x) = x3 at
X =0).



Higher order derivatives: Functions of a real variable

» Consider now the derivative f'(x) as a function of x € R. If f'is has a
derivative at X, we can form the difference quotient as before:

(3 e
o P&l — (%)
h—0 h

> If this limit exists, we call this derivative of the derivative the second derivative
of f at X. We denote the second derivative f”(X).

> For any k, define the k" derivative at X as the derivative of the (k — 1)
derivative.

> We denote this by f(¥)(%). We say that f is k times continuously differentiable
if f(K)(x) is a continuous function on the domain of f. We write f ¢ CX(R).




Higher order derivatives: Functions of a real variable

> If f(x) = Inx? — 1 for x > 1, then we can compute the first two derivatives:

2x 1(x) = 2(x? —1) — 2x2x
x2 -1’ N (x2 —1)2

f'(x) =

> If f(x) = e for x # 0 and f(x) = 0 for x = 0, we have:
F(x) = 2x 3%, "(x) = —6x~*e? +4x Be? .

> As you can see, these computations get somewhat heavy very quickly.



Higher order approximations: Motivation

» Both f(x) = x? and f(x) = —x? have a critical point at X = 0.

» For the first of these functions, the critical point is the global minimum since
x2 > 0 forall x and x2 > 0 for x # 0.

» For the second, X = 0 is the global maximum.

» To get more accurate information, we must look at the second derivatives of f.
In the example above, f’(0) = 2 in the first case and /(0) = —2 in the
second.

» Taylor’s theorem allows us to determine minima and maxima based on the
sign of the second derivative at a critical point.



Higher order approximations: Taylor's theorem

Theorem

Consider a function f : R — R, and assume that it is k + 1 times continuously
differentiable at X. Then

f(x+h) =f(X)+f (X h+ %f” KV + ...+ 1 (%) h* +

i f[k+1] (X) hk+1,

K1)

for some x with X < x < X + h.



Taylor’'s theorem in practice

A 2 1 1 2

— sinX

—— order 1
——order 3
——order 5
——order7




Taylor’s theorem and the classification of critical points

» With the help of Taylor’'s theorem, we can classify all points with ' (X) = 0:
1. If the first / for which I (% ) # 0. is 0dd, then f does not have an extremum (i.e.

minimum or maximum) at X.

2. If the first I for which I (%) # 0, is even and fI1 (%) < 0, then f has a local
maximum at X.

3. If the first / for which 1 (%) # 0, is even and I (%) > 0, then f has a local
minimum at X.

» To see why this is true, define / as above and divide the right-hand side of
Taylor’s theorem by h'~'and let h — 0.

» The requirement f'(X) = 0 and f”( ) < 0 is called the second-order sufficient
condition for local maximum at X.

» One more point should be kept in mind. The function f may have several local
maxima and not all of them are maxima. We will have more to say about
global extrema when we discuss convex and concave functions.



Second-order conditions and comparative statics
» Consider finding the y € R that maximizes

f(y;x),

where x € R is an exogenous variable.
» Write the problem of maximizing with respect to y as follows:

f(y;
mﬁx (y; x)

> The first order necessary condition for optimum at (y, X) is

of . .
ay (¥:x) =0.
» A sufficient condition for local maximum is obtained from Taylor’s theorem:
~ ~ o of . . 1 0%f .
f+dy;x) —fF(7:X) = —— (V:X) dy + 52— (V: X) (dy)? + h.ot.

ay 20yoy



Definiteness and comparative statics

> If
O%f

dydy
then fhas a local maximum at (¥; X) .
» Note that then also the function

(vix) <0,

of
Ay

(¥:%)

has a non-zero derivative w.r.t. the endogenous variable at (y; x) and we can
apply the implicit function theorem y to get the optimal y as a function of x.



Definiteness and comparative statics
» Since of
@(y(X):X) =0.

for all x near X, we get:

PFT:R) . PFF:R)

aydy y dyox ax =0,

or £ (%)
o?f(y:x
dy _ ayox
dx 2H(y:x)
dydy
» Since ayay” <0 by second-order condition for a maximum, we see that

. 2f(y:x)
has the same sign as — 7~



Approximating multivariate functions

» Gradient of f : R” — R at X is the column vector of its partial derivatives 85(").

> |f these partial derivatives are differentiable, we can evaluate all the partial
derivatives of the partial derivatives at X

» We define the second derivative of f to be the derivative of its gradient. Hence
the second derivative at point X is given by the matrix Hf(X) called the
Hessian matrix of f:

92f(x) . PPf(x)
X 0x1 9X10%n
Hf(x) = : ) :
i) 9P(x)
OXnOXy 0XnOXn

> Young's theorem: If f is twice continuously differentiable, then 8)((8’)‘() = ‘32(8’2

for all x and all /,j. In words, the Hessian matrix is symmetric.




Computing the Hessian: An Example

» Consider the function
f(x1,X2,X3) = X2 — X3 + X1 X3
around (xy, X2, x3) = (0,0,0). The gradient is

2X1 + X3
Vf(X1,X2,X3) = —3X§

X1

) |

Compute

o O O

V£(0,0,0) = (



Computing the Hessian: An Example

» The Hessian matrix is given by:
Hf (X17X27 X3) = (
Evaluate at (0,0,0) :

Hf (0,0,0) = (



Multivariate Taylor’'s theorem for second order approximations

Taylor’s theorem is also valid for functions f : R" — R. Most useful for us is the
second order approximation:

Theorem

Consider a function f : R" — R, and assume that it is 3 times continuously
differentiable at X. Then

F(x) = (%) + VI (R)- (x = %)+ 5(x = %) - HI®)(x - %) + R(x),

R(x
where limy_ 4 HX(X)||2 =0.



Classifying critical points with Taylor’s approximation

» Recall that Vf(X) = 0 at any critical point X, and therefore we can determine if
f(x) < f(X) by examining the sign of the term:

(x — X) - Hf(X)(x — X).
» Hence we have identified as the key question the determination of the sign of
X - Hf(x)x for a symmetric matrix Hf(X) for all possible x.

» If it is strictly positive for all x, we have a local minimum at X (sufficient
condition).

» If it is strictly negative, we have a local maximum at X.

» Conversely, if X is @ minimum (maximum), then x - Hf(X)x > (<)0 for all x
(necessary condition).



Quadratic forms and classifying extrema of f : R” — R

> A quadratic form is a second-degree polynomial whose terms are all of
second order. They can be written as:

X - Ax,

for some symmetric matrix A.

» A quadratic form is positive definite if for all x # 0, x - Ax > 0. ltis positive
semidefinite if for all x, x - Ax > 0.

» A quadratic form is negative definite if for all x # 0, x - Ax < 0. ltis negative
semidefinite if for all x, x - Ax < 0. In all other cases, we say that the
quadratic form is indefinite.

> |t may be helpful to write out the matrix products as summations:

n n
X-AX =" ajxyx.

i=1 j=1



Classifying quadratic forms

> A first observation is that e’ - Ae’ = a;. Therefore a quadratic form is indefinite
if it has diagonal elements with different signs.

» Another easy case is when Ais a 2 x 2 matrix:
ab
-(52)

ax? + 2bxyxo + Cx2.

so that the quadratic form is:



Classifying quadratic forms

» View this as a second degree function in x. If ¢ > 0, this function has a

minimum at
bX1

Xo =
(o

» Substituting into the quadratic form:

b2X2 b2X2 b2
ax12—ZT‘+T1 = <a— c> X2

» This is strictly positive if
2
<a—b> > Oor
c
ac > b?

» In other words, the quadratic form is positive definite if i) a, ¢ > 0 ja ii)
det A > 0.



f(x1,x2) = —x3 — 2x2: maximum at (0, 0)
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f(x1,X2) = x2 + x2: minimum at (0, 0)




f(x1,x2) = x5 + x2 — 10Xy x2: saddle at (0, 0)

) -

200 |

—200




f(x1, %) = x5 — x2: saddle at (0, 0)




Classifying quadratic forms

» The general case is tedious. We need to consider the leading principal minors
M(k) of A:

a2 az

a1 a2 a3
M; = det a1 dop o3 R

a3 dasz ass

M, = deta11,M2:det<a“ a12>,



Classifying quadratic forms

» A quadratic form
X - Ax

is positive definite if M; > 0 for all i. It is negative definite if M; (—1)" > 0 for all
i, i.e. M; is negative for odd / and positive for even i.



Classifying quadratic forms

» To analyze semidefiniteness of A, more is needed. Define for all
1<ii<h<..<ih<n

aj i, Qi Ay

n —
A{i1 ,ig,...,in} -
aini1 ainiz ainin

and
,\/’{11,127 Sin} T = det (A{{]h,iz,...,i,,}) .



Classifying quadratic forms

» The matrix A is positive semidefinite if

M{,1 i 2 0 for all nand for all {iy, Iz, ..., in}.

Ig .....
It is negative semidefinite if

M{,1 bin} S 0 for all odd nand for all {i, i, ..., in},

M, ... iy = 0 for alleven nand for all {i, ip, ..., in}.



An example

» Consider the definiteness of

2 -1
Therefore A is positive definite.

(_1)3+‘det<1 ! >_3+1—1_3.

-1 | = (—1)3+3det< f ; >+(—1)3+2det( f



Next Lecture

» Economic applications

» Convex and concave functions

» Quasiconcave functions

» Economic applications of concavity and convexity



