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This lecture covers

1. Economic applications of unconstrained optimization
1.1 Finding extrema of quadratic functions
1.2 Ordinary least squares
1.3 Profit maximizing firm

2. Convex sets
3. Concave and convex functions
4. Quasiconcave functions



Quadratic functions
I A multivariate quadratic function f : Rn → R takes the form:

f (x) = c + b · x + x · Ax ,

where c ∈ R is the constant term, the inner product b · x is the linear term for
some b ∈ Rn, and A is a non-zero symmetric matrix defining a quadratic form.

I Note that for all n× n matrices B, the matrix 1
2(B> + B) is a symmetric matrix,

and

x · Bx =
1
2

x · (1
2

(B> + B))x .

I Writing out the inner products and matrix products, we see that:

f (x) = c +
n∑

i=1

bixi +
n∑

i=1

n∑
j=1

aijxixj .



Derivatives of quadratic functions

I The partial derivative of f with respect to xk is:

∂f (x)

∂xk
= bk +

n∑
i=1

aikxi +
n∑

j=1

akjxj .

I Since A is symmetric,
∑n

i=1 aikxi =
∑n

j=1 akjxj and:

∂f (x)

∂xk
= bk + 2

n∑
i=1

aikxi .

I This means that we can write the gradient of f as

∇f (x) = b + 2Ax .



Quadratic functions

I Therefore we can solve for the critical points (by finding the inverse matrix
A−1, by Gaussian elimination or by Cramer’s rule) from the linear system :

2Ax = −b.

I Because of this linearity in the first-order necessary conditions, quadratic
functions are manageable.

I The Hessian matrix of f is 2A. Hence classifying the critical points depends
on the definiteness of A.

I Quadratic models in economics: mean-variance preferences in finance,
interdependent markets with linear demand curves, capacity expansion with
quadratic adjustment costs, incentive problems with Normally distributed
noise, ordinary least squares...



Application of quadratic optimization: ordinary least squares

I Statistics Finland has register data on N individuals living in Finland.
I Let yi denote the income of individual i .
I Let x i = (xi1, xi2, ..., xiK ) be a vector of numerical covariates that characterize

individual i (e.g. age, years of schooling, years in continuous employment,
etc.)

I Your total data: vector y = (y1, ..., yN) and N × K matrix of observables X with
element xik for individual i ′s characteristic k .

I How would you find the best linear model to predict yi if you only know x i?



Application of quadratic optimization: ordinary least squares
I If the number of individuals N is large in comparison to the number of

observable characteristics, K , you will not be able to find a perfect linear fit i.e.
a vector β = (β1, ..., βK ) such that:

yi =
K∑

k=1

βkxki = x i · β for all i .

I Allow an individual random term εi that accounts for the discrepancy and find
the vector β that ’minimizes the size’ of the error vector ε = (ε1, ..., εN).

I How to measure the size? Ordinary least squares minimizes norm:

ε · ε =
N∑

i=1

ε2i .

I But why not, say
∑N

i=1 |εi |?



Minimizing the sum of squared errors

I If yi =
∑K

k=1 βkxki + εi , then εi = yi −
∑K

k=1 βkxki = yi − x i · β. But then:

ε · ε =
N∑

i=1

ε2i =
N∑

i=1

(yi − x iβ)2.

I Writing in vector form, we have:

ε · ε = (y − Xβ)>(y − Xβ) = y>y − y>Xβ − (Xβ)>y + (βX )>Xβ

= y>y − 2y>Xβ + β · X>Xβ = y · y − 2X>y · β + β · X>Xβ.



Minimizing the sum of squared errors

I We see that this is a quadratic function of β and therefore we can use our
result from above to conclude that its critical points are found at the solution
to:

−2X>y + 2X>Xβ = 0,

or the critical point β̂ satisfies:

β̂ = (X>X )−1X>y .

I This is the OLS-estimator for the linear model y = Xβ.
I In Problem Set 3, you are asked to prove that X>X is positive definite so β̂ is

indeed a global minimum.



Profit maximization with CES - production function
I Consider profit maximization

max
k ,l>0

f (k , l)− r
p

k − w
p

l ,

with the production function f : R2 → R:

f (k , l) = (kρ + lρ)
1
ρ .

I Form the gradient of profit:(
∂f (k ,l)
∂k − r

p
∂f (k ,l)
∂l − w

p

)
=

 (kρ + lρ)
1
ρ
−1 kρ−1 − r

p

(kρ + lρ)
1
ρ
−1 lρ−1 − w

p

 .

I The the Hessian matrix is the Hessian matrix of the production function:

Hf (k , l) =

(
∂2f (k ,l)
∂k∂k
∂2f (k ,l)
∂l∂k

∂2f (k ,l)
∂k∂l

∂2f (k ,l)
∂l∂l

)
.



Example: CES -function

I By the product rule:

∂2f (k , l)
∂k∂k

= (ρ− 1) kρ−2 (kρ + lρ)
1
ρ
−1

+

(
1
ρ
− 1
)

(kρ + lρ)
1
ρ
−2
ρk2ρ−2,

∂2f (k , l)
∂k∂l

=

(
1
ρ
− 1
)

(kρ + lρ)
1
ρ
−2
ρlρ−1kρ−1,

∂2f (k , l)
∂l∂l

= (ρ− 1) lρ−2 (kρ + lρ)
1
ρ
−1

+

(
1
ρ
− 1
)(

kρ + xρ2
) 1

ρ
−2
ρl2ρ−2.



Example: CES -function

I By collecting the common terms, we get:

D2f (x1, x2) =

(
∂2f (k ,l)
∂k∂k
∂2f (k ,l)
∂l∂k

∂2f (k ,l)
∂k∂l

∂2f (k ,l)
∂l∂l

)

= (kρ + lρ)
1
ρ
−2
(

(ρ− 1) kρ−2lρ (1− ρ) lρ−1kρ−1

(1− ρ) lρ−1kρ−1 (ρ− 1) lρ−2kρ

)
.

I When computing the determinant, we can separate the common factor:

det (Hf (k , l)) =

(kρ + lρ)
1
ρ
−2 k2ρ−2l2ρ−2 det

(
(ρ− 1) (1− ρ)
(1− ρ) (ρ− 1)

)
= 0.

I Hf (x1, x2) is therefore negative semidefinite if ρ < 1 and positive semidefinite
ifρ > 1.



Final comments on unconstrained optimization:

I Do local maxima or minima always exist?
I Obviously you cannot find a maximum to f (x) = 2x .

I Are there economically meaningful cases where this could be problematic?
I Think about production with constant returns to scale (homogenous of degree 1

production function).
I If you find all local maxima of a function, can you be sure that one of them is a

global maximum?
I How do you determine which one of the local maxima is the global maximum?



Convex and concave functions: Convex sets

Definition
A set X is convex if for all x , y ∈ X and for all λ ∈ [0,1], we have:

λx + (1− λ) y ∈ X .

We call λx + (1− λ) y a convex combination of x and y .

I On the real line, convex sets are intervals a ≤ x ≤ b for some
−∞ ≤ a ≤ b ≤ ∞.

I In Rn, convex sets are sets X with the property that when you connect linearly
two points in X , the entire connecting line is also in X .

I Hence a disk in the plane is convex and a cube in the three dimensional
space are convex, but the circle in the plane is not, a disk with the center
removed is not, a doughnut in three dimensions is not etc.



[Convex set] [Non-convex set]

Figure: Illustration of convex sets.



Convex and concave functions: Definitions

I Consider a real-valued function f : X → R, where X is a convex set.

Definition
The function f is convex if for all x ,y ∈ X and for all λ ∈ [0,1], we have:

f (λx + (1− λ) y) ≤ λf (x) + (1− λ) f (y) .

f is concave if
f (λx + (1− λ) y) ≥ λf (x) + (1− λ) f (y) .

I Note: If f is convex, then −f is concave



A convex function on the interval [a,b]

f (·)

x λx + (1− λ)y y

f (x)

f (y)

f (λx + (1− λ)y)

λf (x) + (1− λ)f (y)

x

f (·)



A concave function of a real variable

f (·)

·x

f (x)

y

f (y)

λx + (1− λ)y

f (λx + (1− λ)y)

λf (x) + (1− λ)f (y)



Properties of convex functions

I If f (x) is convex, then g (x) = −f (x) is concave.
I If f (x) is convex, then af (x) is convex if a > 0.
I If f (x) and g (x) are convex, then h (x) = f (x) + g (x) is convex.
I If f (x) and g (x) are convex, then h (x) = f (x) g (x) is not necessarily

convex. (Give an example for both cases, i.e. where the product of convex
functions is convex and where it is not).

I Exercise: Assume that f : X → R is convex and g : R→ R is also convex. Is
g(f (x)) convex? What if g is increasing and convex?

I (Optional Exercise): Assume that f : X → R is a convex function. Show that
the set

{(x , y) ∈ Rn+1 | x ∈ X , y ≥ f (x)}

is a convex set.



Maximum of convex functions
Proposition
If f (x) and g (x) are convex, then h (x) = max{f (x) ,g (x)} is convex.
Proof: By assumption, f and g are convex:

f (λx + (1− λ) y) ≤ λf (x) + (1− λ) f (y)

g (λx + (1− λ) y) ≤ λg (x) + (1− λ) g (y) .

By definition,

h (λx + (1− λ) y) = max{f (λx + (1− λ) y) ,g (λx + (1− λ) y)}
≤ max{λf (x) + (1− λ) f (y) , λg (x) + (1− λ) g (y)}
≤ λmax{f (x) ,g (x)}+ (1− λ) max{f (y) ,g (y)}
= λh (x) + (1− λ) h (y) .

The first inequality follows from the convexity of f and g.The second follows by
choosing the larger of f (·),g(·) for x ,y . The last equality is just the definition of h.



Maximum of linear functions is convex

x

f i(
x)



Maxima and minima of convex functions
I The same result is true for an arbitrary set of convex functions. Let f (x ;α) be

convex in x for all α. Then

g (x) = max
α

f (x ;α)

is convex.
I Since linear functions are convex, this result holds for any set of linear

functions.
I Since

max{f (x) ,g (x)} = −min{−f (x) ,−g (x)},

and since −f is concave when f is convex, we get:

g (x) = min
α

f (x ;α)

is concave if f (x ;α) is concave in x for all α.



Economic examples: profit maximization
I A competitive firm sells output y at price p0 and buys inputs x = (x1, ..., xn) at

input prices p = (p1, ...,pn) . Its profit is

p0y − Σn
i=1pixi .

I The maximization problem is then

max
y ,x∈F

p0y − Σn
i=1pixi ,

where F is the feasible set determined by technological possibilities.
I The profit function of the firm gives the maximum achievable profit amongst

the feasible set at input and output prices p0,p.

π (p0,p) = π (p0,p1, ...,pn) = max
y ,x∈F

p0y − Σn
i=1pixi

I Since the profit from a fixed feasible production is a linear function of the
prices (p0,p), the profit function is the maximum over linear functions and
therefore convex in (p0,p).



Economic examples: cost minimization

I Let X be the feasible set for inputs x = (x1, ..., xn) and p = (p1, ...,pn) be the
input prices.

I The expenditure function

e (p; X ) = min
x∈X

p · x = min
x∈X

Σn
i=1pixi

is a concave function by the same argument as above.
I These two examples show that convexity and concavity play a real role in

economic applications.
I We shall see more applications when we discuss constrained optimization

and value functions of optimization problems.



Lower envelope of linear functions is concave

x

f i(
x)



Convexity and concavity of differentiable functions

I When f : R→ R, and f is convex and differentable, it it is easy to see by
drawing a picture that for all x , y we have:

f (y)− f (x) ≥ f ′ (x) (y − x) .

I This just says that the graph (x , f (x)) of a convex function f is above all of its
tangent lines.

I Similarly, the graph of a concave function lies below its tangent line



Convexity and concavity of differentiable functions

The multivariate version of this is proved in the notes:

Proposition
A differentiable function f : Rn → R is convex if and only if

f (y)− f (x) ≥ Df (x) (y − x) for all x ,y .

I Can you formulate this condition in terms of level curves and gradients?
I What is the corresponding result to concave functions?



Second derivatives and convexity

I Start again with functions of a single variable. By Taylor’s theorem without the
remainder term,

f (y) = f (x) + f ′ (x) (y − x) +
1
2

f ′′ (x) (y − x)2 +
1
6

f ′′′ (x) (y − x)3 + ...

I In order to have
f (y)− f (x) ≥ f ′ (x) (y − x)

for |y − x | small, we must have

f ′′ (x) ≥ 0.

I In other words, convex functions have a positive second derivative.



Second derivatives and convexity
I Taylor’s theorem with a remainder term of second degree:

f (y) = f (x) + f ′ (x) (y − x) +
1
2

f ′′ (z) (y − x)2

for some z ∈ [x , y ].

I If f ′′ is everywhere non-negative, we get:

f (y)− f (x) ≥ f ′ (x) (y − x)

for all y , x and f is therefore convex.
I Let’s generalize now to f : X → R, where X is a convex subset of Rn.
I Convexity corresponds to positive semidefiniteness of the Hessian matrix.
I Concavity corresponds to negative semidefiniteness of the Hessian matrix.
I Hence we see an immediate connection between convexity and the second

order conditions for optimality.



Quasiconvex and quasiconcave functions

I Even though the name suggests something extremely technical and tedious,
quasiconcavity is actually one of the most important notions for functions in
economic theory.

Definition
I A function f on a convex set X is quasiconcave if for all x ,y ∈ X and for all
λ ∈ [0,1]

f (λx + (1− λ) y) ≥ min{f (x) , f (y)}.

f is quasiconvex is for all x ,y ∈ X and for all λ ∈ [0,1]

f (λx + (1− λ) y) ≤ max{f (x) , f (y)}.

Exercise: f is quasiconcave, then −f is quasiconvex.



Quasiconvex and quasiconcave functions: Observations

I If f is quasiconcave, then af is quasiconcave if a > 0.
I If f and g are quasiconcave f + g is not necessarily quasiconcave.
I All monotone (i.e. all increasing and all decreasing) functions of a single

variable are both quasiconcave and quasiconvex. This is NOT true for
multidimensional functions

I All concave functions are quasiconcave. Show this as an exercise.
I Not all quasiconcave functions are concave.
I If f is a quasiconcave function and g is a strictly increasing function, then

h (x) = g (f (x)) is a quasiconcave function.



Quasiconvex and quasiconcave functions: Observations

I An upper contour set of function f for value α is denoted by U (f ;α) and
defined as:

U (f ;α) := {x ∈ X |f (x) ≥ α}.

I Interpretation: if f is a utility function, U(f ;α) is the better side of the
indifference curve giving utility level α.

Proposition
A function f is quasiconcave if and only if U (f ;α) is a convex set for all α.



Quasiconvex and quasiconcave functions: Observations

Definition
A function f on a convex set X is strictly quasiconcave if for all x ,y ∈ X and for all
λ ∈ (0,1)

f (λx + (1− λ) y) > min{f (x) , f (y)}.

I The following exercise shows why strict quasiconcavity is very useful for
optimization problems.

I Exercise: show that if a strictly quasiconcave function has a maximum, then
the maximum is unique.



Quasiconcavity and differentiability

I A differentiable function f on a convex set X is quasiconcave if and only if:

f (y) ≥ f (x)⇒ Df (x) (y − x) ≥ 0.

I Exercise: Compare this to the definition of concavity for differentiable
functions and relate this condition to the geometry of upper contour sets and
tangent planes to the upper contour sets.



Next Lecture:

I Introduction to constrained optimization
I Equality constraints and Lagrange’s function
I Examples of constrained optimization problems


