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Aalto University School of Business

Spring 2021



Content of Lecture 5

I In Lecture 4, Implicit function theorem
I This Lecture:

1. Minima and maxima of functions
2. Necessary and sufficient conditions
3. Taylor’s theorem and quadratic approximations
4. Quadratic forms



Minima and Maxima

I Global minima and maxima
I We say that a function f : Rn → R has a global maximum at point x̂ if for all

x ∈ Rn,
f (x̂) ≥ f (x).

I Function f has a global minumum at x̂ if for all x ∈ Rn,

f (x̂) ≤ f (x).

I Minimum and maximum points are called extrema or optimum points.
I Local extrema

I We define Bε(x̂) := {x ∈ Rn| ‖x − x̂‖ < ε}.
I The function f has a local maximum (minimum) at x̂ if there exists an ε > 0 such

that for all x ∈ Bε(x̂), we have:

f (x̂) ≥ (≤)f (x).



Overall goal for this lecture

1. How do we know whether f has a maximum or a minimum at x̂?
2. How to find local minima and maxima?
3. When are local extrema also global extrema?



Necessary and sufficient conditions

I Suppose that we have the following statement ′A⇒ B′

I We say that B is necessary for A.
I We say that A is sufficient for B.
I If ′A ⇐⇒ B′, we say that B is necessary and sufficient for A.
I In this last case, we also say that A is true if and only if B is true, or that A and

B are equivalent statements.



Necessary and sufficient conditions: Examples

1. Consider the statements A =’f (x) is a polynomial’ and B = ′f (x) is
differentiable’.

2. Then A is sufficient for B and B is necessary for A.
3. We know that if A is true, then B is true.
4. We also know that if B is not true, then A is not true.
5. ’A has a nonzero determinant’ is necessary and sufficient for A is invertible.



First-order necessary conditions for extrema

I Consider the partial derivatives of f at x̂ :

∂f (x̂)
∂xi

= lim
h→0

f (x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n)− f (x̂)
h

.

I If ∂f (x̂)
∂xi

> 0, then for |h| small, then

f (x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n) > f (x̂) for h > 0,

and
f (x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n) < f (x̂) for h < 0.



First-order necessary conditions for extrema

I Similarly, if ∂f (x̂)
∂xi

< 0, then for small |h|:

f (x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n) < f (x̂) for h > 0,

and
f (x̂1, ..., x̂i−1, x̂i + h, x̂i+1, ..., x̂n) > f (x̂) for h < 0.

I We conclude that to have any kind of an extremum at x̂ , we must have for all i :

∂f (x̂)
∂xi

= 0.

I We say that the first-order necessary condition for an extremum at x̂ is that all
partial derivatives are zero at x̂ . This can be written with the gradient of f as:

∇f (x̂) = 0.



Critical points of functions
I We say that a function f : Rn → R has a critical point at x̂ if ∂f (x̂)

∂xi
= 0 for all

i ∈ {1, ...,n}.
I Example: f (x , y , z) = x3y + y2z − z3x − 2x − 3y + 2z.

∂f (x , y , z)
∂x

= 3x2y − z3 − 2,

∂f (x , y , z)
∂y

= x3 + 2yz − 3,

∂f (x , y , z)
∂z

= y2 − 3z2x + 2.

I This function has a critical point at (x̂ , ŷ , ẑ) = (1,1,1).
I Can you see if it is a minimum or a maximum? (I can’t)
I Some critical points are neither minima nor maxima (think about f (x) = x3 at

x̂ = 0).



Higher order derivatives: Functions of a real variable

I Consider now the derivative f ′(x) as a function of x ∈ R. If f ′ is has a
derivative at x̂ , we can form the difference quotient as before:

lim
h→0

f ′(x̂ + h)− f ′(x̂)
h

.

I If this limit exists, we call this derivative of the derivative the second derivative
of f at x̂ . We denote the second derivative f ′′(x̂).

I For any k , define the k th derivative at x̂ as the derivative of the (k − 1)st

derivative.
I We denote this by f (k)(x̂). We say that f is k times continuously differentiable

if f (k)(x) is a continuous function on the domain of f . We write f ∈ Ck (R).



Higher order derivatives: Functions of a real variable

I If f (x) = ln x2 − 1 for x > 1, then we can compute the first two derivatives:

f ′(x) =
2x

x2 − 1
, f ′′(x) =

2(x2 − 1)− 2x2x
(x2 − 1)2 .

I If f (x) = e
−1
x2 for x 6= 0 and f (x) = 0 for x = 0, we have:

f ′(x) = 2x−3e
−1
x2 , f ′′(x) = −6x−4e

−1
x2 + 4x−6e

−1
x2 .

I As you can see, these computations get somewhat heavy very quickly.



Higher order approximations: Motivation

I Both f (x) = x2 and f (x) = −x2 have a critical point at x̂ = 0.
I For the first of these functions, the critical point is the global minimum since

x2 ≥ 0 for all x and x2 > 0 for x 6= 0.
I For the second, x̂ = 0 is the global maximum.
I To get more accurate information, we must look at the second derivatives of f .

In the example above, f ′′(0) = 2 in the first case and f ′′(0) = −2 in the
second.

I Taylor’s theorem allows us to determine minima and maxima based on the
sign of the second derivative at a critical point.



Higher order approximations: Taylor’s theorem

Theorem
Consider a function f : R→ R, and assume that it is k + 1 times continuously
differentiable at x̂ . Then

f (x̂ + h) = f (x̂) + f ′ (x̂)h +
1
2

f ′′ (x̂)h2 + ...+
1
k !

f [k ] (x̂)hk +
1

(k + 1)!
f [k+1] (x)hk+1,

for some x with x̂ < x < x̂ + h.



Taylor’s theorem in practice
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Figure: Approximating f (x) = sin(x).



Taylor’s theorem and the classification of critical points

I With the help of Taylor’s theorem, we can classify all points with f ′ (x̂) = 0:

1. If the first l for which f [l] (x̂) 6= 0, is odd, then f does not have an extremum (i.e.
minimum or maximum) at x̂ .

2. If the first l for which f [l] (x̂) 6= 0, is even and f [l] (x̂) < 0, then f has a local
maximum at x̂ .

3. If the first l for which f [l] (x̂) 6= 0, is even and f [l] (x̂) > 0, then f has a local
minimum at x̂ .

I To see why this is true, define l as above and divide the right-hand side of
Taylor’s theorem by hl−1and let h→ 0.

I The requirement f ′(x̂) = 0 and f ′′(x̂) < 0 is called the second-order sufficient
condition for local maximum at x̂ .

I One more point should be kept in mind. The function f may have several local
maxima and not all of them are maxima. We will have more to say about
global extrema when we discuss convex and concave functions.



Second-order conditions and comparative statics
I Consider finding the y ∈ R that maximizes

f (y ; x) ,

where x ∈ R is an exogenous variable.
I Write the problem of maximizing with respect to y as follows:

max
y

f (y ; x)

I The first order necessary condition for optimum at (ŷ , x̂) is:

∂f
∂y
(
ŷ ; x̂

)
= 0.

I A sufficient condition for local maximum is obtained from Taylor’s theorem:

f
(
ŷ + dy ; x̂

)
− f
(
ŷ ; x̂

)
=

∂f
∂y
(
ŷ ; x̂

)
dy +

1
2

∂2f
∂y∂y

(
ŷ ; x̂

)
(dy)2 + h.o.t.



Definiteness and comparative statics

I If
∂2f
∂y∂y

(
ŷ ; x̂

)
< 0,

then fhas a local maximum at
(
ŷ ; x̂

)
.

I Note that then also the function

∂f
∂y
(
ŷ ; x̂

)
has a non-zero derivative w.r.t. the endogenous variable at

(
ŷ ; x̂

)
and we can

apply the implicit function theorem y to get the optimal y as a function of x .



Definiteness and comparative statics

I Since
∂f
∂y

(y (x) ; x) = 0.

for all x near x̂ , we get:

∂2f
(
ŷ ; x̂

)
∂y∂y

dy +
∂2f

(
ŷ ; x̂

)
∂y∂x

dx = 0,

or

dy
dx

= −
∂2f(ŷ ;x̂)
∂y∂x

∂2f(ŷ ;x̂)
∂y∂y

.

I Since
∂2f(ŷ ;x̂)
∂y∂y < 0 by second-order condition for a maximum, we see that dy

dx

has the same sign as
∂2f(ŷ ;x̂)
∂y∂x .



Approximating multivariate functions

I Gradient of f : Rn → R at x̂ is the column vector of its partial derivatives ∂f (x̂)
∂xi

.
I If these partial derivatives are differentiable, we can evaluate all the partial

derivatives of the partial derivatives at x̂ .
I We define the second derivative of f to be the derivative of its gradient. Hence

the second derivative at point x̂ is given by the matrix Hf (x̂) called the
Hessian matrix of f :

Hf (x) =


∂2f (x)
∂x1∂x1

· · · ∂2f (x)
∂x1∂xn

...
. . .

...
∂2f (x)
∂xn∂x1

· · · ∂2f (x)
∂xn∂xn

 .

I Young’s theorem: If f is twice continuously differentiable, then ∂2f (x)
∂xi∂xj

= ∂2f (x)
∂xj∂xi

for all x and all i , j . In words, the Hessian matrix is symmetric.



Computing the Hessian: An Example

I Consider the function

f (x1, x2, x3) = x2
1 − x3

2 + x1x3

around (x1, x2, x3) = (0,0,0). The gradient is

∇f (x1, x2, x3) =

 2x1 + x3
−3x2

2
x1


Compute

∇f (0,0,0) =

 0
0
0

 .



Computing the Hessian: An Example

I The Hessian matrix is given by:

Hf (x1, x2, x3) =

 2 0 1
0 −6x2 0
1 0 0

 .

Evaluate at (0,0,0) :

Hf (0,0,0) =

 2 0 1
0 0 0
1 0 0

 .



Multivariate Taylor’s theorem for second order approximations

Taylor’s theorem is also valid for functions f : Rn → R. Most useful for us is the
second order approximation:

Theorem
Consider a function f : Rn → R, and assume that it is 3 times continuously
differentiable at x̂ . Then

f (x) = f (x̂) +∇f (x̂) · (x − x̂) +
1
2
(x − x̂) · Hf (x̂)(x − x̂) + R(x),

where limx→x̂
R(x)
‖x−x̂‖2 = 0.



Classifying critical points with Taylor’s approximation

I Recall that ∇f (x̂) = 0 at any critical point x̂ , and therefore we can determine if
f (x) ≤ f (x̂) by examining the sign of the term:

(x − x̂) · Hf (x̂)(x − x̂).

I Hence we have identified as the key question the determination of the sign of
x · Hf (x̂)x for a symmetric matrix Hf (x̂) for all possible x .

I If it is strictly positive for all x , we have a local minimum at x̂ (sufficient
condition).

I If it is strictly negative, we have a local maximum at x̂ .
I Conversely, if x̂ is a minimum (maximum), then x · Hf (x̂)x ≥ (≤)0 for all x

(necessary condition).



Quadratic forms and classifying extrema of f : Rn → R
I A quadratic form is a second-degree polynomial whose terms are all of

second order. They can be written as:

x · Ax ,

for some symmetric matrix A.
I A quadratic form is positive definite if for all x 6= 0, x · Ax > 0. It is positive

semidefinite if for all x , x · Ax ≥ 0.
I A quadratic form is negative definite if for all x 6= 0, x · Ax < 0. It is negative

semidefinite if for all x , x · Ax ≤ 0. In all other cases, we say that the
quadratic form is indefinite.

I It may be helpful to write out the matrix products as summations:

x · Ax =
n∑

i=1

n∑
j=1

aijxixj .



Classifying quadratic forms

I A first observation is that ei ·Aei = aii . Therefore a quadratic form is indefinite
if it has diagonal elements with different signs.

I Another easy case is when A is a 2× 2 matrix:

A =

(
a b
b c

)
,

so that the quadratic form is:

ax2
1 + 2bx1x2 + cx2

2 .



Classifying quadratic forms
I View this as a second degree function in x2. If c > 0, this function has a

minimum at
x2 = −bx1

c
.

I Substituting into the quadratic form:

ax2
1 − 2

b2x2
1

c
+

b2x2
1

c
=

(
a− b2

c

)
x2

1 .

I This is strictly positive if (
a− b2

c

)
> 0 or

ac > b2.

I In other words, the quadratic form is positive definite if i) a, c > 0 ja ii)
detA > 0.



f (x1, x2) = −x2
2 − 2x2

1 : maximum at (0,0)
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f (x1, x2) = x2
2 + x2

1 : minimum at (0,0)
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f (x1, x2) = x2
2 + x2

1 − 10x1x2: saddle at (0,0)
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f (x1, x2) = x2
2 − x2

1 : saddle at (0,0)
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Classifying quadratic forms

I The general case is tedious. We need to consider the leading principal minors
M(k) of A:

M1 = det a11,M2 = det

(
a11 a12
a12 a22

)
,

M3 = det

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 , ...



Classifying quadratic forms

I A quadratic form
x · Ax

is positive definite if Mi > 0 for all i . It is negative definite if Mi (−1)i > 0 for all
i , i.e. Mi is negative for odd i and positive for even i .



Classifying quadratic forms

I To analyze semidefiniteness of A, more is needed. Define for all
1 ≤ i1 < i2 < ... < in ≤ n

An
{i1,i2,...,in} =


ai1i1 ai1i2 · ·· ai1in
·
·
·

·
·
·

ain i1 ain i2 ... ain in

 .

and
Mn
{i1,i2,...,in} = det

(
An
{i1,i2,...,in}

)
.



Classifying quadratic forms

I The matrix A is positive semidefinite if

Mn
{i1,i2,...,in} ≥ 0 for all n and for all {i1, i2, ..., in}.

It is negative semidefinite if

Mn
{i1,i2,...,in} ≤ 0 for all odd n and for all {i1, i2, ..., in},

Mn
{i1,i2,...,in} ≥ 0 for all even n and for all {i1, i2, ..., in}.



An example

I Consider the definiteness of

A =

 2 1 1
1 2 −1
1 −1 1

 .

1. M1 = det (a11) = 2.

2. M2 = det

(
2 1
1 2

)
= 3.

3. M3 = det

 2 1 1
1 2 −1
1 1 1

 = (−1)3+3 det

(
2 1
1 2

)
+ (−1)3+2 det

(
2 1
1 −1

)
+

(−1)3+1 det

(
1 1
2 −1

)
= 3 + 1− 1 = 3.

Therefore A is positive definite.



Next Lecture

I Economic applications
I Convex and concave functions
I Quasiconcave functions
I Economic applications of concavity and convexity


