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A Model for Types and Levels of Human Interaction
with Automation

Raja Parasuraman, Thomas B. Sherjdailow, IEEE and Christopher D. Wickens

Abstract—Technical developments in computer hardware and can differ in type and complexity, from simply organizing the
software now make it possible to introduce automation into virtu-  information sources, to integrating them in some summary
ally all aspects of human-machine systems. Given these teChn'Calfashion, to suggesting decision options that best match the

capabilities, which system functions should be automated and to . . - .
what extent? We outline a model for types and levels of automa- incoming information, or even to carry out the necessary action.

tion that provides a framework and an objective basis for making  The system design issue is this: given these technical capabil-
such choices. Appropriate selection is important because automa- ities, which system functions should be automated and to what
tion does not merely supplant but changes human activity and can extent? These fundamental questions increasingly drive the de-
impose newcoordl_natlon demand; on the human operator. We pro- sign of many new systems. In this paper we outline a model of
pose that automation can be applied to four broad classes of func- human interaction with automation that provides a framework
tions: 1) information acquisition; 2) information analysis; 3) de- ; P
cision and action selection; and 4) action implementation. Within for answers to these questions. The human performance con-
each of these types, automation can be applied across a continuumsequences of specific types and levels of automation constitute
oflevels from low to high, i.e., from fully manual to fully automatic.  the primary evaluative criteria for automation design using the
A particular system can involve automation of all four types at dif- 46| Secondary evaluative criteria include automation relia-
ferent levels. The human performance consequences of particular bilit dth fs of acti Both th ts of
types and levels of automation constitute primary evaluative cri- '_' y gn e COS. S oraction consquenqes. (Bo ese sets o
teria for automation design using our model. Secondary evaluative Criteria are described more fully later in this paper). Such a com-
criteria include automation reliability and the costs of decision/ac- bined approach—distinguishing types and levels of automation
tion consequences, among others. Examples of recommended typegind applying evaluative criteria—can allow the designer to de-
and levels of automation are provided to illustrate the application termine what should be automated in a particular system. Be-
of the model to automation design. . . Lo . ’
_ __ o _ cause the impact of the evaluative criteria may differ between
'tf‘deXhTermS—AUtonga“Prlv cogtmtlvienglneferl?g, f“ﬁc“on allo- - systems, the appropriate types and levels of automation for dif-
gﬁi:woenéy:trgrig-?gtrsz;ceer g;;garf 1on, human factors, human-ma- - o rant systems can vary widely. Our model does not therefore
’ prescribewhat should and should not be automated in a partic-
ular system. Nevertheless, application of the model provides a
|. INTRODUCTION more complete and objective basis for automation design than

ONSIDER the following design problem. A human OIO_olo approaches bgsed purely on technological capability or eco-
C erator of a complex system provided with a large numb8PMic considerations.

of dynamic information sources must reach a decision relevant

to achieving a system goal efficiently and safely. Examples II. AUTOMATION

include an anesthesiologist given various vital signs who must ) ) )
decide whether to increase the dosage of a drug to a patientlachines, especially computers, are now capable of carrying
undergoing surgery; an air defense operator given variopdt many functions that at one time could only be performed
sensor readings who has to decide whether to shoot dOWHyahumans. Machine execution of such functions—or automa-
potentially hostile enemy aircraft; or a securities analyst givé{pn—has also been extended to functions that humans do not
various financial data who must judge whether to buy a lardéSh to perform, or cannot perform as accurately or reliably as
block of stocks. Technical developments in computer hardwdfgchines. Technical issues—how particular functions are au-
and software make it possible amtomatemany aspects of the tomated, and the characteristics of the associated sensors, con-
system, i.e., to have a computer carry out certain functions ti{!S, and software—are major concerns in the development of

the human operator would normally perform. The automatig#!tomated systems. This is perhaps not surprising given the so-
phistication and ingenuity of design of many such systems (e.g.,

, _ _ _the automatic landing of a jumbo jet, or the docking of two
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ways unintended and unanticipated by the designers of automa- TABLE |

tion [8], and as a result poses new coordination demands on LEVELSA‘;FDAALéTTCl’g"':‘TS'g\‘E;FIOEN’EC'S'ON

the human operator [7]. Until recently, however, these findings

have not had much V|S|blllw or impaCt in engineering and de HIGH  10. The computer decides everything, acts autonomously, ignoring the human.

sign circles. Examination of human performance issues is e 9. informs the human only if it, the computer, decides to

pecially important because modern technical capabilities no 8. informs the human only if asked, or

force system designers to consider some hard choices regard 7. executes automatically, then necessarily informs the human, and
What to automate and to What eXtent, given that there iS I|tt|e th( 6. allows the human a restricted time to veto before automatic execution, or

cannot be automated. In the present paper we propose a mo
for types and levels of automation that provides a framewor
and an objective basis for making such choices. Our approa
was guided by the concept of “human-centered automation” [¢

and by a previous analysis of automation in air traffic contro
LOW 1. The computer offers no assistance: human must take all decisions and actions.
(ATC) [10].1

5. executes that suggestion if the human approves, or
4. suggests one alternative
3. narrows the selection down to a few, or

2. The computer offers a complete set of decision/action alternatives, or

Let us begin by defining automation, because the term has
been used many different ways. The Oxford English Dictiona=-

(1989) defines automation as Sensory { | Perception/ [ __| Decision Response
. Processin Workin Makin, Selection
1) Automatic control of the manufacture of a produc & Memory &

through a number of successive stages;
2) the appllcat!on of automatic control to any branch of InIfig. 1. Simple four-stage model of human information processing.
dustry or science;
3) by extension, the use of electronic or mechanical devices
to replace human labor. retains authority for executing that alternative or choosing an-
The original use of the term implies automatic contenitp- Cther one. Ata higher level 6, the system gives the human only
matic having many alternative definitions suggesting reflexiv@ limited time for a veto before carrying out the decision choice.
action, spontaneity, and independence of outside sources). Au~utomated systems can operate at specific levels within this
tomatic control can be open loop as well as closed loop, af@ntinuum. For example, a conflict detection and resolution
can refer to electronic as well as mechanical action. AutomatighStem that notifies an air traffic controller of a conflict in
does not simply refer to modernization or technological innovi1e flight paths of two aircraft and suggests a resolution
tion. For example, updating a computer with a more powerﬂMOUld qualify as level 4 autqmatlon. Under_ level 6 or h|gh_er,
system does not necessarily constitute automation, nor does!fife System would automatically execute its own resolution
replacement of electrical cables with fiber optics. The prese#iVisory, unless the controller intervened.
paper is concerned with human performance in automated sys the proposed model we extend Table | to cover automa-
tems. We therefore use a definition that emphasizes human-#@ of different types of functions in a human-machine system.
chine comparison and define automation as a device or syst&fi¢ scale in Table | refers mainly to automation of decision and
that accomplishes (partially or fully) a function that was prevction selection, ooutputfunctions of a system. However, au-

ously, or conceivably could be, carried out (partially or fully) byomation may also be applied Boput functions, i.e., to func-
a human operator [8]. tions that precede decision making and action. In the expansion

of the model, we adopt a simple four-stage view of human in-
formation processing (see Fig. 1).

The first stage refers to the acquisition and registration of
In our definition, automation refers to the full or partial rémultiple sources of information. This stage includes the posi-
placement of a function previously carried out by the humapbning and orienting of sensory receptors, sensory processing,

Operator. This Implles that automation is not all or none, b”’““a' pre_processing of data prior to full perception, and se-
can vary across a continuum of levels, from the lowest level gictive attention. The second stage involves conscious percep-
fully manual performance to the highest level of full automatiofion, and manipulation of processed and retrieved information
Several levels between these two extremes have been propqﬁ%rking memory [13]. This stage also includes cognitive op-
[11], [12]. Table I shows a 10-point scale, with higher levels regsrations such as rehearsal, integration and inference, but these
resenting increased autonomy of computer over human actigferations occusrior to the point of decisioriThe third stage is
[10], based on a previously proposed scale [11]. For exampley@ere decisions are reached based on such cognitive processing.
alowlevel 2, several options are provided to the human, but tifie fourth and final stage involves the implementation of a re-
system has no further say in which decision is chosen. At |e\§:§onse or action consistent with the decision choice.
4, the computer suggests one decision alternative, but the humafs four-stage model is almost certainly a gross simplifica-
tion of the many components of human information processing
Un principle, our approach does not exclude the possibility of full automatioas discovered by information processing and cognitive psychol-

without any human operator involvement. This might suggest that our modeH@iStS [14]_ The performance of most tasks involves inter-de-
not needed if total automation is technically feasible. As we discuss later, how=

ever, full automation does not necessarily eliminate a human role in automa[é%ndent stages that overlap temporally n their processing oper-
systems [8]. ations [15]. The stages can also be considered to be coordinated

I1l. AM ODEL FORTYPES ANDLEVELS OF AUTOMATION
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Aequsiion “Anslysis Selection Implementation A+ ACqUisition Automation
Automation Automation Automation Automation Automation of information acquisition applies to the sensing
Level Level Level Level and registration of input data. These operations are equivalent to
the first human information processing stage, supporting human
High High High High sensory processes. At the lowest level, such automation may
/\ consist of strategies for mechanically moving sensors in order to
System B T — scan and observe. For example, the radars used in commercial
ATC acquire information on aircraft by scanning the sky in a
System A s fixed pattern, but in military ATC the radars may “lock on” as a
function of detected targets. Artificial visual and haptic sensors
could also be used with an industrial robot to allow it to find and
""""""""""""""""""""""""" grasp an object, thereby providing information about that object.
Moderate levels of automation at this stage may involve organi-
- — — - zation of incoming information according to some criteria, e.g.,
Low Low Low Low

a priority list, and highlighting of some part of the information.

For example “electronic flight strips” for air traffic controllers

Fig. 2. Levels of automation for independent functions of informatiogould list aircraft in terms of priority for handling; and the elec-
acquisition, information analysis, decision selection, and actio}onic data block showing aircraft on the controller’s radar dis-
implementation. Examples of systems with different levels of automation L . L
across functional dimensions are also shown. play (which itself represents an earlier form of acquisition au-
tomation) could be highlighted to indicate a potential problem

. . - . _with a particular aircraft. Note that both organization and high-
together in “perception-action” cycles [16] rather thanin a Str"ﬁbhting preserve the visibility of the original information (“raw”

serial sequence_from stimulus to response. Our gqal is notto ﬂgta). This is not necessarily the case with a more complex op-
bate the theoretical structure of the human cognitive system RyLiion at this stage of automation, filtering, in which certain
to propose a structure that is useful in practice. In this resp&glg of information are exclusively selected and brought to the
the conceptualization shown in Fig. 1 provides a simple Start“a%erator’s attention. Highlighting and filtering can lead to dif-

pointwith surprisingly far-reaching implications for automatioqering human performance consequences, as described in a later
design. Similar conceptual models have been found to be usefllsion in a discussion of automation reliability

in deriving human factors recommendations for designing sys-
tems in general [17]. B. Analysis Automation

The four-stage model of human information processing hasautomation of information analysis involves cognitive func-
its equivalent in system functions that can be automated. Afgns such as working memory and inferential processes. At a
cordingly, we propose that automation can be applied to foy |evel, algorithms can be applied to incoming data to allow
classes of functions (see also [18] and related proposals in {§] their extrapolation over time, gurediction For example,
and [19]): predictor displays have been developed for the cockpit that show
the projected future course of another aircraft in the neighboring
airspace [20], [21]. Trend displays have also been developed for
use in process control (e.g., nuclear power plants), in which a
model of the process is developed and used to show both the cur-
rent and the anticipated future state of the plant [22]. A higher
Each of these functions can be automated to differing dievel of automation at this stage involvegegration in which
grees, or many levels. The multiple levels of automation égveral input variables are combined into a single value. One
decision making as shown in Table | can be applied, wigkample is to use a display with @mergent perceptual fea-
some modification, to the information acquisition, informatioiture such as a polygon against a background of lines [23]. An-
analysis, and action implementation stages as well, althoughier example of information analysis automation in ATC is the
the number of levels will differ between the stages. Fig. @onverging runway display aid (CRDA), which eliminates the
provides a schematic of our model of types and levels obeed for the controller to mentally project the approach path
automation. As a convenient shorthand, we refer to the fook one aircraft onto that of another landing on a converging
types asacquisition analysis decision andactionautomation. runway [24]. In both these examples, information integration
We also occasionally refer jointly to acquisition and analysierves the purpose of augmenting human operator perception
automation asnformationautomation. and cognition. More complex forms of analysis automation in-

A particular system can involve automation of all four dimerslude “information managers” that provide context-dependent
sions at different levels. Thus, for example, a given system (&)ymmaries of data to the user [45].
could be designed to have moderate to high acquisition automa- . )
tion, low analysis automation, low decision automation, and lofr D€€ision Automation
action automation. Another system (B), on the other hand, mightThe third stage, decision and action selection, involves se-
have high levels of automation across all four dimensions. lection from among decision alternatives. Automation of this

1) information acquisition;

2) information analysis;

3) decision and action selection;
4) action implementation.
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stage involves varying levels of augmentation or replacemetgfensive measures [36]. The automation is adaptive because if
of human selection of decision options with machine decisidhis critical event does not occur, the automation is not invoked
making, as described previously in Table I. For example egr is set at a low level. In another example, the decision to con-
pert systems are designed with conditional logic (i.e., produttrue or abort an aircraft takeoff following an engine malfunc-
tion rules) to prescribe a specific decision choice if particulaion might be automated at either alow or a high level depending
conditions exist [25]. Examples can be found in medicine [26]pon the time criticality of the situation (e.g., how close the air-
military command and control [27], and in route planning focraft is to the critical speed V1 for takeoff) [37]. Considerable
pilots to avoid bad weather [28]. As with the analogous dempirical research on adaptive automation has been reported in
cision-making stage in human performance, such systems teeent years [38]-[44]. However, we do not describe this work
part from those involved in inference (analysis automation) bbecause it raises several complex ancillary issues, the discussion
cause they must make explicit or implicit assumptions about tbéwhich would take us far afield from the primary purpose of
costs and values of different possible outcomes of the decisibiis paper.

process, and the nature of these outcomes is uncertain in a prob-

abilistic world. The different levels of automation at this stage IV. A FRAMEWORK FORAUTOMATION DESIGN

are best defined by the original taxonomy proposed by Sherida
[11] and shown in Table I, which defines a continuum that pro-
gresses from systems that recommend courses of action, to tH
that execute those courses. For example, in comparing propo
and existing designs for decision automation in avoiding ai
craft—ground collisions, the current ground proximity warnin
system (GPWS) is positioned at level 4, in which a single m
neuver is recommended, but the pilot can chose to ignore it.

r]l'he model we have outlined provides a framework for exam-

ing automation design issues for specific systems. How can
ramework be used? We propose a series of steps and an iter-

itive procedure that can be captured in a flow chart (see Fig. 3).

he first step is to realize that automation is not all-or-none but

an vary by type. One can ask whether automation should be

plied to information acquisition, information analysis, deci-

a proposed automatic ground collision avoidance (auto GCAﬁgn selection, or to action |mplementat|on. Automation of one

system for combat aircraft is defined atlevel 7, in which automg- ss of function (e.g., information analysis), of different com-

tion will automatically take control if the pilot does not [29]. emzyél?r?e(g functions, or of all four functional domains, can be

D. Action Automation At a subsequent stage of design, one can ask what level of

The final stage of action implementation refers to the aa_utomanon should be applied within each functional domain.

tual execution of the action choice. Automation of this sta here is probably no simple answer to this question, and trade-

. : . : ; s between anticipated benefits and costs are likely. However,
involves different levels of machine execution of the choice : : !

: ; . he four-dimensional model we have proposed can provide a
action, and typically replaces the hand or voice of the human.: .. - ;
. . ; . uiding framework. As shown in Fig. 3, multiple levels of au-

Different levels of action automation may be defined by the ref- . : )
tomation can be considered for each type of automation. We

ative amount of manual versus automatic activity in executin : :
; ; : gqopose that any particular level of automation should be eval-
the response. For example, in a photocopier, manual sorting, au:

. : . . : . uated by examining its associated human performance conse-
tomatic sorting, automatic collation, and automatic stapling re%%l

. . : ences. These constitute primary evaluative criteria for levels
resent different levels of action automation that can be chos . . .
of automation. However, human performance is not the only im-
by the user. A somewhat more complex example from ATC IS . o .
. e . . portant factor. Secondary evaluative criteria include automation
the automated “handoff,” in which transfer of control of an airt . " . . - !
. ) : reliability and the costs of decision/action consequehddsese
craft from one airspace sector to another is carried out automgt- - - .
. . . - shiould also be applied to evaluate the feasibility and appropri-
ically via a single key press, once the decision has been m%cge

by the controller. On the flight deck, systems are also bei eness of particular levels of automation. We envisage the ap-

Idrrly(ﬂcation of these criteria and their evaluation as constituting a
considered in which a flight plan, uplinked from the groun 9

B s g recursive process (see Fig. 3) that could be made part of an iter-
can be “autoloaded” into the plane’s flight management com:. . X
; : ative design procedure. We emphasize, however, that the model

puter by a single keypress, rather than through more time-con- . -~
. : . - Should not be treated as a static formula or as a prescription that
suming manual data entry [30]-[32]. Finally, action automation

. w . ) . . dgcreesa particular type or level of automation. Rather, when
includes “agents” that track user interaction with a computer and - : T ) )
considered in combination with the primary and secondary eval-

exgcute certain sub-tasks automatically ina contextually-apphoétive criteria we have described, the model can provide princi-
priate manner [45]. o . :

pled guidelines for automation design.
E. Adaptive Automation We provide examples where, following consideration of these

evaluative criteria, particular levels of automation are recom-

Levels of automation across any of these functional YPEended for each of the four types or stages of automation. Such

need not be fixed at the system design.stage. Instead, 'Fhe I Mo mmendations refer to the appropriafper bouncon the
(and perhaps even the type) of automation could be demgneqie%l of automation, i.e., the maximum, but not necessarily the
vary depending on situational demands during operational usg Vo '

o . ﬁuired level. In other words, we recommend that automation
Context-dependent automation is known as adaptive automatio
[33]-[35]. Two examples will illustrate the concept. Inanairde- ,_ o o _ _
2This is not an exhaustive list of criteria. Others that are important include

fense system, the beginning of a"‘pop'Up"'Weapon de”\/e_ry S&ise of system integration, efficiency/safety tradeoffs, manufacturing and oper-
guence could lead to the automation at a high level of all aircrafing costs, and liability issues.
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level 4 automation but degraded by automation above level 6.

What Should be A d? . . .
at Should be Adtomare Application of our framework would determine the lower and

l upper bounds of automation to be 4 and 6, respectively. This
, Identify Types of Automation le initial specification would then be evaluated again with respect
] to the secondary evaluative criteria, in an iterative manner, and a
/\ final choice of level within this range could be made (see Fig. 3).
Acquisition Analysis Decision Action Over the past two decades, researc_hers hz_ive e>_<amined a
number of different aspects of human interaction with auto-
mated systems. This research, which has included theoretical
\/ analyzes, laboratory experiments, simulation and modeling,
Identify Levels of Automation field studies, and analyzes of real-world incidents and acci-
dents, has found that automation can have both beneficial and
l /\ l ne_gative_ effects on human performance [1]-[10], [45]-[48]. We
Low (VManal) High (Full Atomation) briefly _dlsc_uss four human performance areas: mental W(_)rk-
M load, situation awareness, complacency, and skill degradation.
. —— 1) Mental Workload: The evidence suggests that well-de-
Hﬁp,,ﬁ’z1;2:}‘::,{‘23;“5‘2::;{:;2:& signed information automation can change human operator
sﬁ\%}iﬁgﬁ%ﬂss > mental workload to a level that_ is appropriate for t_h_e system
Skill Degradation tasks to be performed. At the simplest level, organizing infor-
""""""" mation sources, e.g., in a priority list, will help the operator in
l picking the information relevant to a decision. Data summaries
| Jnitial Typesand can _aIS(_) help by _eliminating time-consuming search or com-
l munication operatlo_ns. As_ mentioned prewousl_y, the electronic
ooy Secomtany S G data block on the air traffic controller’s radar dlsplay r_eplaces
Automafion Reliability the need for the controller to communicate with pilots to
Costsof Action Qutcomes " determine the aircraft position and altitude. Other information
i automation operations that are beneficial include highlighting,
and integration, in which different information sources are
Levimal Typesand collated and presented together [10]. Cockpit predictor displays

have also shown that pilot workload decreases and hazard
Fig. 3. Flow chart showing application of the model of types and levels getectlon performanf:e |mproyes with the adglltlon (.)f pre_dlctlve
automation. For each type of automation (acquisition, analysis, decision, dRdormation concerning the flight path of neighboring aircraft
action), a level of automation between low (manual) and high (full automatiof21]. Data transformation, for example graphic presentation

is chosen. This levelis then evaluated byapply|_ngthe primary evalugitlve critefjp information, can also be beneficial. Transformation and
of human performance consequence, and adjusted if necessary, in an iterative

manner as shown. Secondary evaluative criteria are then also iteratively appllidiegration of raw data into a form (graphical or otherwise)
to adjust the level of automation. The process is then repeated for all four tyghait matches the operator’s representation of system operations

of automation. has been found to be a useful design principle [49]. A good
example is the horizontal situation indicator in the cockpit,

could be designed to go as high as that particular level, but which provides the pilot with a graphic display of the projected
further. But the designer could choose a level lower than tHight plan and the current position of the aircraft. This, more
maximum if necessary, particularly after considering evaluativkan any other automated system in the cockpit, has been
criteria other than the ones we discuss (e.g., ease of systenciedited with reducing the workload of the pilot [50].
tegration, or cost). Thiwer boundon the level of automation  These results should not be construed to mean that automa-
can also be determined by applying the same evaluative critefign always results in balanced operator workload. Instances of
Acceptable system performance may require a certain minimghomatiorincreasingworkload have also been found [8], [50].
level of automation. These mostly involve systems in which the automation is diffi-

i . cultto initiate and engage, thus increasing both cognitive work-
A. Human Performance Consequences: Primary Evaluative|saq [51] and if extensive data entry is required, the physical
Criteria for Automation Design workload of the operator. Such systems have been referred to

An important consideration in deciding upon the type anals implementing “clumsy” automation [50]. In general, the ef-

level of automation in any system design is the evaluation of tfect of automation on mental workload has been mirrored by
consequences for human operator performance irethdting the similarly mixed record of automation in improving human
system (i.e., after automation has been implemented). As shgwnductivity and efficiency [52].
in Fig. 3, particular types and levels of automation are evalu-In addition to unbalanced mental workload, other human per-
ated by examining their associated human performance confeemance costs have been linked to particular forms of automa-
guences. To take a hypothetical example, suppose prior resediam We briefly consider three such costs.
has shown (or modeling predicts) that compared to manual op2) Situation AwarenessFirst, automation of deci-
eration, both human and system performance are enhancedioy-making functions may reduce the operator’'s awareness
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of the system and of certain dynamic features of the wovithen the human operator will not be as skilled in performing
environment. Humans tend to be less aware of changes in #rat function. There is a large body of research in cognitive
vironmental or system states when those changes are undempechology documenting that forgetting and skill decay occur
control of another agent (whether that agent is automation with disuse [63]. Degradation of cognitive skills may be partic-
another human) than when they make the changes themselMesly important following automation failure. A recent simula-
[53]-[56]. Also, if a decision aid, expert system, or other typgon study of human control of a telerobotic arm used for move-
of decision automation consistently and repeatedly selects andnt of hazardous materials found that following automation
executes decision choices in a dynamic environment, the hurmaalfunction, performance was superior with an intermediate
operator may not be able to sustain a good “picture” of tHevel of decision automation compared to higher levels [53].
information sources in the environment because he or she is noThese potential costs—reduced situation awareness, com-
actively engaged in evaluating the information sources leadiptacency, and skill degradation—collectively demonstrate
to a decision. This might occur in systems where operators #ltht high-level automation can lead to operators exhibiting
as passive decision-makers monitoring a process to deternfioet-of-the-loop” unfamiliarity [47]. All three sources of
when to intervene so as to prevent errors or incidents [53]. Natelnerability may pose a threat to safety in the event of system
that such a cost may occur even as the use of automatiorfaifure. Automation must therefore be designed to ensure that
information analysis, e.g., data integration, may improve ttseich potential human performance costs do not occur. Human
operator’s situation awareness. performance costs other than the areas we have discussed

3) Complacency:Second, if automation is highly but notshould also be examined. Automation that does not lead to
perfectly reliable in executing decision choices, then the opembalanced mental workload, reduced situation awareness,
ator may not monitor the automation and its information sourcesmplacency, or skill loss may nevertheless be associated with
and hence fail to detect the occasional times when the autoroiier human performance problems that ultimately impact
tion fails [57], [58]. This effect of over-trust or “complacency” ison system performance, including mode confusion and low
greatest when the operator is engaged in multiple tasks and legsrator trust in automation [1]-[10], [45]—[48].
apparent when monitoring the automated system is the only taslBy considering these human performance consequences, the
that the operator has to perform [58]. The complacency effectriglative merits of a specific level of automation can be deter-
monitoring has recently been modeled using a connectionist anined. However, full application of our model also requires con-
chitecture [59]: the analysis suggested that complacency reflesitderation of other criteria. We consider two other secondary
differential learning mechanisms for monitoring under manuatiteria here, automation reliability and the cost of decision and
control and automation. action outcomes.

Automation of information analysis can also lead to compla-
cency if the algorithms underlying filtering, prediction, or inB. Secondary Evaluative Criteria
tegration operations are reliable but not perfectly so. A recent1) Automation Reliability: The benefits of automation on
study of a simulated air-ground targeting task [60] found thatgperator mental workload and situation awareness noted previ-
cue thatincorrectly directed attention away from the target ledé@sly are unlikely to hold if the automation is unreliable. Hence
poorer detection performance even though pilots were informgfisuring high reliability is a critical evaluative criterion in ap-
that the cue was not perfectly reliable. Automated cueing (gtying automation. Several procedures for estimating reliability
tention guidance) can lead operators to pay less attention to HAve been proposed, including fault and event tree analysis [64]
cued areas of a display than is appropriate [61]. Thus compkd various methods for software reliability analysis [65]. The
Cency-like effects can also be obtained even if automation is xe of these techniques can be heipfuil SO |0ng as their results
plied to information acquisition and analysis and not just to dere interpreted cautiously. In particular, what appear to be “hard
cision-making. It is not known, however, whether such effectiimbers,” such as a reliability of .997, or a mean time to failure
of unreliable automation apply equally strongly to all stages gf 100 000 hours, must be viewed with some skepticism because
information processing. There is some evidence to indicate tRgich values represents an estimate of a mean, whereas what is
although complacency can occur with both information automgequired is the variance around the mean, which can be consid-
tion and decision automation, its effects on performance asgable. The complexity and size of software in many automated
greater with the latter. In a study of decision aiding, both formsstems may also preclude comprehensive testing for all pos-
of automation benefited performance equally when the automgble faults, particularly those that arise from interaction with
tion was perfectly reliable [62]. When the automation was Ufthe existing system in which the automated sub-system is placed
reliable, however, performance suffered much more when yng]. Furthermore, automation reliability cannot always simply
reliable recommendations were given by decision automatipe defined in probabilistic terms. Failures may occur not be-
than when only incorrect status information was provided ause of a predictable (in a statistical sense) malfunction in soft-
information automation. This study, however, is the only one {gare or hardware, but because the assumptions that are modeled
date that has direCtIy ComparEd the effects of automation unfi®the automation by the designer are not metin a given opera-
liability at different stages of automation. The issue of wheth@bnal situation [8].
automation unreliability has similar negative effects for all four Automation reliability is an important determinant of human
stages of automation in our model needs further examinatioryse of automated systems because of its influence on human

4) Skill degradation: Third, if the decision-making function tryst [66] [67]. Unreliability lowers operator trust and can there-
is consistently performed by automation, there will come atinfgre undermine potential system performance benefits of the
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automation. Automated systems may be underutilized or dis-The decisions and associated actions that humans and auto-
abled because of mistrust, as in the case of alarm systems thated systems take in most systems vary in the costs that occur
frequently give false alerts [8]. Signal detection analysis [68]the actions are incorrect or inappropriate. Many routine ac-
can be used to determine the alerting threshold that balantiess have predictable consequences that involve little or no cost
the competing requirements of timely detection (to allow for eff the actions do not go as planned. Tiigk associated with a
fective action), a near-zero missed detection rate (becausale€ision outcome can be defined as the cost of a error multi-
potentially catastrophic consequences—e.g., a collision), angleed by the probability of that error. For decisions involving
low false alert rate [69]. To ensure alert reliability, the probaelatively little risk, therefore, out-of-the-loop problems are un-
bility that an alarm reflects a true hazardous event must alsolisely to have much impact, even if there is a complete automa-
maximized to the extent possible: this can be examined by cotion failure. Such decisions are strong candidates for high-level
bining signal detection theory and Bayesian statistics [70]. automation. In fact, if human operators had to be continually in-
If information automation can be made extremely reliableplved in making each of these relatively simple decisions, they
then pursuing very high levels of information automation cacould be so overloaded as to prevent them from carrying out
be justified. Of course, high reliability cannot be guaranteed ather more important functions.
many cases. As mentioned previously, the inherent uncertain naNote that high-level automation of decision selection and ac-
ture of information sources, either due to sensor imprecisiontin may also be justified in highly time-critical situations in
to changes in operator priorities, means that there will alwayhich there is insufficient time for a human operator to respond
exist conditions in which the algorithms used by the automati@md take appropriate action. For example, if certain serious prob-
are inappropriate for those conditions. Nevertheless, informams are detected in the reactor of a nuclear power plant, control
tion acquisition and analysis automation may still be retainedraids are automatically lowered into the core to turn off the re-
a relatively high levelas long aghe operator has access to thactor, without any human operator intervention. Bypassing the
raw data (e.g., highlighting, but not filtering), and the operator lruman operator is justified in this case because the operator
aware of (calibrated to) the level of unreliability, such that sommannot reliably respond in time to avoid an accident. As pre-
attention will be allocated to the original information [60], [71]viously discussed, automating the decision to abort or continue
Although many examples of highly reliable information authe takeoff of an aircraft when an engine malfunction occurs too
tomation exist, more sophisticated forms of such automation arear in time to the critical V1 speed for appropriate pilot action
being developed in which complex algorithms are applied to teould represent another qualifying example [37], as would the
raw data in order to predict future events. For example, traffitecision to take control of the aircraft if a fighter aircraft is about
displays in the cockpit, and conflict prediction tools for the aito run into the ground [29].
traffic controller both attempt to project the future flight paths It is also appropriate to consider high-level automation for
of aircraft. Projecting the future is inherently less than perfecttecisions involving high risk in situations in which human op-
reliable, particularly if carried out far enough out in time (e.ggrators have time to respond. In this case, the cost of adverse
20 min. for ATC conflict prediction). Further work needs to beonsequences define major evaluative criteria for determining
done to evaluate not only the reliability of the algorithms urmappropriate levels of automation. The examples in anesthesi-
derlying these predictor systems, but also their susceptibility ®ogy, air defense, and the stock market with which we began
noise in the raw data, and the consequences for human perthis paper qualify as involving high-cost decisions. System de-
mance of information automation unreliability. Some emergingigners can certainlgonsiderimplementing decision automa-
research is beginning to define the conditions under which unt@®n above low to moderate levels for such systems, e.g., at
liability does or does not influence human performance. For elevels at or above level 6 in Table I, in which computer sys-
ample, two recent studies found that when feedback is providieans are given autonomy over decision making. This would be
as to the occasional errors made by information automation, appropriate if the human operator is not required to intervene or
propriate calibration of the operator’s trust in the automatiananage the system in the event of automation failure. In fact,
can take place fairly rapidly, and the benefits of information aiun this case even full automation (Level 10) could be justified
tomation can still be realized [60], [71]. This suggests that théowever, if the human operator is ever expected under abnormal
negative effects of over-trust, noted earlier for decision automzircumstances to take over control, then our analysis suggests
tion, may be less apparent for information automation. Howhat high levels of decision automation may not be suitable be-
ever, as discussed previously, only one study has directly cooause of the documented human performance costs associated
pared information and decision automation [62]. Thus the issuéh such automation. The burden of proof should then be on
of whether automation unreliability has greater negative effedtee designer to show that their design will not lead to the prob-
for later stages of automation requires further examination. lems of loss of situation awareness, complacency, and skill loss
2) Costs of Decision/Action Outcome8ur analysis so far that we have discussed.
indicates that high levels of automation may be associated with
potential costs of reduced situation awareness, complacency,
and skill degradation. This is not to say that high levels of aU-3y| automation requires highly reliable error handling capabilities and the
tomation should not be considered for decision and action aiiity to deal effectively and quickly with a potentially large number of anoma-
tomation. However, assessing the appropriate level of autoripys situations. In addition to requi'ring the technical capat_)ilit_y to deal with all
. .. . . " . . types of known errors, full automation without human monitoring also assumes
tion for decision automation requires additional conaderaﬂqﬁ

3 . ™ . ability to handle unforeseen faults and events. This requirement currently
of the costs associated with decision and action outcomes. strains the ability of most intelligent fault-management systems.
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A system designer may object to the recommendation thtamation is selected for the latter, then designers should resist
decision automation should not exceed a moderate level tbe temptation for high automation levels of decision making.
high-risk situations on the grounds that if information automa-
tion can be made highly reliable, then decision automatian Application Example

can also be, so why not implement high-level automation for Our multi-stage model of human-automation interaction can

this function too? The answer is that although decision-aidi%% . o . . : : .
applied to specific systems in conjunction with a considera-

iystems ca;t.be ertlglneiere:\d' to be ?'?Ely relllable If(;)r mfﬁgn of evaluative criteria, of which we have discussed three in
nown conditions, thé "noisiness: o € real world, wi r}h's paper—human performance consequences, automation re-

u?pelfggidbvﬁga“?ngf I(?thgfesra:tn% ccor::]jltl(;):sr; tsugfxgﬁfr:ﬁnbility, and the costs of decision/action consequences. To fur-
° N 0 r syste ompone . ﬁm[\r illustrate application of the model, we briefly consider its
operators, system malfunctions, etc., as well as the inheren

R . . - use in the design of future ATC systems, based on analyses pre-
unreliability of predicting the future, will mean that there W'"viously presen?ed in [10] y ysesp
alyvays be a §et of Condlt!ops under which the au't(')manonATC systems are being redesigned because the volume of air
will reach an incorrect decision. If under such conditions (ﬂgﬁic is likely to double over the next two decades, posing a

system failure the human operator is required to intervene a8nificant threat to handling capacity [72]. One alternative is

salvage the situation, the p”’b'?‘m of ou't-the-loop unfamilia.ritlyree Flight [73], which would allow user-preferred routing and
may prevent the operator from intervening successfully or ineg, maneuvering, among other changes aimed at minimizing
tlmgly manne'r [8], 1471, [55] . ) ATC restrictions [74]. Another approach is to supplement the
Finally, the inter-dependence of the decision automation agrent system of ground-based ATC with additional automa-
action automation dimensions fqr high-risk fungtmns shoullc;i(.)n to support air traffic controllers in the management of an
be noted. A system could be designed to have high-level degjereasingly dense airspace [10]. Elements of both alternatives
sion automation, in which decision choices are selected withoyt, likely to be implemented, but the increasing complexity of
human involvement or veto power. For example, currently fjre airspace will require automation tools to support both air
air traffic controller issues a verbal clearance to a pilot, who agagfic controllers and pilots. Automation tools will be needed

knowledges and then executes a flight maneuver consistent Wi pjanning, traffic management, conflict detection and resolu-
the clearance. With the development of two-way electronic daig, etc.

link communications between aircraft and ATC, however, the Application of our model suggests the following recommen-

clearance (which itself may be a computer choice) could be Upsiions for future ATC automation. (We again emphasize that
linked and Ioaded in the ai'rcraft’s flight management systegyqn, recommendation represents an upper bound or maximum
(FMS) automatically. The aircraft could then carry out the Mggye| of automation, not a required level.) High levels of infor-
neuver, without pilot intervention. If the consequences of gation acquisition and analysis automation can be pursued and
incorrect or inappropriate decision are great, however, thengisiemented if the resulting system can be shown to be reliable.
would be prudent to require that the action automation level Ris recommendation is represented by the arrows on the left
sufficiently low so that the (automated) decision choice is eXgyt of the scales in Fig. 4. Several examples of such automation
cuted by the pilot (i.e., by actively pressing a button that *load§sych as CRDA) already exist and others are being developed.
the proposed flight plan into the FMS). Giving the pilot the 0prqr gecision and action automation, however, high levels should
portunity to review the decision choice and forcing a conscioys, implemented only for low-risk situations (indicated by the
overt action, provides an "error-trapping” mechanism that cafyner arrow in the middle scale in Fig. 4). For all other situ-
guard against mindless acquiescence in computer-generatedggins, the level of decision automation should not exceed the
lutions that are not contextually appropriate. Note that we agge| of the computer suggesting (but not executing) a preferred
notimplying that some degree of human actioaligaysneeded  4jternative to the controller (indicated by the lower arrow). For
for the purposes of error trapping. The need only arises at the |§§émple, in risky situations, as when a climb clearance has to
action implementation stage if the previous decision selectigg jssyed to resolve a crossing conflict in dense airspace, con-
stage has been highly automated. In this situation having Soffi& resolution automation can provide alternatives to the con-
human involvement at the action stage provides a *last chanfger but should not select one of them without controller in-
opportunity” to trap errors. _ volvement. If relatively high-level decision automation is im-
_Recent studies have examined the relative effects of low agdmented in risky situations, however, then we recommend that
high levels of action automation on use of the FMS [30], [31}ome degree of human action be retained by having a moderate
Use of a lower level of automation of action selection—in efgye| of action automation. As discussed previously, this allows

tering data-linked flight information into the flight managemenfyy |ast-stage error trapping. This recommendation is indicated
computer—allowed for more errors of decision making automgy the right-most arrow in Fig. 4.

tion to be caught, than a higher level, in which data entry was ac-
complished by pressing a single “accept” button. Of course this
advantage for error trapping must be balanced against the added
workload, and possible error source of less automated (manualBefore concluding, we briefly consider two alternative ap-
data entry [32]. Certainly cumbersome and clumsy data enpgoaches to the implementation of automation, and discuss some
remains a viable candidate for automation. But to reiterate thiitations and extensions of our framework. One alternative to
linkage between decision and action automation, if high aaur approach is to automate everything that one can. This can be

V. ALTERNATIVES, LIMITATIONS, AND EXTENSIONS
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g‘cf;umisﬁig: Ing‘:;‘;s*iign Secision Implfe‘;f::l';aﬁm and levels of automation, we did not discuss how the relative
benefits and costs should be weighed. Should the benefit (of

Automafion Aufomation Aufomation Automation a particular automation level) of balanced mental workload
be outweighed by the cost of reduced situation awareness or

High High High High increased likelihood of complacency? What is the relative

T T T T weighting of the human performance costs we discussed in

— R this paper, as well as of those we did not? Similarly, which

v | o elile For ik is the most important of the several secondary evaluative
automation criteria we have listed, such as automation reliability, costs of
For hig@i action outcomes, ease of system inte_gration, eﬁiciengy/s_gfety

o dedision tradeoffs, ma_nufagtunng and _operatlng costs,_ and liability?
57; Jughrisk ?l:zgcittiiglz;risk These are difficult issues _to which there are no S|mple answers.

Of course, as a qualitative model our approach is meant to

. o ;; . provide a framework for design, not a set of quantitative

methods. Nevertheless, one way forward might be to examine
Fig. 4. Recommended types and levels for future ATC systems, consistti@ Possibility of formalizing the model. More generally, it
with three evaluative criteria-human performance consequences, automatmuld be desirable to have quantitative models that could
reliability, and costs of actions. inform automation design for human-machine systems [77].
Several computational models of human-automation interac-
a viable option and to some extent has been the default stratég) have been put forward very recently, including models
used in most systems that have been automated to date, ofterPgged on expected value statistics [37], [78], task-load models
cause increasing efficiency or reducing costs are major drivib€P], cognitive-system models [80], and a model based on
forces for automation. However, a problem with this strategy $$ate-transition networks [81] (for a recent review of these
that the human operator is left with functions that the design@todels, see [82]). As these and related models mature and are
finds hard, expensive, or impossible to automate (until a clevalidated, it may be possible to improve automation design
erer designer comes around). This approach therefore defiR¢ssupplementing the qualitative analysis presented here with
the human operator’s roles and responsibilities in terms of tAgantitative modeling.
automation [8]. Designers automate every subsystem that leads
to an economic benefit for that subsystem and leave the operator VI. CONCLUSIONS
to manage the rest. Technical capability or low cost are valid . I . :
. . ) : .~ Automation design is not an exact science. However, nei-
reasons for automation, given that there is no detrimental im- . g ) :
. ) ther does it belong in the realm of the creative arts, with suc-
pact on human performance in thesulting wholesystem, but . o S o
g 1~ cessful design dependent upon the vision and brilliance of indi-
this is not always the case. The sum of subsystem optimization . : . .
: o V(Iﬁueﬂ creative designers. (Although such qualities can certainly
does not typically lead to whole system optimization. A seco B , o
7 . eép the “look and feel” and marketability of the automated
alternative is to use task allocation methods to match human an ; : .
. - ) L system—see [83]). Rather, automation design can be guided by
machine capabilities, as in the Fitts list approach [75]. That i B :
i ; four-stage model of human-automation interaction we have
tasks that are putatively performed better by machines should

be automated, whereas those that humans do better should %r(g)lposed, along with the consideration of several evaluative cri-

; . fteiria. We do not claim that our model offers comprehensive de-
Unfortunately, although function allocation methods are useful - . .
sign principles but a simple guide. The model can be used as a

in principle, it has proved difficult in practice to use proceduress[arting point for considering what types and levels of automa-
such as the Fitts List to determine which functions should lﬁe

automated in a system [76]. on should be implemented in a particular system. The model

Some limitations of our model for types and levels of automafi‘-ISO provides a framework within which important issues rel-

tion should also be noted. First, while we used Sheridan’s %ant to automation design may be profitably explored. Ulti-
: : . . . ately, successful automation design will depend upon the sat-
levels of automation [11] for decision automation, we did ng

explicitly specify the number of levels for the other types of au|§fact0ry resolution of these and other issues.

tomation, e.g., information automation. One reason is that while

there is extensive research pointing to the benefits of informa-
tion automation vs. no automation (e.g., as in predictor displaysThe authors thank the members of the Panel on Human Fac-

for CDTI, see [20], [21]), there is as yet little empirical workiors in Air Traffic Control Automation of the National Research

explicitly comparing the effects on human performanceliéf  Council (Anne Mavor, Study Director) for their contributions to
ferent level®f automation for information acquisition and analthis work. They also thank P. Hancock, D. Kaber, N. Moray, U.
ysis. Another reason is that any proposed taxonomy is likely Metzger, and M. Scerbo for useful comments on this work.

be superceded by technological developments in methods for

information integration and presentation, so that new levels will
need to be specified. [1] E. L. Wiener and R. E. Curry, “Flight-deck automation: Promises and

S d i . h f b fi problems,”Ergonomicsvol. 23, pp. 995-1011, 1980.
econd, In proposing human performance benefits and[Z] L. Bainbridge, “Ironies of automation,’Automatica vol. 19, pp.

costs as evaluative criteria for determining appropriate types  775-779, 1983.
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